首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
This paper provides the first report of black nuptial coloration on the ventral side for a population of threespine sticklebacks, Gasterosteus aculeatus, in Northern California. Black nuptial coloration was least intense during precourtship. Although the black coloration intensified during courtship, it was not a significant predictor of female choice and, unlike the red throat and blue eyes, was not inversely correlated with the number of female introductions necessary before spawning occurred. Black coloration was the most intense for males who successfully hatched embryos, supporting a parental-defense role late in the cycle. Unsuccessful fathers had more intensely colored red throats, blue eyes, and black bellies during most of the reproductive cycle than successful fathers. Some females in this study developed red coloration on their throat, although none to the intensity or distribution typical of a breeding male.  相似文献   

2.
A surface-spreading synaptonemal complex (SC) technique was employed to analyze spermatocytes and oocytes of stickleback, Gasterosteus aculeatus, in order to visualize the process of chromosome synapsis. The mean SC length was 150±18m in three males and 143±12m in one female analyzed. A representative SC karyotype with 21bivalents was also presented. Each SC had lateral elements of equal length. No bivalent displaying the atypical synaptic behaviour which is often associated with heteromorphic sex chromosomes was observed neither in males nor in the female analyzed.  相似文献   

3.
The degree of plasticity an individual expresses when moving into a new environment is likely to influence the probability of colonization and potential for subsequent evolution. Yet few empirical examples exist where the ancestral and derived conditions suggest a role for plasticity in adaptive genetic divergence of populations. Here we explore the genetic and plastic components of shoaling behaviour in two pairs of populations of Poecilia reticulata (Trinidadian guppies). We contrast shoaling behaviour of guppies derived from high‐ and low‐predation populations from two separate drainages by measuring the shoaling response of second generation laboratory‐reared individuals in the presence and absence of predator induced alarm pheromones. We find persistent differences in mean shoaling cohesion that suggest a genetic basis; when measured under the same conditions high‐predation guppies form more cohesive shoals than low‐predation guppies. Both high and low‐predation guppies also exhibit plasticity in the response to alarm pheromones, by forming tighter, more cohesive shoals. These patterns suggest a conserved capacity for adaptive behavioural plasticity when moving between variable predation communities that are consistent with models of genetic accommodation.  相似文献   

4.
Trees range from small-leaved, intricately branched species with slender stems to large-leaved, coarsely branched ones with thick stems. We suggest a mechanism for this pattern, known as Corner's Rules, based on universal scaling. We show similar crown area–stem diameter scaling between trunks and branches, environments, and species spanning a wide range of leaf size and stem biomechanics. If crown and stem maintain metabolically driven proportionality, but similar amounts of photosynthates are produced per unit crown area, then the greater leaf spacing in large-leaved species requires lower density stem tissue and, meeting mechanical needs, thicker stems. Congruent with this scenario, we show a negative relationship between leaf size and stem Young's modulus. Corner's Rules emerge from these mutual adjustments, which suggest that adaptive studies cannot consider any of these features independently. The constancy of scaling despite environmental challenges identifies this trait constellation as a crucial axis of plant diversification.  相似文献   

5.
Phenotypic plasticity is the ability of a genotype to produce more than one phenotype in order to match the environment. Recent theory proposes that the major axis of genetic variation in a phenotypically plastic population can align with the direction of selection. Therefore, theory predicts that plasticity directly aids adaptation by increasing genetic variation in the direction favoured by selection and reflected in plasticity. We evaluated this theory in the freshwater crustacean Daphnia pulex, facing predation risk from two contrasting size-selective predators. We estimated plasticity in several life-history traits, the G matrix of these traits, the selection gradients on reproduction and survival, and the predicted responses to selection. Using these data, we tested whether the genetic lines of least resistance and the predicted response to selection aligned with plasticity. We found predator environment-specific G matrices, but shared genetic architecture across environments resulted in more constraint in the G matrix than in the plasticity of the traits, sometimes preventing alignment of the two. However, as the importance of survival selection increased, the difference between environments in their predicted response to selection increased and resulted in closer alignment between the plasticity and the predicted selection response. Therefore, plasticity may indeed aid adaptation to new environments.  相似文献   

6.
We investigated the effect of temperature and wing morphology on the quantitative genetic variances and covariances of five size-related traits in the sand cricket, Gryllus firmus. Micropterous and macropterous crickets were reared in the laboratory at 24, 28 and 32 degrees C. Quantitative genetic parameters were estimated using a nested full-sib family design, and (co)variance matrices were compared using the T method, Flury hierarchy and Jackknife-manova method. The results revealed that the mean phenotypic value of each trait varied significantly among temperatures and wing morphs, but temperature reaction norms were not similar across all traits. Micropterous individuals were always smaller than macropterous individuals while expressing more phenotypic variation, a finding discussed in terms of canalization and life-history trade-offs. We observed little variation between the matrices of among-family (co)variation corresponding to each combination of temperature and wing morphology, with only one matrix of six differing in structure from the others. The implications of this result are discussed with respect to the prediction of evolutionary trajectories.  相似文献   

7.
Populations adapt to novel environmental conditions by genetic changes or phenotypic plasticity. Plastic responses are generally faster and can buffer fitness losses under variable conditions. Plasticity is typically modeled as random noise and linear reaction norms that assume simple one‐to‐one genotype–phenotype maps and no limits to the phenotypic response. Most studies on plasticity have focused on its effect on population viability. However, it is not clear, whether the advantage of plasticity depends solely on environmental fluctuations or also on the genetic and demographic properties (life histories) of populations. Here we present an individual‐based model and study the relative importance of adaptive and nonadaptive plasticity for populations of sexual species with different life histories experiencing directional stochastic climate change. Environmental fluctuations were simulated using differentially autocorrelated climatic stochasticity or noise color, and scenarios of directional climate change. Nonadaptive plasticity was simulated as a random environmental effect on trait development, while adaptive plasticity as a linear, saturating, or sinusoidal reaction norm. The last two imposed limits to the plastic response and emphasized flexible interactions of the genotype with the environment. Interestingly, this assumption led to (a) smaller phenotypic than genotypic variance in the population (many‐to‐one genotype–phenotype map) and the coexistence of polymorphisms, and (b) the maintenance of higher genetic variation—compared to linear reaction norms and genetic determinism—even when the population was exposed to a constant environment for several generations. Limits to plasticity led to genetic accommodation, when costs were negligible, and to the appearance of cryptic variation when limits were exceeded. We found that adaptive plasticity promoted population persistence under red environmental noise and was particularly important for life histories with low fecundity. Populations producing more offspring could cope with environmental fluctuations solely by genetic changes or random plasticity, unless environmental change was too fast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号