首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Haemophilus ducreyi is the causative bacterium of genital ulcers, which are collectively known as chancroid. Little is known about the cytotoxicity of H. ducreyi. The virulent strains are relatively resistant to phagocytosis and apoptosis by neutrophils. Therefore, experiments were designed to examine whether neutrophil degranulation caused by H. ducrey would provide insights into the virulence mechanisms through which cellular damage is affected by the organism. Clinical isolates of eight strains of H. ducreyi and the culture strain type CIP542 (Collection Institute Pasteur) were incubated with neutrophils harvested from human donor blood. The release by the organism of lysosomal enzymes from intracellular granules of neutrophils was indicative of degranulation. The results showed that H. ducreyi triggered the release of lysosomal enzymes from human neutrophils, and that the magnitude of the release was dependent both on the ratio of bacteria to neutrophils and the duration of incubation. In vitro experiments involving HeLa cells were designed to determine the manner in which H. ducreyi initiated the process of degranulation. The morphological changes associated with degranulation were visualized by confocal and transmission electron microscopy. This is the first report that describes degranulation of neutrophils induced by H. ducreyi which causes chancroid infection.  相似文献   

2.
Neutrophils release decondensed chromatin termed neutrophil extracellular traps (NETs) to trap and kill pathogens extracellularly. Reactive oxygen species are required to initiate NET formation but the downstream molecular mechanism is unknown. We show that upon activation, neutrophil elastase (NE) escapes from azurophilic granules and translocates to the nucleus, where it partially degrades specific histones, promoting chromatin decondensation. Subsequently, myeloperoxidase synergizes with NE in driving chromatin decondensation independent of its enzymatic activity. Accordingly, NE knockout mice do not form NETs in a pulmonary model of Klebsiella pneumoniae infection, which suggests that this defect may contribute to the immune deficiency of these mice. This mechanism provides for a novel function for serine proteases and highly charged granular proteins in the regulation of chromatin density, and reveals that the oxidative burst induces a selective release of granular proteins into the cytoplasm through an unknown mechanism.  相似文献   

3.
KM+ is a D(+)mannose binding lectin from Artocarpus integrifolia that induces neutrophil migration in vitro and in vivo.This attractant activity was shown to be caused by haptotaxis rather than chemotaxis. The inhibition by D(+)mannose of the neutrophil attraction exerted by KM+, both in vitro and in vivo, supports the idea that haptotaxis is triggered in vivo by the sugar binding sites interacting with glycoconjugates located on the neutrophil surface and in the extracellular matrix. In the present study an in vivo haptotaxis assay was performed by intradermally (i.d.) injecting 125I-KM+ (200 ng), which led to a selective staining of loose connective tissue and vascular endothelium. The radiolabelled area exhibited a maximum increase (five-fold) in neutrophil infiltration 3 h after injection, relative to i.d. 200 ng 125I-BSA. We characterized the ex vivo binding of KM+ to tissue elements by immunohistochemistry, using paraformaldehyde-fixed, paraffin-embedded, untreated rat skin. Bound KM+ was detected with an affinity-purified rabbit IgG anti-KM+ and visualized with an alkaline phosphatase based system. KM+ binding to connective tissue and vascular endothelium was inhibited by preincubating KM+ with 0.4 m MD(+)mannose and was potentiated by heparan sulfate (100 g ml–1). An in vitro assay carried out in a Boyden microchamber showed that heparan sulfate potentiated the attractant effect of 10 g KM+ by 34%. The present data suggest that KM+ induces neutrophil migration in vivo by haptotaxis and that the haptotactic gradient could be provided by the interaction of the KM+ carbohydrate recognition site(s) with mannose-containing glycoconjugate(s) in vascular endothelium and connective tissue. Heparan sulfate would act as an accessory molecule, enhancing the KM+ tissue binding and potentiating the induced neutrophil haptotaxis.  相似文献   

4.
The balance between peroxidase and chlorinating activities of myeloperoxidase (MPO) is very important for the enhancement of antimicrobial action and prevention of damage caused by hypochlorite. In the present paper, the peroxidase and chlorinating activities have been studied at various pH values. The possibility of using neutrophil protein solution for the evaluation of MPO activity has been demonstrated. It is shown that at neutral pH MPO had higher affinity to peroxidase substrate guaiacol: at pH 7.4, chloride ions did not compete with guaiacol up to the concentration of 150 mM. At acidic pH, chlorinating activity of MPO dominates: only hypochlorite production can be detected at equal chloride and guaiacol concentrations of 15 mM. However, horseradish peroxidase does not exhibit any difference in activity in the presence of chloride ions even at acidic pH values. It was demonstrated by MALDI-TOF mass-spectrometry that the amount of hypochlorite produced is sufficient to modify phospholipids (with formation of Cl- and Br-hydrins and lyso-derivatives) only at acidic pH (5.0). Thus, in the presence of phenolic peroxidase substrate, MPO chlorinating activity can be displayed at acidic pH only. It can lead to elimination of hypochlorite production in normal tissues at neutral pH (7.4) and its enhancement in phagosomes where the pH range is 4.7-6.0.  相似文献   

5.
We investigated the effects of the antibiotic ceftazidime (CAZ) on the cytolytic action of the neutrophil myeloperoxidase-hydrogen peroxide-chloride anion system (MPO/H(2)O(2)/Cl(-)). In this system, myeloperoxidase catalyses the conversion of H(2)O(2) and CI(-) to the cytotoxic agent HOCl. Stimulated neutrophils can release MPO into the extracellular environment and then may cause tissue injury through direct endothelial cells lysis. We showed that human umbilical vein endothelial cells (HUVEC) were capable of taking up active MPO. In presence of H(2)O(2) (10(-4) M), this uptake was accompanied by cell lysis. The cytolysis was estimated by the release of (51)Cr from HUVEC and expressed as an index of cytotoxicity (IC). Dose dependent protection was obtained for CAZ concentrations ranging from 10(-5) to 10(-3) M;this can be attributed to inactivation of HOCl by the drug. This protection is comparable to that obtained with methionine and histidine, both of which are known to neutralize HOCl. This protection by CAZ could also be attributed to inactivation of H(2)O(2), but when cytolysis was achieved with H(2)O(2) or O(2) (-) generating enzymatic systems, no protection by CAZ was observed. Moreover, the peroxidation activity of MPO (action on H(2)O(2)) was not affected by CAZ, while CAZ prevented the chlorination activity of MPO (chlorination of monochlorodimedon). So, we concluded that CAZ acts via HOCl inactivation. These antioxidant properties of CAZ may be clinically useful in pathological situations where excessive activation of neutrophils occurs, such as in sepsis.  相似文献   

6.
The effects of pH, luminol myeloperoxidase and hydrogen peroxide concentrations on the intensity of luminol chemiluminescence induced by myeloperoxidase catalysis were investigated. It was found that the intensity of luminescence is proportional to the enzyme concentration (up to 8.10(-8) M) and reaches the saturation level at higher enzyme concentrations. The dependence of chemiluminescence intensity on [H2O2] is bell-shaped: at H2O2 concentrations above 1.10(-4) M the luminescence is inhibited with a maximum at neutral values of pH. Luminol at concentrations above 5.10(-5) M inhibits this process. It was demonstrated that the effects of singlet oxygen, superoxide and hydroxyl radicals on the chemiluminescence reaction are insignificant. Luminol oxidation in the course of the myeloperoxidase reaction is induced by hypochlorite.  相似文献   

7.

Background

Myeloperoxidase (MPO) is an abundant hemoprotein expressed by neutrophil granulocytes that is recognized to play an important role in the development of vascular diseases. Upon degranulation from circulating neutrophil granulocytes, MPO binds to the surface of endothelial cells in an electrostatic-dependent manner and undergoes transcytotic migration to the underlying extracellular matrix (ECM). However, the mechanisms governing the binding of MPO to subendothelial ECM proteins, and whether this binding modulates its enzymatic functions are not well understood.

Methods

We investigated MPO binding to ECM derived from aortic endothelial cells, aortic smooth muscle cells, and fibroblasts, and to purified ECM proteins, and the modulation of these associations by glycosaminoglycans. The oxidizing and chlorinating potential of MPO upon binding to ECM proteins was tested.

Results

MPO binds to the ECM proteins collagen IV and fibronectin, and this association is enhanced by the pre-incubation of these proteins with glycosaminoglycans. Correspondingly, an excess of glycosaminoglycans in solution during incubation inhibits the binding of MPO to collagen IV and fibronectin. These observations were confirmed with cell-derived ECM. The oxidizing and chlorinating potential of MPO was preserved upon binding to collagen IV and fibronectin; even the potentiation of MPO activity in the presence of collagen IV and fibronectin was observed.

Conclusions

Collectively, the data reveal that MPO binds to ECM proteins on the basis of electrostatic interactions, and MPO chlorinating and oxidizing activity is potentiated upon association with these proteins.

General significance

Our findings provide new insights into the molecular mechanisms underlying the interaction of MPO with ECM proteins.  相似文献   

8.
Myeloperoxidase (MPO) is an important component of the neutrophil response to microbial infection. In this paper we report an additional activity of MPO, the potent and selective inhibition of human mast cell tryptase. MPO inhibits human mast cell tryptase in a time-dependent manner with an IC50 of 16 nM at 1 h. In contrast, MPO does not inhibit trypsin, thrombin, plasmin, factor Xa, elastase, or cathepsin G. It is the native protein conformation of MPO and not its enzyme activity that is responsible for tryptase inhibition. Heparin, at high concentrations, can prevent the inhibition of tryptase by MPO. We have shown by size-exclusion chromatography that MPO promotes the dissociation of active tryptase tetramer to inactive monomer. These data suggest that MPO inhibits tryptase by interfering with the heparin stabilization of tryptase tetramer. We have previously shown that lactoferrin (another neutrophil-associated protein) also inhibits tryptase activity by a similar mechanism. The finding that MPO is a potent inhibitor of tryptase lends further support to the hypothesis that neutrophil proteins, such as MPO and lactoferrin, may play a regulatory role as endogenous suppressers of tryptase enzyme activity.  相似文献   

9.
Myeloperoxidase (MPO), a heme protein existing in neutrophil and monocyte, is implicated in various stages of inflammatory conditions with the production of a variety of potent oxidants. To investigate the extent of the involvement of MPO in aging, we measured MPO activities in kidney of rats at different ages maintained with an ad libitum (AL) or a calorie restriction (CR) dietary regimen. Results showed that the MPO activities increased during aging in AL rats, but were significantly attenuated by CR. This result was consistent with altered protein level of MPO during aging. In addition, we were able to detect dityrosine that is a stable end MPO-oxidation product. The amount of dityrosine increased in old AL, but not in old CR rats. To examine the source responsible for increased MPO activity during aging for leukocyte recruitment and infiltration, the levels of vascular cell adhesion molecule (VCAM-1) protein were measured. The level of VCAM-1 showed age-dependent increase in AL rats, which was correlated with higher activity of MPO in old AL rats. Furthermore, we have found that LPS-induced inflammation increased the activity and protein levels of MPO, and VCAM-1 expression in young rat kidneys. These findings suggest that increased MPO activity with aging may related to increased recruitment of inflammatory cells, contributing to protein oxidation accumulation in the aging process. We propose that age-related alterations of MPO, dityrosine, and VCAM were modulated by CR through its anti-inflammatory action.  相似文献   

10.
Monoclonal antibodies binding to distinct epitopes on the tail of brush border myosin were used to modulate the conformation and state of assembly of this myosin. BM1 binds 1:3 of the distance from the tip of the tail to the head and prevents the extended-tail (6S) monomer from folding into the assembly-incompetent folded-tail (10S) state, whereas BM4 binds to the tip of the myosin tail, and induces the myosin to fold into the 10S state. Thus, at physiological ionic strength BM1 promotes and BM4 blocks the assembly of the myosin into filaments. Using BM1 and BM4 together, we were able to prevent both folding and filament assembly, thus locking myosin molecules in the extended-tail 6S monomer conformation at low ionic strength where they normally assemble into filaments. Using these myosin-antibody complexes, we were able to investigate independently the effects of folding of the myosin tail and assembly into filaments on the myosin MgATPase. The enzymatic activities were measured from the fluorescent profiles during the turnover of the ATP analogue formycin triphosphate (FTP). Extended-tail (6S) myosin molecules had an FTPase activity of 1-5 X 10(-3) s-1, either at high ionic strength as a monomer alone or when complexed with antibody, or at low ionic strength as filaments or when maintained as extended-tail monomers by the binding of BM1 and BM4. Folding of the molecules into the 10S state reduced this rate by an order of magnitude, effectively trapping the products of FTP hydrolysis in the active sites.  相似文献   

11.
The mitochondrial dysfunction induced by anoxia in vitro was improved with chlorpromazine, cepharanthine, bromophenacyl bromide, and mepacrine without affecting phospholipid or adenine nucleotide metabolisms. The drugs inhibited lipid peroxidation by Fe2+, mitochondrial disruption by Ca2+, and membrane perturbation by lysolecithin, and retained the activity to control H+ permeability across mitochondrial membranes. The drugs appeared to preserve the functions by acting to suppress the development of membrane deterioration which may have resided in the deenergization of mitochondria in the absence of oxygen.  相似文献   

12.
Single cutaneous application of 12-O-tetradecanoyl-phorbol-13-acetate (TPA) increased epidermal oxidised glutathione reductase activity in adult mouse by almost 100%. Pretreatment of animals with vitamin A for a week resulted in 75% inhibition of TPA induced change in the enzyme activity which remained unaffected in skin treated with vitamin A alone. This biochemical change in skin induced by TPA and modulated by vitamin A has been discussed in relation to epidermal hyperplasia.  相似文献   

13.
We have previously demonstrated the ability of human neutrophil myeloperoxidase to bind to cell wall mannan polysaccharide isolated from Candida albicans. This binding capacity provides for association of the enzyme with target yeast which is essential for efficient candidacidal activity. In this report, we further consider the role of the mannan-binding property of myeloperoxidase in the candidacidal activity of the enzyme. Solubilized mannan antagonizes binding of the enzyme to yeast, suggesting that mannan may be a primary component of the fungal cell wall which serves as a target for binding of myeloperoxidase. Myeloperoxidase is shown to form complexes with both solubilized mannan and Candida yeast, with Kds of 0.97 x 10(-5) M and 1.2 x 10(-5) M, respectively. The interaction between myeloperoxidase and mannan does not allow the enzyme to readily dissociate from the surface of target yeast. As a result, the enzyme may be unable to dissociate from dead yeast to become available for binding to additional fungal targets.  相似文献   

14.
Repetitive episodes of hypoxia/reoxygenation induce cellular adaptations resulting in a tolerance process against oxidative stress. We studied the effects of chronic episodes of hypoxia/reoxygenation on neutrophil antioxidant defenses, neutrophil oxidative capability, and oxidative damage induced in neutrophils and plasma. Seven professional apnea divers participated in the study. Blood samples were taken under basal conditions, after a diving apnea session, and under basal conditions after five consecutive days of diving apnea sessions (basal post-diving). Chronic episodes of hypoxia/reoxygenation increased malondialdehyde (MDA), carbonyl derivates and creatine kinase (CPK) in plasma. Neutrophil catalase (CAT) levels were higher in basal post-diving. Neutrophil oxidative burst was maintained after diving, although the maximum response was delayed in basal post-diving. Neutrophil thioredoxin reductase (TR) activity increased in basal post-diving, and glutathione reductase (GR) activity was maintained. Chronic, repetitive episodes of diving apnea induce neutrophil adaptations in order to delay the oxidative burst response and to facilitate protein reduction. Diving apnea could be a good model to study tolerance to the oxidative stress generated by hypoxia/reoxygenation.  相似文献   

15.
Renal dysfunction induced by cadmium: biomarkers of critical effects   总被引:4,自引:0,他引:4  
Alfred Bernard 《Biometals》2004,17(5):519-523
Cadmium (Cd) is cumulative poison which can damage the kidneys after prolonged exposure in the industry or the environment. Renal damage induced by Cd affects primarily the cellular and functional integrity of the proximal tubules, the main site of the renal accumulation of the metal. This results in a variety of urinary abnormalities including an increased excretion of calcium, amino acids, enzymes and proteins. These effects have been documented by a large number of studies conducted during more than two decades in experimental animals and in populations environmentally or occupationally exposed to Cd. There is now a general agreement to say that the most sensitive and specific indicator of Cd-induced renal dysfunction is a decreased tubular reabsorption of low molecular weight proteins, leading to the so-called tubular proteinuria. beta2-microblobulin, retinol-binding protein and alpha1-microglobulin are the microproteins the most commonly used for screening renal damage in populations at risk. Tubular dysfunction develops in a dose-dependent manner according to the internal dose of Cd as assessed on the basis of Cd levels in kidney, urine or in blood. Depending on the sensitivity of the renal biomarker and the susceptibility of the exposed populations, the thresholds of urinary Cd vary from 2 to 10 microg/g creatinine. The thresholds associated with the development of the microproteinuria, the critical effect predictive of a decline of the renal function, is estimated around 10 microg/g creatinine for both occupationally and environmentally exposed populations. Much lower thresholds have been reported in some European studies conducted on the general population. These low thresholds, however, have been derived from associations whose causality remains uncertain and for urinary protein increases that might be reversible. Cd-induced microproteinuria is usually considered as irreversible except at the incipient stage of the intoxication where a partial or complete reversibility has been found in some studies.  相似文献   

16.
17.
The nitroxide tempol (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl) reduces tissue injury in animal models of inflammation by mechanisms that are not completely understood. MPO (myeloperoxidase), which plays a fundamental role in oxidant production by neutrophils, is an important target for anti-inflammatory action. By amplifying the oxidative potential of H2O2, MPO produces hypochlorous acid and radicals through the oxidizing intermediates MPO-I [MPO-porphyrin?+-Fe(IV)=O] and MPO-II [MPO-porphyrin-Fe(IV)=O]. Previously, we reported that tempol reacts with MPO-I and MPO-II with second-order rate constants similar to those of tyrosine. However, we noticed that tempol inhibits the chlorinating activity of MPO, in contrast with tyrosine. Thus we studied the inhibition of MPO-mediated taurine chlorination by tempol at pH 7.4 and re-determined the kinetic constants of the reactions of tempol with MPO-I (k=3.5×105 M-1·s-1) and MPO-II, the kinetics of which indicated a binding interaction (K=2.0×10-5 M; k=3.6×10-2 s-1). Also, we showed that tempol reacts extremely slowly with hypochlorous acid (k=0.29 and 0.054 M-1·s-1 at pH 5.4 and 7.4 respectively). The results demonstrated that tempol acts mostly as a reversible inhibitor of MPO by trapping it as MPO-II and the MPO-II-tempol complex, which are not within the chlorinating cycle. After turnover, a minor fraction of MPO is irreversibly inactivated, probably due to its reaction with the oxammonium cation resulting from tempol oxidation. Kinetic modelling indicated that taurine reacts with enzyme-bound hypochlorous acid. Our investigation complements a comprehensive study reported while the present study was underway  相似文献   

18.
目的:观察糖尿病心肌病(DCM)是否有高尔基体应激(GAS)参与及外源性精胺心肌保护作用是否与调控GAS有关。方法:60只Wistar大鼠随机分为正常对照组(Control),糖尿病组(T1D,STZ 60 mg/kg一次性腹腔注射)和精胺组(T1D+Sp,精胺5 mg/(kg·d)腹腔注射),饲养12周。H9C2系大鼠心肌细胞随机分为正常对照组(Control,10%的FBS-DMEM培养)、高糖组(HG,10% FBS-DMEM+40 mmol/L葡萄糖)和精胺组(HG +Sp,10% FBS-DMEM+40 mmol/L葡萄糖+5 μmol/L精胺)。ELISA检测大鼠血清心肌肌酸激酶同工酶 (CK-MB)、心肌肌钙蛋白T (cTnT);Western blot测定高尔基体蛋白GOLPH3,GM130以及Cleaved Caspase3蛋白表达;免疫荧光检测GOLPH3细胞定位。结果:动物模型中,与正常组相比,糖尿病组大鼠血糖,血清心肌酶CK-MB和cTnT显著升高明显升高;体重,射血分数(EF)显著降低;心肌超微结构损伤明显(肌丝断裂,润盘消失等);同时GOLPH3和Cleaved Caspase3表达上调,GM130表达下调。细胞模型与大体结果一致,免疫荧光显示高尔基体出现应激性碎片化。外源性精胺处理可显著干预上述改变。结论:给予外源性精胺对糖尿病,诱导的心肌损伤具有干预作用,其机制与减轻高尔基体应激有关。  相似文献   

19.
Light and dark modulation experiments with pea (Pisum sativum L.) chloroplast stromal fractions pretreated with dithiothreitol (to reduce protein disulfide bonds) or with 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) (to block sulfhydryl groups) suggest that light modulation involves thiol-disulfide exchange on the modulatable stromal enzyme protein. Light-dependent reduction of DTNB involves a photosynthetic electron transport chain component located on the reducing side of photosystem I prior to ferredoxin; DTNB may be acting as a light effect mediator substitute. The thylakoid-bound light effect mediator system, then, in its light-activated reduced form probably catalyzes thiol-disulfide exchange reactions on stromal enzymes.  相似文献   

20.
《Life sciences》1990,47(24):PL145-PL150
Myeloperoxidase (MPO) is an enzyme found in granulocytes of neutrophils, but not in mammalian tissues. Previous studies have directly correlated MPO activity with neutrophil accumulation in tissues. This study presents a method for determining MPO activity in liver. Neutrophil accumulation in rat liver was provoked by creating partial ischemia followed by reperfusion. Liver homogenates prepared by a standard procedure showed no MPO activity. The homogenate was applied to Sephadex G100 and DEAE Sepharose CL6B columns which separated MPO activity from inhibitory activity. The inhibitor was identified as catalase based upon its elution from the columns and removal with 3-amino- 1,2,4-triazole (AT), a catalase inhibitor. Based upon these findings, it was determined that full MPO activity can be assayed in unfractionated liver homogenates by first inactivating catalase with AT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号