首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 804 毫秒
1.
Aphis glycines Matsumura (Hemiptera: Aphididae) can reduce the yield of aphid-susceptible soybean (Glycine max (L.) Merrill) cultivars. The Rag1 and Rag2 genes conferresistance to some biotypes of A. glycines. These genes individually can limit population growth of A. glycines and prevent yield loss. The impact of these genes when combined is not known. We compared the development of A. glycines on soybean with Rag1 alone (R1/S2), Rag2 alone (S1/R2), both genes combined (R1/R2), or neither gene (S1/S2). In addition, we determined the impact of different levels of aphid infestation on seed yield. The genotypes were grown in cages and artificially infested with A. glycines to achieve five treatment levels: aphid-free, 675 aphids per plant, 25,000 cumulative aphid days (CAD) (25K), 50,000 CAD (50K), and 75,000 CAD (75K). The S1/S2 line reached the 50K treatment, but did not reach the 75K treatment. Aphid development on R1/S2 and S1/R2 soybeans after two infestations reached a maximum of 25K. The maximum treatment reached on R1/R2 was only 675 aphids per plant after two infestations, at which there was no significant yield reduction when compared with the aphid-free treatment. The maximum yield reduction of S1/S2 was 27% at 50K treatment compared with 2% for R1/S2 and 12% for S1/R2 at the 25K treatment. Our results indicated that for A. glycines used in our study, cultivars with both Rag1 and Rag2 had less aphid exposure and less yield reduction than soybeans with only one resistant gene.  相似文献   

2.
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is one of the most destructive insect pests on soybeans in the United States. One method for managing this pest is through host plant resistance. Since its arrival in 2000, 4 aphid biotypes have been identified that are able to overcome soybean aphid resistance (Rag) genes. A soybean aphid isolate collected from Moline, Illinois readily colonized soybean plants with the soybean aphid resistance gene Rag2, unlike biotypes 1 and 2, but similar to soybean aphid biotype 3. Two no‐choice experiments compared the virulence of the Moline isolate with biotype 3. In both experiments, differences in aphid population counts were not significant (P > 0.05) on soybean genotypes LD08–12957a (Rag2) and LD11–5413a (Rag2), but the aphid counts for the Moline isolate were significantly (P < 0.05) lower than the aphid counts for the biotype 3 isolate on the soybean genotypes Dowling (Rag1), LD05–16611 (Rag1), LD11–4576a (Rag1), and PI 567598B (rag1b and rag3). The Moline isolate was a variant of aphid biotype 3, which is the first report showing that soybean aphid isolates classified as the same biotype, based on virulence against specific Rag genes, can differ in aggressiveness or ability to colonize specific host genotypes.  相似文献   

3.

Key message

Five soybean plant introductions expressed antibiosis resistance to multiple soybean aphid biotypes. Two introductions had resistance genes located in the Rag1, Rag2, and Rag3 regions; one introduction had resistance genes located in the Rag1, Rag2, and rag4 regions; one introduction had resistance genes located in the Rag1 and Rag2 regions; and one introduction had a resistance gene located in the Rag2 region.

Abstract

Soybean aphid (Aphis glycines Matsumura) is the most important soybean [Glycine max (L.) Merr.] insect pest in the USA. The objectives of this study were to characterize the resistance expressed in five plant introductions (PIs) to four soybean aphid biotypes, determine the mode of resistance inheritance, and identify markers associated with genes controlling resistance in these accessions. Five soybean PIs, from an initial set of 3000 PIs, were tested for resistance against soybean aphid biotypes 1, 2, 3, and 4 in choice and no-choice tests. Of these five PIs, PI 587663, PI 587677, and PI 587685 expressed antibiosis against all four biotypes, while PI 587972 and PI 594592 expressed antibiosis against biotypes 1, 2, and 3. F2 populations derived from PI 587663 and PI 587972 were evaluated for resistance against soybean aphid biotype 1, and populations derived from PIs 587677, 587685, and 594592 were tested against biotype 3. In addition, F2:3 plants were tested against biotypes 2 and 3. Genomic DNA from F2 plants was screened with markers linked to Rag1, Rag2, Rag3, and rag4 soybean aphid-resistance genes. Results showed that PI 587663 and PI 594592 each had three genes with variable gene action located in the Rag1, Rag2, and Rag3 regions. PI 587677 had three genes with variable gene action located in the Rag1, Rag2 and rag4 regions. PI 587685 had one dominant gene located in the Rag1 region and an additive gene in the Rag2 region. PI 587972 had one dominant gene located in the Rag2 region controlling antixenosis- or antibiosis-type resistance to soybean aphid biotypes 1, 2, or 3. PIs 587663, 587677, and 587685 also showed antibiosis-type resistance against biotype 4. Information on multi-biotype aphid resistance and resistance gene markers will be useful for improving soybean aphid resistance in commercial soybean cultivars.
  相似文献   

4.
Use of ingested transgenic corn tissue as a marker for measuring movement of adult Diabrotica virgifera virgifera (LeConte) (Coleoptera: Chrysomelidae; western corn rootworm) was investigated. Laboratory observations of beetles feeding on corn foliage, pollen, silks, or soybean foliage provided background on feeding patterns. The interval between food consumption and its appearance in feces (gut passage time) ranged from 102.7 +/- 11 min for soybean foliage to 56.7 +/- 2.9 min for corn silks. In a laboratory assay, protein expression tests identified the presence of Cry3Bb1 protein inside 50% of adult D. virgifera for up to 16 h after they had last consumed Cry3Bb1 protein-expressing corn silks from 'YieldGard Rootworm' corn plants (Monsanto Co.). Cry3Bb1 protein could not be detected by 32 h postfeeding. The proportion of Cry3Bb1 protein-positive beetles declined linearly with increasing time since feeding on 'YieldGard Rootworm' tissue. Approximately 20% of adult D. virgifera collected near 'YieldGard Rootworm' corn plots tested positive for Cry3Bb1 protein, indicating 'YieldGard Rootworm' tissue consumption within the last 16-32 h. Based on a 16- to 32-h postfeeding detection interval for Cry3Bb1 protein and the distance between 'YieldGard Rootworm' sources and sites where Cry3Bb1-positive insects were collected, 85.3% of males and females moved < or = 4.6-9.1 m/d through R2-R3 stage corn. Among Cry3Bb1-positive adults that left corn and were captured in an adjacent soybean field, 86.4% of males and 93.1% of females moved < or = 4.6-9.1 m/d through soybean. Detection of transgenic plant tissues in mobile insect herbivores is a novel application of biotechnology to the study of insect movement.  相似文献   

5.
We studied the performance of larvae of Diabrotica virgifera virgifera LeConte (Chrysomelidae, Galerucinae) on 17 different maize, Zea mays L., varieties from six European countries. Food conversion efficiency studies were performed using a newly established method. The growth of D. v. virgifera (western corn rootworm) larvae and the amount of ingested food was measured and the food conversion efficiency was calculated. In addition, we analyzed the carbon/nitrogen ratio and the phytosterol content of the different varieties. Significant differences between the maize varieties with regard to larval weight gain, amount of ingested food, and food conversion efficiency were encountered. The efficiency of D. v. virgifera in converting root biomass into insect biomass was positively related to the amount of nitrogen in the plant tissue. Furthermore the root phytosterol content influenced the larval weight gain and the amount of ingested food. It was possible to group the varieties into suitable and unsuitable cultivars with regard to D. v. virgifera larval performance on the basis of the phytosterol content. Our results provide the first evidence of the high variability among European maize varieties with respect to D. v. virgifera nutrition. The use of less suitable maize varieties is discussed with respect to integrated pest management strategies.  相似文献   

6.
Three on-farm sites in Iroquois County, IL, each containing an adjacent 16.2-ha commercial production maize, Zea mays L., and soybean, Glycine max (L.) Merr., field, were monitored for western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), adults from June through September 1999-2001. Mean captures of D. v. virgifera adults as measured with Pherocon AM yellow sticky traps were significantly greater in maize than in soybean. Overall mean numbers of D. v. virgifera adults captured with vial traps were significantly greater in soybean than in maize. Emergence cage data revealed that after 50% emergence of D. v. virgifera adults occurred, peak captures of D. v. virgifera adults occurred in maize as measured with vial and Pherocon AM traps. After maize reached the R2 (blister stage, 10-14 d after silking) stage of development and 90% emergence of D. v. virgifera adults had occurred, peak captures of D. v. virgifera adults were observed in soybean by using vial and Pherocon AM traps. Also, after maize reached the R2 stage of development, numbers of females significantly increased in soybean and decreased in maize. Captures of female D. v. virgifera adults frequently exceeded published economic thresholds in soybean, regardless of trap type used. Estimated survival of variant D. v. virgifera (egg to adult) in these commercial rotated maize fields was 10.7 and 9.4% from 1999 to 2000 and from 2000 to 2001, respectively. This compares with nonvariant D. v. virgifera survival estimates in continuous maize production systems in Iowa of 6.7 and 11% from 1983 to 1984 and from 1984 to 1985, respectively.  相似文献   

7.
Diabrotica species (Coleoptera: Chrysomelidae) larval behavior studies have posed a challenge to researchers because of the subterranean life cycle of this pest. To fully understand how the western corn rootworm, Diabrotica virgifera virgifera LeConte, injures the maize, Zea mays L., root system, its behavior must be studied. For example, larvae that can detect an area of the root that has a lower amount of toxin, whether from an insecticide or a transgenic maize plant, have an increased chance of survival. This study assessed D. v. virgifera larval feeding behavior on rootworm-susceptible maize and maize containing a biotechnology-derived trait (MON 863) with resistance to D. v. virgifera first instar feeding. Maize plants were grown in a medium that allowed for direct observation and measurements during feeding of larval stadia. Neonates were placed on maize seedlings, and data were taken at 3, 6, 9, and 12 d postinfestation on resistant and susceptible maize. On rootworm-susceptible maize, neonate larvae aggregated at the root tips and began actively feeding, and then they moved to older root tissue. Conversely, some larvae that ingested Cry 3Bb1 from the resistant maize exhibited no movement. Other larvae on the resistant maize moved continuously, sampling root hairs or root tissue but not actively feeding. The continuously moving larvae had visibly empty guts, suggesting possible nonpreference for the resistant root. This study contributes to our understanding of D. v. virgifera larval behavior and provides insight into questions surrounding the potential evolution of behavioral and biochemical resistance to Cry3Bb1.  相似文献   

8.
Genetic linkage mapping of the soybean aphid resistance gene in PI 243540   总被引:1,自引:0,他引:1  
The soybean aphid (Aphis glycines Matsumura) is a pest of soybean [Glycine max (L.) Merr.] in many soybean growing countries of the world, mainly in Asia and North America. A single dominant gene in PI 243540 confers resistance to the soybean aphid. The objectives of this study were to identify simple sequence repeat (SSR) markers closely linked to the gene in PI 243540 and to position the gene on the consensus soybean genetic map. One hundred eighty-four F(2) plants and their F(2:3) families from a cross between the susceptible cultivar Wyandot and PI 243540, and the two parental lines were screened with the Ohio biotype of soybean aphid using greenhouse choice tests. A SSR marker from each 10-cM section of the consensus soybean map was selected for bulked segregant analysis (BSA) to identify the tentative genomic location of the gene. The BSA technique was useful to localize the gene to a genomic region in soybean linkage group (LG) F. The entire F(2) population was then screened with polymorphic SSR markers from this genomic region and a linkage map with nine SSR markers flanking the gene was constructed. The aphid resistance gene was positioned in the interval between SSR markers Satt334 and Sct_033 on LG F. These SSR markers will be useful for marker assisted selection of this gene. The aphid resistance gene from PI 243540 mapped to a different linkage group than the only named soybean aphid resistance gene, Rag1, from 'Dowling'. Also, the responses of the two known biotypes of the soybean aphid to the gene from PI 243540 and Rag1 were different. Thus, the aphid resistance gene from PI 243540 was determined to be a new and independent gene that has been named Rag2.  相似文献   

9.
Multiple strategies are being developed for pest management of the soybean aphid, Aphis glycines Matsumura; however, there has been little published research thus far to determine how such strategies may influence each other, thereby complicating their potential effectiveness. A susceptible soybean (Glycine max L.) variety without the Rag1 gene and a near isogenic resistant soybean variety with the Rag1 gene were evaluated in the laboratory for their effects on the fitness of the soybean aphid parasitoid, Binodoxys communis (Gahan). The presence or absence of the Rag1 gene was verified by quantifying soybean aphid growth. To test for fitness effects, parasitoids were allowed to attack soybean aphids on either a susceptible or resistant plant for 24 h and then aphids were kept on the same plant throughout parasitoid development. Parasitoid fitness was measured by mummy and adult parasitoid production, adult parasitoid emergence, development time, and adult size. Parasitoids that attacked soybean aphids on susceptible plants produced more mummies, more adult parasitoids, and had a higher emergence rate compared with those on resistant plants. Adult parasitoids that emerged from resistant plants took 1 d longer and were smaller compared with those from susceptible plants. This study suggests that biological control by B. communis may be compromised when host plant resistance is widely used for pest management of soybean aphids.  相似文献   

10.
An experiment to evaluate the control of soybean cyst nematodes compared 1-year, 2-year, and 3-year nonhost rotations with continuous soybeans (Glycine max) in 0.2-ha plots. In a second 1-year rotation, the plots were planted to soybean or corn (Zea mays) after fumigation in the spring with a split application of 1,3-dichloropropene (748.2 liters/ha). The effects of the nematicide were apparent the first year. Soybean yield was 1,482 kg/ha compared to 233 kg/ha in the untreated plots. In the second year, the highest yielding plants (2,035 kg/ha) were those following 1 year of corn that had been treated the previous year; plants in untreated plots yielded 288 kg/ha. Average yield of soybean following 1 year of corn was 957 kg/ha compared to 288 kg/ha for continuous soybean. In the third year, the effects of the nematicide were still evident. Soybean plants in plots treated the first year, followed by corn, then soybean, yielded 1,044 kg/ha compared to 761 kg/ ha for soybean following 1 year of corn and 991 kg/ha for soybean following 2 years of corn. Plots planted to soybean for 3 consecutive years yielded 337 kg/ha. Nematicidal effects were no longer evident during the fourth year. Yields were most improved by the greatest number of years in the nonhost crop; highest yields in descending order were from plants following 3 years of corn, 2 years of corn, and 1 year of corn. Plots planted to soybean for 4 consecutive years yielded 130 kg/ha. Highly significant negative correlations occurred each year between initial nematode population densities and seed yield.  相似文献   

11.
Costs and benefits of jasmonic acid induced responses in soybean   总被引:1,自引:0,他引:1  
In response to herbivory, plants have evolved defense strategies to reduce herbivore preference and performance. A strategy whereby defenses are induced only upon herbivory can mitigate costs of defense when herbivores are scarce. Although costs and benefits of induced responses are generally assumed, empirical evidence for many species is lacking. Soybean (Glycine max L. Merr.) has emerged as a model species with which to address questions about induced responses. To our knowledge, this is the first study to examine the fitness costs and benefits of jasmonic acid-induced responses by soybean in the absence and presence of soybean loopers (Chrysodeix includens Walker) (Lepidoptera: Noctuidae). In a greenhouse experiment we demonstrated that soybean induction was costly. Induced plants produced 10.1% fewer seeds that were 9.0% lighter, and had 19.2% lower germination rates than noninduced plants. However, induction provided only modest benefits to soybeans. In a choice experiment, soybean loopers significantly preferred leaves from noninduced plants, consuming 62% more tissue than from induced plants. Soybean loopers that fed on plants that were previously subjected to treatment with jasmonic acid matured at the same rate and to the same size as those that fed on control plants. However, at high conspecific density, soybean looper survivorship was reduced by 44% on previously induced relative to control plants. Reduced soybean looper preference and survivorship did not translate into fitness benefits for soybeans. Our findings support theoretical predictions of costly induced defenses and highlight the importance of considering the environmental context in studies of plant defense.  相似文献   

12.
The soybean aphid (Aphis glycines Matsumura), an invasive species, has posed a significant threat to soybean [Glycine max (L.) Merr.] production in North America since 2001. Use of resistant cultivars is an effective tactic to protect soybean yield. However, the variability and dynamics of aphid populations could limit the effectiveness of host-resistance gene(s). Gene pyramiding is a promising way to sustain host-plant resistance. The objectives of this study were to determine the prevalent aphid biotypes in Michigan and to assess the effectiveness of different combinations of aphid-resistance genes. A total of 11 soybean genotypes with known resistance gene(s) were used as indicator lines. Based on their responses, Biotype 3 was a major component of Michigan aphid populations during 2015–2016. The different performance of Rag-“Jackson” and Rag1-“Dowling” along with the breakdown of resistance in plant introductions (PIs) 567301B and 567324 may be explained by Biotype 3 or an unknown virulent biotype establishing in Michigan. With the assistance of flanking markers, 12 advanced breeding lines carrying different aphid-resistance gene(s) were developed and evaluated for effectiveness in five trials across 2015 to 2017. Lines with rag1c, Rag3d, Rag6, Rag3c?+?Rag6, rag1b?+?rag3, rag1c?+?rag4, rag1c?+?rag3?+?rag4, rag1c?+?Rag2?+?rag3?+?rag4, and rag1b?+?rag1c?+?rag3?+?rag4 demonstrated strong and consistent resistance. Due to the variability of virulent aphid populations, different combinations of Rag genes may perform differently across geographies. However, advanced breeding lines pyramided with three or four Rag genes likely will provide broader and more durable resistance to diverse and dynamic aphid populations.  相似文献   

13.
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean, Glycine max (L.). Merr., that significantly reduces yield in northern production areas of North America. Insecticides are widely used to control soybean aphid outbreaks, but efforts are underway to develop host plant resistance as an effective alternative management strategy. Here, previously identified resistant lines were evaluated in laboratory tests against field-collected populations of soybean aphid and in field-plot tests over 2 yr in South Dakota. Six lines previously identified with resistance to soybean aphid--Jackson, Dowling, K1639, Cobb, Palmetto and Sennari--were resistant in this study, but relatively high aphid counts on Tie-feng 8 in field plots contrasted with its previously reported resistance. Bhart-PI 165989 showed resistance in one of two laboratory tests, but it had relatively large aphid infestations in both years of field tests. Intermediate levels of soybean aphid occurred in field plots on lines previously shown to have strong (Sugao Zairai, PI 230977, and D75-10169) or moderate resistance to soybean aphid (G93-9223, Bragg, Braxton, and Tracy-M). Sugao Zairai also failed to have a significant proportion of resistant plants in two laboratory tests against aphids field-collected in 2008, but it was resistant in laboratory tests with aphids collected in 2002, 2005, and 2006. Overall, results showed that lines with Rag (i.e., Jackson) or Rag1 gene (i.e., Dowling) had low aphid numbers, whereas lines with Rag2 (i.e., Sugao Zairai, Sennari) had mixed results. Collectively, responses of soybean aphid populations in laboratory and field tests in 2008 resembled a virulence pattern reported previously for biotype 3 soybean aphids, but virulence in soybean aphid populations was variable and dynamic over years of the study. These results, coupled with previous reports of biotypes virulent to Rag1, suggest that deployment of lines with a single aphid-resistance gene is limited for soybean aphid management, and that deployment strategies relying on multiple resistance genes may be needed to effectively use plant resistance against soybean aphid.  相似文献   

14.
Since the introduction of soybean aphid, Aphis glycines Matsumura, from Asia, insecticide use in soybean has increased substantially in the north central United States. Insecticide seed treatments and aphid resistant soybean varieties are management tactics that may reduce reliance on foliar applications of broad-spectrum insecticides. Exploring potential nontarget impacts of these technologies will be an important step in incorporating them into aphid management programs. We investigated impacts of thiamethoxam seed treatment and Rag1 aphid resistant soybean on a fungal pathogen of soybean aphid, Pandora neoaphidis (Remaudière & Hennebert) Humber, via open plot and cage studies. We found that although thiamethoxam seed treatment did significantly lower aphid pressure in open plots compared with an untreated control, this reduction in aphid density translated into nonsignificant decreases in fungal disease prevalence in aphids. Furthermore, when aphid densities were approximately equal in seed treated and untreated soybean, no impact on aphid fungal disease was observed. In open plots, Rag1 resistant soybean experienced lower aphid pressure and aphid disease prevalence compared with a nonresistant isoline. However, in cages when aphid densities were equivalent in both resistant and susceptible soybean, resistance had no impact on aphid disease prevalence. The addition of thiamethoxam seed treatment to resistant soybean yielded aphid densities and aphid disease prevalence similar to untreated, resistant soybean. These studies provide evidence that thiamethoxam seed treatments and Rag1 resistance can impact P. neoaphidis via decreased aphid densities; however, this impact is minimal, implying use of seed treatments and host plant resistance are compatible with P. neoaphidis.  相似文献   

15.
Transgenic corn producing the Bacillus thuringiensis (Bt) toxin Cry3Bb1 has been useful for controlling western corn rootworm, Diabrotica virgifera virgifera LeConte, one of the most economically important crop pests in the United States. However, rapid evolution of resistance by this beetle to Bt corn producing Cry3Bb1 has been reported previously from the laboratory, greenhouse, and field. Here we selected in the greenhouse for resistance to Cry3Bb1 corn in three colonies of WCR derived from Kansas, Minnesota, and Wisconsin, respectively. Three generations of rearing on Cry3Bb1 corn significantly increased larval survival on Cry3Bb1 corn, resulting in similar survival in the greenhouse for selected colonies on Cry3Bb1 corn and isoline corn that does not produce Bt toxin. After four to seven generations of rearing on Cry3Bb1 corn, survival in the field on Cry3Bb1 corn relative to isoline corn more than doubled for selected colonies (72%) compared with control colonies (33%). For both selected and control colonies, survival in the field was significantly lower on Cry3Bb1 corn than on isoline corn. On isoline corn, most fitness components were similar for selected colonies and control colonies. However, fecundity was significantly lower for selected colonies than control colonies, indicating a fitness cost associated with resistance. The rapid evolution of resistance by western corn rootworm to Bt corn reported here and previously underlines the importance of effective resistance management for this pest.  相似文献   

16.
Soybean [Glycine max (L.) Merr.] continues to be plagued by the soybean aphid (Aphis glycines Matsumura: SA) in North America. New soybean resistance sources are needed to combat the four identified SA biotypes. The objectives of this study were to determine the inheritance of SA resistance in PI 587732 and to map resistance gene(s). For this study, 323 F2 and 214 F3 plants developed from crossing PI 587732 to two susceptible genotypes were challenged with three SA biotypes and evaluated with genetic markers. Choice tests showed that resistance to SA Biotype 1 in the first F2 population was controlled by a gene in the Rag1 region on chromosome 7, while resistance to SA Biotype 2 in the second population was controlled by a gene in the Rag2 region on chromosome 13. When 134 F3 plants segregating in both the Rag1 and Rag2 regions were tested with a 1:1 mixture of SA Biotypes 1 and 2, the Rag2 region and an interaction between the Rag1 and Rag2 regions were significantly associated with the resistance. Based on the results of the non-choice tests, the resistance gene in the Rag1 region in PI 587732 may be a different allele or gene from Rag1 from Dowling because the PI 587732 gene showed antibiosis type resistance to SA Biotype 2 while Rag1 from Dowling did not. The two SA resistance loci and genetic marker information from this study will be useful in increasing diversity of SA resistance sources and marker-assisted selection for soybean breeding programs.  相似文献   

17.
Studies were conducted in Kansas corn and soybean fields during 1997 to compare various sampling methods, traps, and trap components for capturing three species of adult corn rootworms: western (Diabrotica virgifera virgifera Leconte), southern (D. undecimpunctata howardi Barber), and northern (D. barberi Smith & Lawrence). Lure constituents affected the species of beetle attracted to the trap. Traps with a lure containing 4-methoxycinnamaldehyde attracted more western corn rootworms, those with a lure containing eugenol were more attractive to northern corn rootworms, and those containing trans-cinnamaldehyde were most attractive to southern corn rootworms. Multigard sticky traps caught more beetles than did Pherocon AM sticky traps. In corn, a newly designed lure trap caught more beetles than did sticky traps on most occasions. Also, lure-baited sticky traps caught more beetles than did nonbaited sticky traps. Varying the color of the lure trap bottom did not affect the number caught. In soybeans, the new lure traps captured more beetles than did the nonbaited Multigard or Pherocon AM sticky traps. Results of this study suggest the new lure trap may provide a more accurate assessment of corn rootworm populations than traditional monitoring techniques and may be more esthetically pleasing to growers and consultants.  相似文献   

18.
Transgenic crops producing Bacillus thuringiensis (Bt) toxins for insect control have been successful, but their efficacy is reduced when pests evolve resistance. To delay pest resistance to Bt crops, the U.S. Environmental Protection Agency (EPA) has required refuges of host plants that do not produce Bt toxins to promote survival of susceptible pests. Such refuges are expected to be most effective if the Bt plants deliver a dose of toxin high enough to kill nearly all hybrid progeny produced by matings between resistant and susceptible pests. In 2003, the EPA first registered corn, Zea mays L., producing a Bt toxin (Cry3Bb1) that kills western corn rootworm, Diabrotica virgifera virgifera LeConte, one of the most economically important crop pests in the United States. The EPA requires minimum refuges of 20% for Cry3Bb1 corn and 5% for corn producing two Bt toxins active against corn rootworms. We conclude that the current refuge requirements are not adequate, because Bt corn hybrids active against corn rootworms do not meet the high-dose standard, and western corn rootworm has rapidly evolved resistance to Cry3Bb1 corn in the laboratory, greenhouse, and field. Accordingly, we recommend increasing the minimum refuge for Bt corn targeting corn rootworms to 50% for plants producing one toxin active against these pests and to 20% for plants producing two toxins active against these pests. Increasing the minimum refuge percentage can help to delay pest resistance, encourage integrated pest management, and promote more sustainable crop protection.  相似文献   

19.
Demography of soybean aphid (Homoptera: Aphididae) at summer temperatures   总被引:1,自引:0,他引:1  
Soybean aphid, Aphis glycines Matsumura, is now widely established in soybean, Glycine max L., production areas of the northern United States and southern Canada and is becoming an important economic pest. Temperature effect on soybean aphid fecundity and survivorship is not well understood. We determined the optimal temperature for soybean aphid growth and reproduction on soybean under controlled conditions. We constructed life tables for soybean aphid at 20, 25, 30, and 35 degrees C with a photoperiod of 16:8 (L:D) h. Population growth rates were greatest at 25 degrees C. As temperature increased, net fecundity, gross fecundity, generation time, and life expectancy decreased. The prereproductive period did not differ between 20 and 30 degrees C; however, at 30 degrees C aphids required more degree-days (base 8.6 degrees C) to develop. Nymphs exposed to 35 degrees C did not complete development, and all individuals died within 11 d. Reproductive periods were significantly different at all temperatures, with aphids reproducing longer and producing more progeny at 20 and 25 degrees C than at 30 or 35 degrees C. Using a modification of the nonlinear Logan model, we estimated upper and optimal developmental thresholds to be 34.9 and 27.8 degrees C, respectively. At 25 degrees C, aphid populations doubled in 1.5 d; at 20 and 30 degrees C, populations doubled in 1.9 d.  相似文献   

20.

Key Message

The Rag2 region was frequently identified among 21 F 2 populations evaluated for soybean aphid resistance, and dominant gene action and single-gene resistance were also commonly identified.

Abstract

The soybean aphid [Aphis glycines Matsumura (Hemiptera: Aphididae)] is one of the most important insect pests of soybean [Glycine max (L.) Merr] in the northern USA and southern Canada, and four resistance loci (Rag1rag4) have been discovered since the pest was identified in the USA in 2000. The objective of this research was to determine whether resistance expression in recently identified soybean aphid-resistant plant introductions (PIs) was associated with the four Rag loci using a collection of 21 F2 populations. The F2 populations were phenotyped with soybean aphid biotype 1, which is avirulent on plants having any of the currently identified Rag genes, using choice tests in the greenhouse and were tested with genetic markers linked to the four Rag loci. The phenotyping results indicate that soybean aphid resistance is controlled by a single dominant gene in 14 PIs, by two genes in three PIs, and four PIs had no clear Mendelian inheritance patterns. Genetic markers flanking Rag2 were significantly associated with aphid resistance in 20 PIs, the Rag1 region was significantly identified in five PIs, and the Rag3 region was identified in one PI. These results show that single dominant gene action at the Rag2 region may be a major source for aphid resistance in the USDA soybean germplasm collection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号