首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In this case report we present a child with an additional chromosome in the karyotype. The karyotypes of the boy and his parents were analyzed by use of a conventional banding technique (GTG) and fluorescence in situ hybridization (FISH). Probes painting whole chromosomes 12 and 18 were used in FISH. Cytogenetic examination of the parents revealed that his mother was carrying balanced reciprocal translocation between chromosomes 12 and 18. Her karyotype was described as 46,XX,t(12;18)(p13;q12). Father's karyotype was normal, described as 46,XY. The boy's karyotype was defined as 47,XY,+der(18)t(12;18)(p13;q12). The additional chromosome appeared probably due to 3:1 meiotic disjunction of the maternal balanced translocation, known as tertiary trisomy. The mother displayed a normal phenotype and delivered earlier a healthy child. However, the boy with the unbalanced karyotype shows multiple congenital abnormalities.  相似文献   

2.
Mesomelic form of chondrodysplasia and congenital glaucoma associated with de novo translocation (13;18)(q14:q23): Mesomelic dysplasias are characterized by limb shortening most prominent of the middle segment of the extremities (forearm and lower leg). In addition to several syndromic forms a few patients with sporadic or familial forms and without precise nosological classification have been reported so far. In this report we present a young female with disproportionate mesomelic dwarfism, dysmorphic facial features, bilateral glaucoma, patent ductus arteriosus, low and hoarse voice, and generalized muscular hypotonia. At the age of 2.5 years mental development is normal. High resolution G-banded chromosome studies revealed a de novo reciprocal translocation with karyotype 46,XX t (13;18)(q14;q23). The concurrence of this de novo autosomal translocation with this distinct phenotype supports the hypothesis that disruption of (a) gene(s) at the translocation breakpoints causes this unusual, apparently new form of skeletal chondrodysplasia.  相似文献   

3.
A two-year-old girl has the following features of the cri du chat syndrome: microcephaly, hypertelorism, downward slanting of the palpebral fissures, psychomotor retardation and a cat-like cry. She is only of five patients having the cat cry syndrome with 45 chromosomes. Her karyotype is 45,XX, -5, -14, +t(5; 14)(5qter leads to 5p11: : 14q11 leads to 14qter) with the translocation inherited from her mother and maternal grandmother, each of whom is the carrier of a balanced translocation 46,XX,t(5;14)(p11q11). Normal plasma activity for hexosaminidase B suggests the locus for this enzyme is not located in the delected segment of 5 p.  相似文献   

4.
We report on a balanced complex chromosomal aberration detected in a fetus after amniocentesis. The pregnancy was achieved after intracytoplasmic sperm injection. GTG-banding revealed a complex structurally rearranged karyotype with a translocation between chromosomes 5 and 15 and an additional paracentric inversion in the der(15) between bands 5q11.2 and 5q15. Ag-NOR staining showed an interstitial active nuclear organizer region in the der(15). Molecular cytogenetic analyses using whole-chromosome-painting probes, comparative genomic hybridization, and multicolor banding did not point to further structural aberrations or imbalances. Therefore, a complex rearrangement with three breakpoints has occurred, and the karyotype can be described as 46,XX,der(5)t(5;15) (q11.2;p12),der(15)t(5;15)(q11.2;p12)inv(5)(q11.2q15).  相似文献   

5.
A 14-year-old male was referred for evaluation of mental retardation with short stature and dysmorphic features. His karyotype was 46,XY,der(14)t(5;14)(q33;p12)pat, resulting in a pure partial 5q33-q35 trisomy due to the adjacent-1 segregation of a paternal balanced translocation. Paternal blood karyotype revealed a balanced translocation t(5;14)(q33;p12) retaining Ag-Nors. To date, only two cases of pure partial 5q trisomies spanning this region have been reported. Analysis of these cases and the one we report does not allow the delineation of a specific phenotype.  相似文献   

6.
The 11q;22q translocations, whatever the breakpoints may be, are of particular interest because of their propensity to 3:1 segregation of the chromosomes at meiosis I. Until now, no unbalanced karyotype resulting from 2:2 adjacent segregation was published among offspring of 11q;22q translocation carriers. The authors report the case of an unbalanced karyotype due to adjacent 1 segregation of a maternal translocation (11;22)(q23.3;q13.2). The proband's karyotype was 46,XX,-22,+der(22)(11;22)(q23.3;q13.2)mat. This finding demonstrates that adjacent 1 segregation is possible in t(11;22) with breakpoints at 11q23 and 22q13, and can lead to birth of viable infants.  相似文献   

7.
Partial trisomy of the distal third of the long arm of chromosome 10 is a well defined but rare syndrome. Most cases result from an unbalanced translocation. Growth retardation, developmental delay and characteristic dysmorphic features are well described in the syndrome. This report includes 2 Egyptian cases with partial 10q trisomy involving different breakpoints. Cases were subjected to full clinical examination and detailed cytogenetic analysis using conventional and FISH studies. Results showed that the karyotype of case 1 was 46,XX,der(7)t(7;10)(p22;q23).ish(wcp7+;wcpl0+) and the karyotype of case 2 was 46,XX,der(7)t(7;10)(p22;q25).ish(wcp7+;wcp 10+). The chromosomal abnormalities in case 1 resulted from a paternal balanced translocation while case 2 resulted from a maternal balanced translocation involving chromosomes 10 and 7 in both cases. The probands' phenotypes were correlated to the breakpoints and compared to previously reported cases with partial trisomy 10q. Both cases had the well characterized phenotype of the distal trisomy of 10q in the form of mental retardation, microcephaly, characteristic dysmorphic facies and limb anomalies as trisomy in both cases involved the 10q25-->qter region. However, case 1 with 10q23-->qter duplication showed more severe clinical manifestations than case 2 with less extensive 10q25-->qter trisomy. These included severe failure to thrive, cardiac involvement and death from respiratory and heart failure. This study confirmed that unbalanced chromosome regions of the long arm of chromosome 10 play an important role in developmental malformations and that a more severe form is associated with involvement of 10q23. It also emphasizes the importance of increasing public awareness regarding these chromosomal rearrangements and the importance of genetic counseling and prenatal diagnosis to avoid recurrences and associated family stress. This was clearly demonstrated in the second family in this study as the couple refused any follow up or further investigations due to religious beliefs despite their social and educational level.  相似文献   

8.
Here we report a 15-year-old girl patient who had severe mental and growth retardation, cleft palate, hemifacial microsomia, skin tags, hypoplasia of the external auditory canal, scoliosis and renal agenesis. Our patient was the fourth child of nonconsanguineous marriage. Peripheral blood chromosomal analysis of the patient revealed 47,XX,+der(22)t(11;22)(q23;q11). The maternal karyotype was reported as 46,XX,t(11;22)(q23;q11). Maternal balanced translocation t(11;22)(q23;q11) causing Goldenhar syndrome with 47,XX,+der(22) has not been reported previously. The presented case clearly indicates that in every case with Goldenhar syndrome, chromosome analysis should be done for the possibility of unbalanced translocations.  相似文献   

9.
Congenital Complex Chromosome rearrangements (CCRs) compatible with life are rare in humans. We report a de novo CCR involving chromosomes 8, 11 and 16 with 4 breakpoints in a patient with mild dysmorphic features, acquisition delay and psychotic disorder. Conventional cytogenetic analysis revealed an apparently balanced 8;16 translocation. Further FISH analysis with WCP 8 and WCP 16 probes revealed the presence of a third chromosome involved in the translocation. The multicolour karyotype confirmed the complexity of the rearrangement and showed that the derivative chromosome 8 was composed of 3 distinct segments derived from chromosomes 8, 16 and 11. The breakpoints of this complex rearrangement were located at 8q21, 11q14, 11q23 and 16q12. Comparative genomic hybridization (CGH) and array-CGH were performed to investigate the possibility of any genomic imbalance as a result of the complex rearrangement. No imbalance was detected by these two techniques. Our study showed: i) the necessity to confirm reciprocal translocations with FISH using painting probes, particularly when the karyotype resolution is weak; ii) the usefulness of multicolour karyotype for the characterization of structural chromosomal rearrangements, particularly when they are complex; iii) the usefulness of CGH and array-CGH in cases of abnormal phenotype and apparently balanced rearrangement in order to explore the breakpoints and to detect additional imbalances.  相似文献   

10.
We report a five-year-old girl who has been clinically diagnosed as Joubert syndrome. Her cytogenetic analysis showed 46,XX,der(2)add(2q37) karyotype. Cytogenetic analysis of her mother and maternal grandmother revealed a karyogram designated as 46,X,t (X;2)(p11.2;q37). The proband's derivative chromosome was further confirmed to be a translocation chromosome 2 carrying segments from chromosome X, which originated from a segregation event of the maternal grandmother's balanced translocation passed on as a balanced translocation to the proband's mother either. So far, a number of candidate genes including EN1 on 2q were analyzed for Joubert syndrome. Based on our proband's abnormal karyotype, we suggest that further mapping studies for the syndrome should also be directed towards the chromosome X segments present on the derivative chromosome 2 of our proband.  相似文献   

11.
We report on a 29-year-old woman with a history of five spontaneous abortions and a balanced complex chromosome rearrangement (CCR) involving break points between chromosomes 8, 11, and 12. Fluorescence in situ hybridisation (FISH) in combination with giemsa trypsin banding techniques were essential for the identification of the breakpoints. In addition, the results were confirmed by 24-colour FISH using the spectral karyotyping system (SKY). The karyotype was 46,XX,t(8;11;12)(8qter-->8p10::12p10-->12pter;11pter--> 11q14::8p10-->8pter;12qter-->12p10::11q14-->11qter). Application of SKY facilitated detection of all three chromosomes involved and supported the localisation of the breakpoints by a single time and sample saving investigation.  相似文献   

12.
We report on a Yq/15p translocation in a 23-year-old infertile male referred for Klinefelter Syndrome testing, who had azoospermia and bilateral small testes. Hormonal studies revealed hypergonadotropic hypogonadism. Conventional cytogenetic procedures giemsa trypsin giemsa (GTG) and high resolution banding (HRB) and molecular cytogenetic techniques Fluorescence In Situ Hybridization (FISH) performed on high-resolution lymphocyte chromosomes revealed the karyotype 46,XX, t(Y;15)(q12;p11). SRY-gene was confirmed to be present by classical Polymerase Chain Reaction (PCR) methods. His father carried de novo derivative chromosome 15 [45,X, t(Y;15)(q12;p11)] and was fertile; the karyotype of the father using G-band technique confirmed a reciprocal balanced translocation between chromosome Y and 15. In the proband, the der (15) has been inherited from the father because the mother had a normal karyotype (46,XX). In the proband, the der (15) could have produced genetic imbalance leading to unbalanced robertson translocation between chromosome Y and 15, which might have resulted in azoospermia and infertility in the proband. The paternal translocation might have lead to formation of imbalanced ova, which might be resulted infertility in the proband. Sister''s karyotypes was normal (46,XX) while his brother was not analyzed.  相似文献   

13.
A couple was referred for cytogenetic examination due to idiopathic miscarriages. The proband proved to be a carrier of chromosomal translocation and her partner's karyotype was found to be normal. The karyotype of the proband is 46,XX,t(4;22)(q23;q11.2) and can be regarded as a reason of fertility problems in the investigated couple. The risk of further miscarriages is high, but the risk of a progeny with abnormal karyotype is rather low, as the progeny would probably have lethal imbalances.  相似文献   

14.
Partial Trisomy 14q is a rare chromosomal disorder that mostly results from a parental translocation. We report here a newborn boy with partial trisomy 14q and dysmorphic features that are compatible with previously reported cases. Conventional cytogenetic analysis revealed an extra chromosomal segment at the end of the short arm of chromosome 4. In order to determine the origin of this chromosome region we used subtelomeric FISH technique. Based on the results of these cytogenetic studies and the physical examination, this dysmorphic case was diagnosed as partial trisomy of 14q and his karyotype determined as 46 XY, der(4)t(4;14)(p16;q32) resulting from a balanced maternal translocation identified as 46,XX, t(4;14)(p16;q32).  相似文献   

15.
16种罕见的人类染色体异常核型报告   总被引:1,自引:0,他引:1  
通过对患有闭经、自发流产、死胎、死产等患者外周血淋巴细胞染色体检查,发现16种新的罕见人类染色体异常核型,它们是46,XY,t(6;11)(q25;p15);46,XY,inv(3)(p25;q29);46,XY,t(7;18)(q10;p10);46,X,t(X;13)(q24;q14);46,XY,t(4;7)(q33;q22);46,XY,t(8;15)(q24;q15);46,XY,t(2;17)(q33;q25);46,XX,t(4;7)(q34;q11);46,XX,t(1;3)(p36;p23);46,XX,t(4;6)(q35;p11);46,X,inv(X)(q22;q28);46,XX,t(7;10)(p11;q26);46,XX,t(3;6)(p21;q23);46,XX,t(8;16)(p21;p13);46,XX,t(8;9)(q21;q34);46,XY,t(17;22)(q21;q11)。描述了患者的临床表现,并对生殖异常患者染色体畸变与其表型效应关系进行探讨。Abstract:By examining the lymphocytic chromosomes of peripheral blood from patients with amenorrhea,spontaneous abortion and stillbirth history, .the 16 rare species of human chromosomal abnormal karyotypes were discovered. They wre 46,XY,t(6;11)(q25;p15);46,XY,inv(3)(p25;q29);46,XY,t(7;18)(q10;p10);46,X,t(X;13)(q24;q14);46,XY,t(4;7)(q33;q22);46,XY,t(8;15)(q24;q15);46,XY,t(2;17)(q33;q25);46,XX,t(4;7)(q34;q11);46,XX,t(1;3)(p36;p23);46,XX,t(4;6)(q35;p11);46,X,inv(X)(q22;q28);46,XX,t(7;10)(p11;q26);46,XX,t(3;6)(p21;q23);46,XX,t(8;16)(p21;p13);46,XX,t(8;9)(q21;q34);46,XY,t(17;22)(q21;q11). Their clinical situation were described. Discussion on the relationship between the chromosomal aberrations and phenotype effect indicates the importance of chromosome karyotyping in patients with abnormal reproductive history.  相似文献   

16.
We report a case of a reciprocal translocation between the long arms of the 2 and 10 chromosomes observed in a 14-year-old male with mild mental impairment, compulsive and obsessive behavior. The apparently balanced translocation was characterized by fluorescence in situ hybridization and the karyotype was 46, XY, t(2;10)(q24;q22). The way by balanced chromosomal translocations can lead to a disease phenotype are reviewed and discussed.  相似文献   

17.
对217例无精和严重少精症患者外周血淋巴细胞染色体核型进行分析,并采用聚合酶链反应对7例Y染色体结构异常患者的AZFc区进行检测。发现187例无精症患者中检出异常核型77例(41.18%)(其中46,XY,t(6;14)(p21;p13),46,XY,t(8;12)(p21;q24)为世界首报核型),主要涉及染色体异常(数目异常和结构异常);染色体异态(Y染色体异态和9号染色体臂间倒位)及46,XX性反转;30例严重少精症患者中检出异常核型4例(13.33%)(结构异常和46,XX性反转)。由此可见,性染色体数目和结构异常是精子发生障碍的主要原因,其次常染色体的某些断裂点也可能影响精子发生。AZFc区的缺失与否与精子发生也有直接关系。  相似文献   

18.
崔英霞  王咏梅  姚兵  黄宇烽 《遗传》2004,26(5):612-614
一例新生复杂染色体重排的女性携带者(complex chromosome rearrangement ,CCR),易位涉及1号、5号和12号染色体。病人因2次自然流产而要求进行外周血淋巴细胞G显带核型分析。最初G显带核型疑为46,XX,t(1;5;12)(1pter→1q25::12q24→12qter;5qter→5p11::1q25→1qter;12pter→12q24::5p11→5pter).经荧光原位杂交(FISH)技术检测,证实患者的核型为46,XX,t(1;5;12)(1pter→1q23::12q22→12qter;5qter→5p11::1q25→1qter;12pter→12q22::1q23→1q25::5p11→5pter).7年后病人再次妊娠,并拒绝产前诊断。女婴足月分娩,生长发育正常。核型为46,XX。比较以前报告的女性复杂易位携带者与我们报告的病例可以认为,CCR并不总是表现为自然流产或分娩畸形儿,仍有机会生出正常的孩子。Abstract: We reported in the paper one case of a de novo complex chromosomal rearrangement (CCR) involving three different chromosomes,1, 5 and 12. Two pregnancies of the female carrier over three years resulted in two spontaneous abortions. Initial cytogenetic analysis of her peripheral lymphocyte by G banding suspected a karyotype 46,XX,t(1;5;12)(1pter →1q25::12q24→12qter;5qter→ 5p11::1q25→1qter;12pter →12q24::5p11→5pter). Fluorescense in -situ hybridization (FISH) was used to confirm the karyotype 46,XX,t(1;5;12)(1pter→1q23::12q22→12qter;5qter→5p11::1q25→1qter;12pter→12q22::1q23→1q25::5p11→5pter). Seven years later she was pregnant again and refused to have prenatal diagnosis. The fetus is normal both in phenotype and karyotype。Comparing previously reported female CCR carriers with the case, we conclude that female CCR carriers may not always present spontaneous abortion or have offspring with congenital malformation and can have chance to get a healthy child.  相似文献   

19.
Summary A cytogenetic survey was carried out on 200 patients with mental retardation and multiple congenital anomalies, and on 200 normal adult controls. Patients with a known syndrome were excluded from the survey. Chromosome analyses were carried out on blind-coded slides using the ASG banding technique as the routine stain. After the initial analyses (at least 15 cells per person) the slides were decoded, destained and reused for C and Q band polymorphism studies.Five major chromosome abnormalities were detected in the patient group during the survey. They included three patients with de novo, apparently balanced, reciprocal translocations, karyotypes 46,XY,rcp(3;16)(q21;p12); 46,XX,rcp(5;8)(p15;q22); and 46,XX,rcp(5;12)(p11;q24); one with karyotype 47,XX,+mar and one with karyotype 46,XX,der(13),t(13;?)(q34;?). One additional patient whose karyotype in lymphocytes was 46,XX,inv(9)(p11;q13) was found to have a mosaic karyotype 46,XX,inv(9)(p11;q13)/46,XX,inv(9) (p11;q13),der(12),t(12;?)(p13;?) in cultured skin fibroblasts. None of the 200 controls had a major chromosome abnormality.From the combined results of this and previous surveys it is now apparent that about 6.2% of the unclassifiable mentally retarded patients with three or more congenital anomalies and about 0.7% of the controls reveal major chromosome abnormalities.  相似文献   

20.
The t(11;22)(q23;q11) translocation is the only non-Robertsonian rearrangement for which there are a large number of unrelated families, apparently with the same breakpoints. These families most often have been ascertained through an abnormal child with the karyotype 47,XX or XY, +der(22) t(11;22)(q23;q11). To explain the high incidence of 3:1 segregants, rarely seen in offspring of carriers of other reciprocal translocations, a number of theoretical models have been suggested. We have used both electron microscope analysis of the synaptonemal complex (SC) and dual-color FISH to investigate the meiotic chromosome behavior in a male carrier of the translocation who has the karyotype 46,XY, t(11;22)(q23;q11). Chromosome synapsis, first-meiotic chiasma configuration, and segregation behavior of this translocation have been analyzed directly. Examination of SCs by electron microscopy showed pachytene-cross formation in 49/50 nuclei. Approximately 50% (26/50) revealed a classical fully synapsed quadrivalent. A proportion of these (10/26), however, showed some central asymmetry, suggesting heterologous synapsis. The remaining cells appeared to have incomplete synapsis. FISH analysis showed only quadrivalents in all 100 metaphase I nuclei. The chiasma frequency was increased within the interstitial segments, in comparison with the same region in normal bivalents. All types of segregation category were found in metaphase II nuclei. There was no indication of preferential 3:1 anaphase I segregation. We conclude that the +der(22) constitution in offspring of carriers of t(11;22)(q23;q11) is not likely to be due to meiotic 3:1 segregation being especially common. Rather, the +der(22) constitution is more likely to be the result of postzygotic selection against other unbalanced karyotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号