首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arl6/BBS3 is a small GTPase, mutations in which are implicated in the human ciliopathy Bardet–Biedl Syndrome (BBS). Arl6 is proposed to facilitate the recruitment of a large protein complex known as the BBSome to the base of the primary cilium, mediating specific trafficking of molecules to this important sensory organelle. Orthologues of Arl6 and the BBSome core subunits have been identified in the genomes of trypanosomes. Flagellum function and motility are crucial to the survival of Trypanosoma brucei, the causative agent of human African sleeping sickness, in the human bloodstream stage of its lifecycle and so the function of the BBSome proteins in trypanosomes warrants further study. RNAi knockdown of T. brucei Arl6 (TbArl6) has recently been shown to result in shortening of the trypanosome flagellum. Here we present the crystal structure of TbArl6 with the bound non‐hydrolysable GTP analog GppNp at 2.0 Å resolution and highlight important differences between the trypanosomal and human proteins. Analysis of the TbArl6 active site confirms that it lacks the key glutamine that activates the nucleophile during GTP hydrolysis in other small GTPases. Furthermore, the trypanosomal proteins are significantly shorter at their N‐termini suggesting a different method of membrane insertion compared to humans. Finally, analysis of sequence conservation suggests two surface patches that may be important for protein–protein interactions. Our structural analysis thus provides the basis for future biochemical characterisation of this important family of small GTPases.  相似文献   

2.
3.
Bardet–Biedl syndrome (BBS) is a human genetic disorder with a spectrum of symptoms caused by primary cilium dysfunction. The disease is caused by mutations in one of at least 17 identified genes, of which seven encode subunits of the BBSome, a protein complex required for specific trafficking events to and from the primary cilium. The molecular mechanisms associated with BBSome function remain to be fully elucidated. Here, we generated null and complemented mutants of the BBSome subunit BBS1 in the protozoan parasite, Leishmania. In the absence of BBS1, extracellular parasites have no apparent defects in growth, flagellum assembly, motility or differentiation in vitro but there is accumulation of vacuole‐like structures close to the flagellar pocket. Infectivity of these parasites for macrophages in vitro is reduced compared with wild‐type controls but the null parasites retain the ability to differentiate to the intracellular amastigote stage. However, infectivity of BBS1 null parasites is severely compromised in a BALB/c mouse footpad model. We hypothesize that the absence of BBS1 in Leishmania leads to defects in specific trafficking events that affect parasite persistence in the host. This is the first report of an association between the BBSome complex and pathogen infectivity.  相似文献   

4.
The ARLs are a diverse family of GTPases that are related to ADP-ribosylation factors (ARFs), but whose function is poorly understood. There are at least ten ARLs in humans, two of which have homologs in the yeast Saccharomyces cerevisiae (ARL1/Arl1p and ARFRP1/Arl3p). The function of ARFRP1 is unknown, but mammalian ARL1 has recently been found to interact with a number of effectors including the GRIP domain that is present in a family of Golgi-localized long coiled-coil proteins. We find that in yeast, the intracellular targeting of Imh1p, the only yeast GRIP domain protein, is dependent on both Arl1p and Arl3p, but not on the ARF proteins. A recombinant form of the Imh1p GRIP domain binds to Arl1p in a GTP-dependent manner, but not to Arl3p. Yeast also contain a relative of SCOCO, a protein proposed to bind human ARL1, but this yeast protein, Slo1p, appears to bind Arl3p rather than Arl1p in vitro. However, Imh1p is not the sole effector of Arl1p since affinity chromatography of cytosol with immobilized Arl1p:GTP revealed an interaction with the GARP/VFT complex that is thought to act in the tethering of vesicles to the Golgi apparatus. Finally, we find that Arl3p is required in vivo for the targeting of Arl1p, explaining its requirement for the normal distribution of Imh1p.  相似文献   

5.
The pleiotropic features of obesity, retinal degeneration, polydactyly, kidney abnormalities, cognitive impairment, hypertension, and diabetes found in Bardet-Biedl syndrome (BBS) make this disorder an important model disorder for identifying molecular mechanisms involved in common human diseases. To date, 16 BBS genes have been reported, seven of which (BBS1, 2, 4, 5, 7, 8, and 9) code for proteins that form a complex known as the BBSome. The function of the BBSome involves ciliary membrane biogenesis. Three additional BBS genes (BBS6, BBS10, and BBS12) have homology to type II chaperonins and interact with CCT/TRiC proteins and BBS7 to form a complex termed the BBS-chaperonin complex. This complex is required for BBSome assembly. Little is known about the process and the regulation of BBSome formation. We utilized point mutations and null alleles of BBS proteins to disrupt assembly of the BBSome leading to the accumulation of BBSome assembly intermediates. By characterizing BBSome assembly intermediates, we show that the BBS-chaperonin complex plays a role in BBS7 stability. BBS7 interacts with BBS2 and becomes part of a BBS7-BBS2-BBS9 assembly intermediate referred to as the BBSome core complex because it forms the core of the BBSome. BBS1, BBS5, BBS8, and finally BBS4 are added to the BBSome core to form the complete BBSome.  相似文献   

6.
The ARF family of regulatory GTPases is ancient, with 16 members predicted to have been present in the last eukaryotic common ancestor. Our phylogenetic profiling of paralogues in diverse species identified four family members whose presence correlates with that of a cilium/flagellum: ARL3, ARL6, ARL13, and ARL16. No prior evidence links ARL16 to cilia or other cell functions, despite its presence throughout eukaryotes. Deletion of ARL16 in mouse embryonic fibroblasts (MEFs) results in decreased ciliogenesis yet increased ciliary length. We also found Arl16 knockout (KO) in MEFs to alter ciliary protein content, including loss of ARL13B, ARL3, INPP5E, and the IFT-A core component IFT140. Instead, both INPP5E and IFT140 accumulate at the Golgi in Arl16 KO lines, while other intraflagellar transport (IFT) proteins do not, suggesting a specific defect in traffic from Golgi to cilia. We propose that ARL16 regulates a Golgi–cilia traffic pathway and is required specifically in the export of IFT140 and INPP5E from the Golgi.  相似文献   

7.
The flagellum of Trypanosoma brucei: new tricks from an old dog   总被引:1,自引:0,他引:1  
African trypanosomes, i.e. Trypanosoma brucei and related sub-species, are devastating human and animal pathogens that cause significant human mortality and limit sustained economic development in sub-Saharan Africa. T. brucei is a highly motile protozoan parasite and coordinated motility is central to both disease pathogenesis in the mammalian host and parasite development in the tsetse fly vector. Therefore, understanding unique aspects of the T. brucei flagellum may uncover novel targets for therapeutic intervention in African sleeping sickness. Moreover, studies of conserved features of the T. brucei flagellum are directly relevant to understanding fundamental aspects of flagellum and cilium function in other eukaryotes, making T. brucei an important model system. The T. brucei flagellum contains a canonical 9+2 axoneme, together with additional features that are unique to kinetoplastids and a few closely-related organisms. Until recently, much of our knowledge of the structure and function of the trypanosome flagellum was based on analogy and inference from other organisms. There has been an explosion in functional studies in T. brucei in recent years, revealing conserved as well as novel and unexpected structural and functional features of the flagellum. Most notably, the flagellum has been found to be an essential organelle, with critical roles in parasite motility, morphogenesis, cell division and immune evasion. This review highlights recent discoveries on the T. brucei flagellum.  相似文献   

8.
In humans, seven evolutionarily conserved genes that cause the cilia-related disorder Bardet-Biedl syndrome (BBS) encode proteins that form a complex termed the BBSome. The function of the BBSome in the cilium is not well understood. We purified a BBSome-like complex from Chlamydomonas reinhardtii flagella and found that it contains at least BBS1, -4, -5, -7, and -8 and undergoes intraflagellar transport (IFT) in association with a subset of IFT particles. C. reinhardtii insertional mutants defective in BBS1, -4, and -7 assemble motile, full-length flagella but lack the ability to phototax. In the bbs4 mutant, the assembly and transport of IFT particles are unaffected, but the flagella abnormally accumulate several signaling proteins that may disrupt phototaxis. We conclude that the BBSome is carried by IFT but is an adapter rather than an integral component of the IFT machinery. C. reinhardtii BBS4 may be required for the export of signaling proteins from the flagellum via IFT.  相似文献   

9.
Bardet-Biedl syndrome (BBS) is a well-known ciliopathy with mutations reported in 18 different genes. Most of the protein products of the BBS genes localize at or near the primary cilium and the centrosome. Near the centrosome, BBS proteins interact with centriolar satellite proteins, and the BBSome (a complex of seven BBS proteins) is believed to play a role in transporting ciliary membrane proteins. However, the precise mechanism by which BBSome ciliary trafficking activity is regulated is not fully understood. Here, we show that a centriolar satellite protein, AZI1 (also known as CEP131), interacts with the BBSome and regulates BBSome ciliary trafficking activity. Furthermore, we show that AZI1 interacts with the BBSome through BBS4. AZI1 is not involved in BBSome assembly, but accumulation of the BBSome in cilia is enhanced upon AZI1 depletion. Under conditions in which the BBSome does not normally enter cilia, such as in BBS3 or BBS5 depleted cells, knock down of AZI1 with siRNA restores BBSome trafficking to cilia. Finally, we show that azi1 knockdown in zebrafish embryos results in typical BBS phenotypes including Kupffer''s vesicle abnormalities and melanosome transport delay. These findings associate AZI1 with the BBS pathway. Our findings provide further insight into the regulation of BBSome ciliary trafficking and identify AZI1 as a novel BBS candidate gene.  相似文献   

10.
Flagellum motility is critical for normal human development and for transmission of pathogenic protozoa that cause tremendous human suffering worldwide. Biophysical principles underlying motility of eukaryotic flagella are conserved from protists to vertebrates. However, individual cells exhibit diverse waveforms that depend on cell-specific elaborations on basic flagellum architecture. Trypanosoma brucei is a uniflagellated protozoan parasite that causes African sleeping sickness. The T. brucei flagellum is comprised of a 9+2 axoneme and an extra-axonemal paraflagellar rod (PFR), but the three-dimensional (3D) arrangement of the underlying structural units is poorly defined. Here, we use dual-axis electron tomography to determine the 3D architecture of the T. brucei flagellum. We define the T. brucei axonemal repeating unit. We observe direct connections between the PFR and axonemal dyneins, suggesting a mechanism by which mechanochemical signals may be transmitted from the PFR to axonemal dyneins. We find that the PFR itself is comprised of overlapping laths organized into distinct zones that are connected through twisting elements at the zonal interfaces. The overall structure has an underlying 57 nm repeating unit. Biomechanical properties inferred from PFR structure lead us to propose that the PFR functions as a biomechanical spring that may store and transmit energy derived from axonemal beating. These findings provide insight into the structural foundations that underlie the distinctive flagellar waveform that is a hallmark of T. brucei cell motility.  相似文献   

11.
Bardet-Biedl syndrome (BBS) is a pleiotropically genetic disorder, whose etiology is linked to cilia. Mutations in the Arf/Arl-family GTPase Arl6 have been recently shown to be responsible for BBS type 3. Here we show that BBS mutations alter the guanine nucleotide-binding properties of Arl6. Specifically, substitution of 31st Threonine to Arginine selectively abrogates the GTP-binding ability of Arl6 without affecting GDP-binding/dissociating properties. Furthermore, all the BBS mutations in Arl6 result in low expression of the mutant proteins, which can be restored by the inhibition of the proteasome. These findings implicate that Arl6 mutants are destabilized and eliminated by the proteasome in cells, probably due to the altered nucleotide-binding properties.  相似文献   

12.
The flagellum of Trypanosoma brucei is an essential and multifunctional organelle that is receiving increasing attention as a potential drug target and as a system for studying flagellum biology. RNA interference (RNAi) knockdown is widely used to test the requirement for a protein in flagellar motility and has suggested that normal flagellar motility is essential for viability in bloodstream-form trypanosomes. However, RNAi knockdown alone provides limited functional information because the consequence is often loss of a multiprotein complex. We therefore developed an inducible system that allows functional analysis of point mutations in flagellar proteins in T. brucei. Using this system, we identified point mutations in the outer dynein light chain 1 (LC1) that allow stable assembly of outer dynein motors but do not support propulsive motility. In procyclic-form trypanosomes, the phenotype of LC1 mutants with point mutations differs from the motility and structural defects of LC1 knockdowns, which lack the outer-arm dynein motor. Thus, our results distinguish LC1-specific functions from broader functions of outer-arm dynein. In bloodstream-form trypanosomes, LC1 knockdown blocks cell division and is lethal. In contrast, LC1 point mutations cause severe motility defects without affecting viability, indicating that the lethal phenotype of LC1 RNAi knockdown is not due to defective motility. Our results demonstrate for the first time that normal motility is not essential in bloodstream-form T. brucei and that the presumed connection between motility and viability is more complex than might be interpreted from knockdown studies alone. These findings open new avenues for dissecting mechanisms of flagellar protein function and provide an important step in efforts to exploit the potential of the flagellum as a therapeutic target in African sleeping sickness.  相似文献   

13.
Proliferation and differentiation of hematopoietic stem cells and progenitors are regulated by signals from the microenvironment, involving both secreted cytokines and adhesion molecules. The exact mechanisms by which cytokines act on hematopoietic development are still not well understood. To extend the molecular characterization of gene regulation during cytokine-induced hematopoiesis, we applied mRNA differential display to identify genes regulated when multipotent progenitor cells are allowed to differentiate into monocytes and neutrophils. Here we report the isolation and characterization of a gene that is downregulated during myeloid differentiation and encodes a 23-kDa protein with four putative transmembrane segments. The gene, which we named Arl6ip, is identical to a mouse gene recently identified by its physical interaction with ADP-ribosylation-like factor-6 (ARL6), belonging to the Ras superfamily. We add information on its full-length characterization as well as its regulation during hematopoiesis. It is expressed in all hematopoietic cell lineages, but the highest level of expression is found in early myeloid progenitor cells. Preliminary studies by immunofluorescence microscopy revealed that the ARL6IP protein is predominantly localized to intracytoplasmic membranes. This suggests an involvement of the Arl6ip gene in protein transport, membrane trafficking, or cell signaling during hematopoietic maturation.  相似文献   

14.
The ADP-ribosylation factor-like protein 4 (ARL4) is a 22-kDa GTP-binding protein which is abundant in testes of pubertal and adult rodents but absent in testes from prepubertal animals. During testis development, ARL4 expression starts at day 16 when the spermatogenesis proceeds to the late pachytene. In the adult testis, the ARL4 protein was detected in pre- and postmeiotic cells, spermatocytes, and spermatides, but not in spermatogonia and mature spermatozoa. Mouse Arl4-null mutants generated by targeted disruption of the Arl4 gene were viable and grew normally; male as well as female Arl4(-/-) mice were fertile. However, inactivation of the Arl4 gene resulted in a significant reduction of testis weight and sperm count by 30 and 60%, respectively, without reduction of litter size or frequency. It is suggested that the disruption of Arl4 produces a moderate retardation of germ cell development, possibly at the stage of meiosis.  相似文献   

15.
The flagellum of African trypanosomes is an essential and multifunctional organelle that functions in motility, cell morphogenesis, and host-parasite interaction. Previous studies of the trypanosome flagellum have been limited by the inability to purify flagella without first removing the flagellar membrane. This limitation is particularly relevant in the context of studying flagellum signaling, as signaling requires surface-exposed proteins in the flagellar membrane and soluble signaling proteins in the flagellar matrix. Here we employ a combination of genetic and mechanical approaches to purify intact flagella from the African trypanosome, Trypanosoma brucei, in its mammalian-infectious stage. We combined flagellum purification with affinity-purification of surface-exposed proteins to conduct independent proteomic analyses of the flagellum surface and matrix fractions. The proteins identified encompass a broad range of molecular functionalities, including many predicted to function in signaling. Immunofluorescence and RNA interference studies demonstrate flagellum localization and function for proteins identified and provide insight into mechanisms of flagellum attachment and motility. The flagellum surface proteome includes many T. brucei-specific proteins and is enriched for proteins up-regulated in the mammalian-infectious stage of the parasite life-cycle. The combined results indicate that the flagellum surface presents a diverse and dynamic host-parasite interface that is well-suited for host-parasite signaling.  相似文献   

16.
The Bardet-Biedl syndrome protein complex (BBSome) is an octameric complex that transports membrane proteins into the primary cilium signaling organelle in eukaryotes and is implicated in human disease. Here we have analyzed the 99-kDa human BBS9 protein, one of the eight BBSome components. The protein is composed of four structured domains, including a β-stranded N-terminal domain. The 1.8 Å crystal structure of the 46-kDa N-terminal domain reveals a seven-bladed β-propeller. A structure-based homology search suggests that it functions in protein-protein interactions. We show that the Bardet-Biedl syndrome-causing G141R mutation in BBS9 likely results in misfolding of the β-propeller. Although the C-terminal half of BBS9 dimerizes in solution, the N-terminal domain only does so in the crystal lattice. This C-terminal dimerization interface might be important for the assembly of the BBSome.  相似文献   

17.
The cytoskeleton of eukaryotic cells is comprised of a complex network of distinct but interconnected filament systems that function in cell division, cell motility, and subcellular trafficking of proteins and organelles. A gap in our understanding of this dynamic network is the identification of proteins that connect subsets of cytoskeletal structures. We previously discovered a family of cytoskeleton-associated proteins that includes GAS11, a candidate human tumor suppressor upregulated in growth-arrested cells, and trypanin, a component of the flagellar cytoskeleton of African trypanosomes. Although these proteins are intimately associated with the cytoskeleton, their function has yet to be determined. Here we use double-stranded RNA interference to block trypanin expression in Trypanosoma brucei, and demonstrate that this protein is required for directional cell motility. Trypanin(minus sign) mutants have an active flagellum, but are unable to coordinate flagellar beat. As a consequence, they spin and tumble uncontrollably, occasionally moving backward. Immunofluorescence experiments demonstrate that trypanin is located along the flagellum/flagellum attachment zone and electron microscopic analysis revealed that cytoskeletal connections between the flagellar apparatus and subpellicular cytoskeleton are destabilized in trypanin(minus sign) mutants. These results indicate that trypanin functions as a cytoskeletal linker protein and offer insights into the mechanisms of flagellum-based cell motility.  相似文献   

18.
Golgins are Golgi-localized proteins present in all molecularly characterized eukaryotes that function in Golgi transport and maintenance of Golgi structure. Some peripheral membrane Golgins, including the yeast Imh1 protein, contain the recently described GRIP domain that can independently mediate Golgi localization by an unknown mechanism. To identify candidate Golgi receptors for GRIP domain proteins, a collection of Saccharomyces cerevisiae deletion mutants was visually screened by using yeast, mouse, and human GFP-GRIP domain fusion proteins for defects in Golgi localization. GFP-GRIP reporters were localized to the cytosol in cells lacking either of two ARF-like (ARL) GTPases, Arl1p and Arl3p. In vitro binding experiments demonstrated that activated Arl1p-GTP binds specifically and directly to the Imh1p GRIP domain. Arl1p colocalized with Imh1p-GRIP at the Golgi, and Golgi localization of Arl1p was regulated by the GTPase cycle of Arl3p. These results suggest a cascade in which the GTPase cycle of Arl3p regulates Golgi localization of Arl1p, which in turn binds to the GRIP domain of Imh1p and recruits it to the Golgi. The similar requirements for localization of GRIP domains from yeast, mouse, and human when expressed in yeast, and the presence of Arl1p and Arl3p homologs in these species, suggest that this is an evolutionarily conserved mechanism.  相似文献   

19.
Defects in centrosome and cilium function are associated with phenotypically related syndromes called ciliopathies. Centriolar satellites are centrosome-associated structures, defined by the protein PCM1, that are implicated in centrosomal protein trafficking. We identify Cep72 as a PCM1-interacting protein required for recruitment of the ciliopathy-associated protein Cep290 to centriolar satellites. Loss of centriolar satellites by depletion of PCM1 causes relocalization of Cep72 and Cep290 from satellites to the centrosome, suggesting that their association with centriolar satellites normally restricts their centrosomal localization. We identify interactions between PCM1, Cep72, and Cep290 and find that disruption of centriolar satellites by overexpression of Cep72 results in specific aggregation of these proteins and the BBSome component BBS4. During ciliogenesis, BBS4 relocalizes from centriolar satellites to the primary cilium. This relocalization occurs normally in the absence of centriolar satellites (PCM1 depletion) but is impaired by depletion of Cep290 or Cep72, resulting in defective ciliary recruitment of the BBSome subunit BBS8. We propose that Cep290 and Cep72 in centriolar satellites regulate the ciliary localization of BBS4, which in turn affects assembly and recruitment of the BBSome. Finally, we show that loss of centriolar satellites in zebrafish leads to phenotypes consistent with cilium dysfunction and analogous to those observed in human ciliopathies.  相似文献   

20.
Using site-directed mutants of ARL1 predicted to alter nucleotide binding, we examined phenotypes associated with the loss of ARL1 , including effects on membrane traffic and K (+) homeostasis. The GTP-restricted allele, ARL[Q72L] , complemented the membrane traffic phenotype (CPY secretion), but not the K (+) homeostasis phenotypes (sensitivity to hygromycin B, steady-state levels of K (+) , and accumulation of (86) Rb (+) ), while the XTP-restricted mutant, ARL1[D130N] , complemented the ion phenotypes, but not the membrane traffic phenotype. A GDP-restricted allele, ARL1[T32N] , did not effectively complement either phenotype. These results are consistent with a model in which Arl1 has three different conformations in vivo. We also explored the relationship between ARL1 and MON2 using the synthetic lethal phenotype exhibited by these two genes and demonstrated that MON2 is a negative regulator of the GTP-restricted allele of ARL1 , ARL1[Q72L] . Finally, we constructed several new alleles predicted to alter binding of Arl1 to the sole GRIP domain containing protein in yeast, Imh1, and found that ARL1[F52G] and ARL1[Y82G] were unable to complement the loss of ARL1 with respect to either the membrane traffic or K (+) homeostasis phenotypes. Our study expands understanding of the roles of Arl1 in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号