首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Courtois F  Ploux O 《Biochemistry》2005,44(41):13583-13590
Cyclopropane synthases catalyze the cyclopropanation of unsaturated fatty acid using S-adenosyl-L-methionine as the methylene donor. The crystal structure of three cyclopropane synthases from Mycobacterium tuberculosis showed a bicarbonate ion bound in the active site that was proposed to act as a general base in the reaction mechanism [Huang, C., Smith, V., Glickman, M. S., Jacobs, W. R., and Sacchettini, J. C. (2002) J. Biol. Chem. 277, 11559-11569]. Because the in vitro activity of M. tuberculosis cyclopropane synthases has not yet been reported and because the ligands of the bicarbonate ion are all strictly conserved in cyclopropane synthases, we used the closely related Escherichia coli cyclopropane fatty acid synthase for this study. The putative ligands that share a hydrogen bond with the bicarbonate through their side chains were mutated. H266A, Y317F, E239A, and E239Q mutants were thus constructed and purified, and their catalytic efficiencies were 5.3, 0.7, 0.2, and <0.02%, respectively. C139 that is bound to the bicarbonate by its NH amide had already been mutated to serine in a previous work, and this mutant retains 31% of the activity of the wild-type enzyme. Kinetic analyses and binding studies using spectrofluorimetry showed that these mutations affected the catalytic constant rather than the binding of the substrates. While addition of free bicarbonate had almost no effect on the wild-type enzyme activity, all mutants, with the exception of E239A and E239Q, were rescued by the addition of free bicarbonate. The catalytic efficiencies of the rescued mutants were 85, 16, and 14% for C139S, H266A, and Y317F, respectively. This effect was specific to bicarbonate. The kinetic parameters of the rescued mutants were determined, and it is shown that the rescuing effect is due to an increase in kcat. These data are interpreted by assuming that the E. coli cyclopropane fatty acid synthase specifically binds a bicarbonate ion that is involved in catalysis, as proposed for the M. tuberculosis enzymes, and that mutation of the bicarbonate ligands decreases the affinity for that ion. However, because the E239Q mutation could not be rescued, we propose that E239 forms a catalytic dyad with the bicarbonate to perform the proton abstraction necessary in the chemical pathway to the cyclopropane ring.  相似文献   

2.
Many dsDNA viruses encode DNA-packaging terminases, each containing a nuclease domain that resolves concatemeric DNA into genome-length units. Terminase nucleases resemble the RNase H-superfamily nucleotidyltransferases in folds, and share a two-metal-ion catalytic mechanism. Here we show that residue K428 of a bacteriophage terminase gp2 nuclease domain mediates binding of the metal cofactor Mg2+. A K428A mutation allows visualization, at high resolution, of a metal ion binding mode with a coupled-octahedral configuration at the active site, exhibiting an unusually short metal-metal distance of 2.42 Å. Such proximity of the two metal ions may play an essential role in catalysis by generating a highly positive electrostatic niche to enable formation of the negatively charged pentacovalent phosphate transition state, and provides the structural basis for distinguishing Mg2+ from Ca2+. Using a metal ion chelator β-thujaplicinol as a molecular probe, we observed a second mode of metal ion binding at the active site, mimicking the DNA binding state. Arrangement of the active site residues differs drastically from those in RNase H-like nucleases, suggesting a drifting of the active site configuration during evolution. The two distinct metal ion binding modes unveiled mechanistic details of the two-metal-ion catalysis at atomic resolution.  相似文献   

3.
Thermoanaerobacter brockii alcohol dehydrogenase (TbADH) catalyzes the reversible oxidation of secondary alcohols to the corresponding ketones using NADP(+) as the cofactor. The active site of the enzyme contains a zinc ion that is tetrahedrally coordinated by four protein residues. The enzymatic reaction leads to the formation of a ternary enzyme-cofactor-substrate complex; and catalytic hydride ion transfer is believed to take place directly between the substrate and cofactor at the ternary complex. Although crystallographic data of TbADH and other alcohol dehydrogenases as well as their complexes are available, their mode of action remains to be determined. It is firmly established that the zinc ion is essential for catalysis. However, there is no clear agreement about the coordination environment of the metal ion and the competent reaction intermediates during catalysis. We used a combination of X-ray absorption, circular dichroism (CD), and fluorescence spectroscopy, together with structural analysis and modeling studies, to investigate the ternary complexes of TbADH that are bound to a transition-state analogue inhibitor. Our structural and spectroscopic studies indicated that the coordination sphere of the catalytic zinc site in TbADH undergoes conformational changes when it binds the inhibitor and forms a pentacoordinated complex at the zinc ion. These studies provide the first active site structure of bacterial ADH bound to a substrate analogue. Here, we suggest the active site structure of the central intermediate complex and, more specifically, propose the substrate-binding site in TbADH.  相似文献   

4.
1-Aminocyclopropane-1-carboxylic acid oxidase (ACCO) is a nonheme Fe(II)-containing enzyme that is related to the 2-oxoglutarate-dependent dioxygenase family. The binding of substrates/cofactors to tomato ACCO was investigated through kinetics, tryptophan fluorescence quenching, and modeling studies. α-Aminophosphonate analogs of the substrate (1-aminocyclopropane-1-carboxylic acid, ACC), 1-aminocyclopropane-1-phosphonic acid (ACP) and (1-amino-1-methyl)ethylphosphonic acid (AMEP), were found to be competitive inhibitors versus both ACC and bicarbonate (HCO(3)(-)) ions. The measured dissociation constants for Fe(II) and ACC clearly indicate that bicarbonate ions improve both Fe(II) and ACC binding, strongly suggesting a stabilization role for this cofactor. A structural model of tomato ACCO was constructed and used for docking experiments, providing a model of possible interactions of ACC, HCO(3)(-), and ascorbate at the active site. In this model, the ACC and bicarbonate binding sites are located close together in the active pocket. HCO(3)(-) is found at hydrogen-bond distance from ACC and interacts (hydrogen bonds or electrostatic interactions) with residues K158, R244, Y162, S246, and R300 of the enzyme. The position of ascorbate is also predicted away from ACC. Individually docked at the active site, the inhibitors ACP and AMEP were found coordinating the metal ion in place of ACC with the phosphonate groups interacting with K158 and R300, thus interlocking with both ACC and bicarbonate binding sites. In conclusion, HCO(3)(-) and ACC together occupy positions similar to the position of 2-oxoglutarate in related enzymes, and through a hydrogen bond HCO(3)(-) likely plays a major role in the stabilization of the substrate in the active pocket.  相似文献   

5.
6.
RNase J enzymes are metallohydrolases that are involved in RNA maturation and RNA recycling, govern gene expression in bacteria, and catalyze both exonuclease and endonuclease activity. The catalytic activity of RNase J is regulated by multiple mechanisms which include oligomerization, conformational changes to aid substrate recognition, and the metal cofactor at the active site. However, little is known of how RNase J paralogs differ in expression and activity. Here we describe structural and biochemical features of two Staphylococcus epidermidis RNase J paralogs, RNase J1 and RNase J2. RNase J1 is a homodimer with exonuclease activity aided by two metal cofactors at the active site. RNase J2, on the other hand, has endonuclease activity and one metal ion at the active site and is predominantly a monomer. We note that the expression levels of these enzymes vary across Staphylococcal strains. Together, these observations suggest that multiple interacting RNase J paralogs could provide a strategy for functional improvisation utilizing differences in intracellular concentration, quaternary structure, and distinct active site architecture despite overall structural similarity.  相似文献   

7.
Chen M  Jiang M  Sun Y  Guo ZF  Guo Z 《Biochemistry》2011,50(26):5893-5904
1,4-Dihydroxy-2-naphthoyl-coenzyme A (DHNA-CoA) synthase, or MenB, catalyzes an intramolecular Claisen condensation involving two oxyanion intermediates in the biosynthetic pathway of menaquinone, an essential respiration electron transporter in many microorganisms. Here we report the finding that the DHNA-CoA product and its analogues bind and inhibit the synthase from Escherichia coli with significant ultraviolet--visible spectral changes, which are similar to the changes induced by deprotonation of the free inhibitors in a basic solution. Dissection of the structure--affinity relationships of the inhibitors identifies the hydroxyl groups at positions 1 (C1-OH) and 4 (C4-OH) of DHNA-CoA or their equivalents as the dominant and minor sites, respectively, for the enzyme--ligand interaction that polarizes or deprotonates the bound ligands to cause the observed spectral changes. In the meantime, spectroscopic studies with active site mutants indicate that C4-OH of the enzyme-bound DHNA-CoA interacts with conserved polar residues Arg-91, Tyr-97, and Tyr-258 likely through a hydrogen bonding network that also includes Ser-161. In addition, site-directed mutation of the conserved Asp-163 to alanine causes a complete loss of the ligand binding ability of the protein, suggesting that the Asp-163 side chain is most likely hydrogen-bonded to C1-OH of DHNA-CoA to provide the dominant polarizing effect. Moreover, this mutation also completely eliminates the enzyme activity, strongly supporting the possibility that the Asp-163 side chain provides a strong stabilizing hydrogen bond to the tetrahedral oxyanion, which takes a position similar to that of C1-OH of the enzyme-bound DHNA-CoA and is the second high-energy intermediate in the intracellular Claisen condensation reaction. Interestingly, both Arg-91 and Tyr-97 are located in a disordered loop forming part of the active site of all available DHNA-CoA synthase structures. Their involvement in the interaction with the small molecule ligands suggests that the disordered loop is folded in interaction with the substrates or reaction intermediates, supporting an induced-fit catalytic mechanism for the enzyme.  相似文献   

8.
Glutamate decarboxylase is a pyridoxal 5'-phosphate-dependent enzyme responsible for the irreversible alpha-decarboxylation of glutamate to yield 4-aminobutyrate. In Escherichia coli, as well as in other pathogenic and nonpathogenic enteric bacteria, this enzyme is a structural component of the glutamate-based acid resistance system responsible for cell survival in extremely acidic conditions (pH < 2.5). The contribution of the active-site lysine residue (Lys276) to the catalytic mechanism of E. coli glutamate decarboxylase has been determined. Mutation of Lys276 into alanine or histidine causes alterations in the conformational properties of the protein, which becomes less flexible and more stable. The purified mutants contain very little (K276A) or no (K276H) cofactor at all. However, apoenzyme preparations can be reconstituted with a full complement of coenzyme, which binds tightly but slowly. The observed spectral changes suggest that the cofactor is present at the active site in its hydrated form. Binding of glutamate, as detected by external aldimine formation, occurs at a very slow rate, 400-fold less than that of the reaction between glutamate and pyridoxal 5'-phosphate in solution. Both Lys276 mutants are unable to decarboxylate the substrate, thus preventing detailed investigation of the role of this residue on the catalytic mechanism. Several lines of evidence show that mutation of Lys276 makes the protein less flexible and its active site less accessible to substrate and cofactor.  相似文献   

9.
The M42 aminopeptidases are a family of dinuclear aminopeptidases widely distributed in Prokaryotes. They are potentially associated to the proteasome, achieving complete peptide destruction. Their most peculiar characteristic is their quaternary structure, a tetrahedron-shaped particle made of twelve subunits. The catalytic site of M42 aminopeptidases is defined by seven conserved residues. Five of them are involved in metal ion binding which is important to maintain both the activity and the oligomeric state. The sixth conserved residue, a glutamate, is the catalytic base deprotonating the water molecule during peptide bond hydrolysis. The seventh residue is an aspartate whose function remains poorly understood. This aspartate residue, however, must have a critical role as it is strictly conserved in all MH clan enzymes. It forms some kind of catalytic triad with the histidine residue and the metal ion of the M2 binding site. We assess its role in TmPep1050, an M42 aminopeptidase of Thermotoga maritima, through a mutational approach. Asp-62 was substituted with alanine, asparagine, or glutamate residue. The Asp-62 substitutions completely abolished TmPep1050 activity and impeded dodecamer formation. They also interfered with metal ion binding as only one cobalt ion is bound per subunit instead of two. The structure of Asp62Ala variant was solved at 1.5 Å showing how the substitution has an impact on the active site fold. We propose a structural role for Asp-62, helping to stabilize a crucial loop in the active site and to position correctly the catalytic base and a metal ion ligand of the M1 site.  相似文献   

10.
The proposed role for bicarbonate (HCO(3)(-)) as an intrinsic cofactor within the water-oxidizing complex (WOC) of photosystem II (PSII) [Klimov et al. (1997) Biochemistry 36, 16277-16281] was tested by investigation of its influence on the kinetics and yield of photoactivation, the light-induced assembly of the functional inorganic core (Mn(4)O(y)Ca(1)Cl(x)) starting from the cofactor-depleted apo-WOC-PSII center and free Mn(2+), Ca(2+), and Cl(-). Two binding sites for bicarbonate were found that stimulate photoactivation by accelerating the formation and suppressing the decay, respectively, of the first light-induced assembly intermediate, IM(1) [apo-WOC-Mn(OH)(2)(+)]. A high-affinity bicarbonate site (K(D) 相似文献   

11.
In the first step of self-splicing, group I introns utilize an exogenous guanosine nucleophile to attack the 5'-splice site. Removal of the 2'-hydroxyl of this guanosine results in a 10 (6)-fold loss in activity, indicating that this functional group plays a critical role in catalysis. Biochemical and structural data have shown that this hydroxyl group provides a ligand for one of the catalytic metal ions at the active site. However, whether this hydroxyl group also engages in hydrogen-bonding interactions remains unclear, as attempts to elaborate its function further usually disrupt the interactions with the catalytic metal ion. To address the possibility that this 2'-hydroxyl contributes to catalysis by donating a hydrogen bond, we have used an atomic mutation cycle to probe the functional importance of the guanosine 2'-hydroxyl hydrogen atom. This analysis indicates that, beyond its role as a ligand for a catalytic metal ion, the guanosine 2'-hydroxyl group donates a hydrogen bond in both the ground state and the transition state, thereby contributing to cofactor recognition and catalysis by the intron. Our findings continue an emerging theme in group I intron catalysis: the oxygen atoms at the reaction center form multidentate interactions that function as a cooperative network. The ability to delineate such networks represents a key step in dissecting the complex relationship between RNA structure and catalysis.  相似文献   

12.
It is not known how plants cleave the thioester bond of 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA), a necessary step to form the naphthoquinone ring of phylloquinone (vitamin K(1) ). In fact, only recently has the hydrolysis of DHNA-CoA been demonstrated to be enzyme driven in vivo, and the cognate thioesterase characterized in the cyanobacterium Synechocystis. With a few exceptions in certain prokaryotic (Sorangium and Opitutus) and eukaryotic (Cyanidium, Cyanidioschyzon and Paulinella) organisms, orthologs of DHNA-CoA thioesterase are missing outside of the cyanobacterial lineage. In this study, genomic approaches and functional complementation experiments identified two Arabidopsis genes encoding functional DHNA-CoA thioesterases. The deduced plant proteins display low percentages of identity with cyanobacterial DHNA-CoA thioesterases, and do not even share the same catalytic motif. GFP-fusion experiments demonstrated that the Arabidopsis proteins are targeted to peroxisomes, and subcellular fractionations of Arabidopsis leaves confirmed that DHNA-CoA thioesterase activity occurs in this organelle. In vitro assays with various aromatic and aliphatic acyl-CoA thioester substrates showed that the recombinant Arabidopsis enzymes preferentially hydrolyze DHNA-CoA. Cognate T-DNA knock-down lines display reduced DHNA-CoA thioesterase activity and phylloquinone content, establishing in vivo evidence that the Arabidopsis enzymes are involved in phylloquinone biosynthesis. Extraordinarily, structure-based phylogenies coupled to comparative genomics demonstrate that plant DHNA-CoA thioesterases originate from a horizontal gene transfer with a bacterial species of the Lactobacillales order.  相似文献   

13.
N Frankenberg  D Jahn  E K Jaffe 《Biochemistry》1999,38(42):13976-13982
Porphobilinogen synthases (PBGS) are metalloenzymes that catalyze the first common step in tetrapyrrole biosynthesis. The PBGS enzymes have previously been categorized into four types (I-IV) by the number of Zn(2+) and/or Mg(2+) utilized at three different metal binding sites termed A, B, and C. In this study Pseudomonas aeruginosa PBGS is found to bind only four Mg(2+) per octamer as determined by atomic absorption spectroscopy, in the presence or absence of substrate/product. This is the lowest number of bound metal ions yet found for PBGS where other enzymes bind 8-16 divalent ions. These four Mg(2+) allosterically stimulate a metal ion independent catalytic activity, in a fashion dependent upon both pH and K(+). The allosteric Mg(2+) of PBGS is located in metal binding site C, which is outside the active site. No evidence is found for metal binding to the potential high-affinity active site metal binding sites A and/or B. P. aeruginosa PBGS was investigated using Mn(2+) as an EPR probe for Mg(2+), and the active site was investigated using [3,5-(13)C]porphobilinogen as an NMR probe. The magnetic resonance data exclude the direct involvement of Mg(2+) in substrate binding and product formation. The combined data suggest that P. aeruginosa PBGS represents a new type V enzyme. Type V PBGS has the remarkable ability to synthesize porphobilinogen in a metal ion independent fashion. The total metal ion stoichiometry of only 4 per octamer suggests half-sites reactivity.  相似文献   

14.
In an evolutionarily conserved signaling pathway, 'soluble' adenylyl cyclases (sACs) synthesize the ubiquitous second messenger cyclic adenosine 3',5'-monophosphate (cAMP) in response to bicarbonate and calcium signals. Here, we present crystal structures of a cyanobacterial sAC enzyme in complex with ATP analogs, calcium and bicarbonate, which represent distinct catalytic states of the enzyme. The structures reveal that calcium occupies the first ion-binding site and directly mediates nucleotide binding. The single ion-occupied, nucleotide-bound state defines a novel, open adenylyl cyclase state. In contrast, bicarbonate increases the catalytic rate by inducing marked active site closure and recruiting a second, catalytic ion. The phosphates of the bound substrate analogs are rearranged, which would facilitate product formation and release. The mechanisms of calcium and bicarbonate sensing define a reaction pathway involving active site closure and metal recruitment that may be universal for class III cyclases.  相似文献   

15.
Widdas WF  Baker GF 《Cytobios》2000,103(404):177-192
A second function of carbonic anhydrase (CA) isoforms has already been proposed. This involves the dispersal of complexes in which six carbon dioxide molecules sequester a hydroxyl ion when the gas reacts with liquid water. The semi-catalytic reaction does not require the formation of bicarbonate as an essential corollary. This function is, therefore, a likely activity of carbonic anhydrase related proteins that have recently been discovered and which lack the active zinc site essential for the hydration of carbon dioxide. Re-examination of possible functions for the complex of six CO2 molecules with a hydroxyl anion have brought to light several circumstances where the presence of fully reversible complexes could have physiological advantages. A catalytic synthesis and dissolution of the complexes could thus be the important function for the carbonic anhydrase-related proteins (CA-RP) molecules as well as of some CA isoforms. The possible mechanisms for this extended second catalytic function and examples are briefly discussed.  相似文献   

16.
A mutant BamHI endonuclease, E77K, belongs to a class of catalytic mutants that bind DNA efficiently but cleave DNA at a rate more than 10(3)-fold lower than that of the wild-type enzyme (S. Y. Xu and I. Schildkraut, J. Biol. Chem. 266:4425-4429, 1991). The preferred cofactor for the wild-type BamHI is Mg2+. BamHI is 10-fold less active with Mn2+ as the cofactor. In contrast, the E77K variant displays an increased activity when Mn2+ is substituted for Mg2+ in the reaction buffer. Mutations that partially suppress the E77K mutation were isolated by using an Escherichia coli indicator strain containing the dinD::lacZ fusion. These pseudorevertant endonucleases induce E. coli SOS response (as evidenced by blue colony formation) and thus presumably nick or cleave chromosomal DNA in vivo. Consistent with the in vivo result, the pseudorevertant endonucleases in the crude cell extract display site-specific partial DNA cleavage activity. DNA sequencing revealed two unique suppressing mutations that were located within two amino acid residues of the original mutation. Both pseudorevertant proteins were purified and shown to increase specific activity at least 50-fold. Like the wild-type enzyme, both pseudorevertant endonucleases prefer Mg2+ as the cofactor. Thus, the second-site mutation not only restores partial cleavage activity but also suppresses the metal preference as well. These results suggest that the Glu-77 residue may play a role in metal ion binding or in enzyme activation (allosteric transition) following sequence-specific recognition.  相似文献   

17.
The enzyme sn-glycerol-1-phosphate dehydrogenase (Gro1PDH, EC 1.1.1.261) is key to the formation of the enantiomeric configuration of the glycerophosphate backbone (sn-glycerol-1-phosphate) of archaeal ether lipids. This enzyme catalyzes the reversible conversion between dihydroxyacetone phosphate and glycerol-1-phosphate. To date, no information about the active site and catalytic mechanism of this enzyme has been reported. Using the sequence and structural information for glycerol dehydrogenase, we constructed six mutants (D144N, D144A, D191N, H271A, H287A and D191N/H271A) of Gro1PDH from Aeropyrum pernix K1 and examined their characteristics to clarify the active site of this enzyme. The enzyme was found to be a zinc-dependent metalloenzyme, containing one zinc ion for every monomer protein that was essential for activity. Site-directed mutagenesis of D144 increased the activity of the enzyme. Mutants D144N and D144A exhibited low affinity for the substrates and higher activity than the wild type, but their affinity for the zinc ion was the same as that of the wild type. Mutants D191N, H271A and H287A had a low affinity for the zinc ion and a low activity compared with the wild type. The double mutation, D191N/H271A, had no enzyme activity and bound no zinc. From these results, it was clarified that residues D191, H271 and H287 participate in the catalytic activity of the enzyme by binding the zinc ion, and that D144 has an effect on substrate binding. The structure of the active site of Gro1PDH from A. pernix K1 seems to be similar to that of glycerol dehydrogenase, despite the differences in substrate specificity and biological role.  相似文献   

18.
Phannachet K  Elias Y  Huang RH 《Biochemistry》2005,44(47):15488-15494
Sequence alignment of the TruA, TruB, RsuA, and RluA families of pseudouridine synthases (PsiS) identifies a strictly conserved aspartic acid, which has been shown to be the critical nucleophile for the PsiS-catalyzed formation of pseudouridine (Psi). However, superposition of the representative structures from these four families of enzymes identifies two additional amino acids, a lysine or an arginine (K/R) and a tyrosine (Y), from a K/RxY motif that are structurally conserved in the active site. We have created a series of Thermotoga maritima and Escherichia coli pseudouridine 55 synthase (Psi55S) mutants in which the conserved Y is mutated to other amino acids. A new crystal structure of the T. maritima Psi55S Y67F mutant in complex with a 5FU-RNA at 2.4 A resolution revealed formation of 5-fluoro-6-hydroxypseudouridine (5FhPsi), the same product previously seen in wild-type Psi55S-5FU-RNA complex structures. HPLC analysis confirmed efficient formation of 5FhPsi by both Psi55S Y67F and Y67L mutants but to a much lesser extent by the Y67A mutant when 5FU-RNA substrate was used. However, both HPLC analysis and a tritium release assay indicated that these mutants had no detectable enzymatic activity when the natural RNA substrate was used. The combined structural and mutational studies lead us to propose that the side chain of the conserved tyrosine in these four families of PsiS plays a dual role within the active site, maintaining the structural integrity of the active site through its hydrophobic phenyl ring and acting as a general base through its OH group for the proton abstraction required in the last step of PsiS-catalyzed formation of Psi.  相似文献   

19.
Cysteine dioxygenase (CDO) catalyzes the conversion of cysteine to cysteinesulfinic acid and is important in the regulation of intracellular cysteine levels in mammals and in the provision of oxidized cysteine metabolites such as sulfate and taurine. Several crystal structure studies of mammalian CDO have shown that there is a cross-linked cofactor present in the active site of the enzyme. The cofactor consists of a thioether bond between the gamma-sulfur of residue cysteine 93 and the aromatic side chain of residue tyrosine 157. The exact requirements for cofactor synthesis and the contribution of the cofactor to the catalytic activity of the enzyme have yet to be fully described. In this study, therefore, we explored the factors necessary for cofactor biogenesis in vitro and in vivo and examined what effect cofactor formation had on activity in vitro. Like other cross-linked cofactor-containing enzymes, formation of the Cys-Tyr cofactor in CDO required a transition metal cofactor (Fe(2+)) and O(2). Unlike other enzymes, however, biogenesis was also strictly dependent upon the presence of substrate. Cofactor formation was also appreciably slower than the rates reported for other enzymes and, indeed, took hundreds of catalytic turnover cycles to occur. In the absence of the Cys-Tyr cofactor, CDO possessed appreciable catalytic activity, suggesting that the cofactor was not essential for catalysis. Nevertheless, at physiologically relevant cysteine concentrations, cofactor formation increased CDO catalytic efficiency by approximately 10-fold. Overall, the regulation of Cys-Tyr cofactor formation in CDO by ambient cysteine levels represents an unusual form of substrate-mediated feed-forward activation of enzyme activity with important physiological consequences.  相似文献   

20.
Lebedev N  Karginova O  McIvor W  Timko MP 《Biochemistry》2001,40(42):12562-12574
Fluorescence spectroscopic and kinetic analysis of photochemical activity, cofactor and substrate binding, and enzyme denaturation studies were performed with highly purified, recombinant pea NADPH:protochlorophyllide oxidoreductase (POR) heterologously expressed in Escherichia coli. The results obtained with an individual stereoisomer of the substrate [C8-ethyl-C13(2)-(R)-protochlorophyllide] demonstrate that the enzyme photoactive state possesses a characteristic fluorescence maximum at 646 nm that is due to the presence of specific charged amino acids in the enzyme catalytic site. The photoactive state is converted directly into an intermediate having fluorescence at 685 nm in a reaction involving direct hydrogen transfer from the cofactor (NADPH). Site-directed mutagenesis of the highly conserved Tyr275 (Y275F) and Lys279 (K279I and K279R) residues in the enzyme catalytic pocket demonstrated that the presence of these two amino acids in the wild-type POR considerably increases the probability of photoactive state formation following cofactor and substrate binding by the enzyme. At the same time, the presence of these two amino acids destabilizes POR and increases the rate of enzyme denaturation. Neither Tyr275 nor Lys279 plays a crucial role in the binding of the substrate or cofactor by the enzyme. In addition, the presence of Tyr275 is absolutely necessary for the second step of the protochlorophyllide reduction reaction, "dark" conversion of the 685 nm fluorescence intermediate and the formation of the final product, chlorophyllide. We propose that Tyr275 and Lys279 participate in the proper coordination of NADPH and PChlide in the enzyme catalytic site and thereby control the efficiency of the formation of the POR photoactive state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号