首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteosarcoma is a rare malignant bone tumor with high degree of malignancy. HULC (highly upregulated in liver cancer), a long noncoding RNA (lncRNA) was involved in hepatocellular carcinoma development and progression, but its underlying mechanism in osteosarcoma is unknown. The aim of this study was to explore the functional role of HULC in osteosarcoma. The study was conducted in human osteosarcoma cell lines and the expression of HULC in the cell lines was detected by qRT‐PCR. Furthermore, the effects of HULC on tumorigenicity of osteosarcoma cells were evaluated by in vitro assays. Results revealed that HULC was highly expressed in osteosarcoma MG63 and OS‐732 cells compared to osteoblast hFOB1.19 cells. Suppression of HULC in osteosarcoma cells inhibited cell viability, migration, invasion, and promoted apoptosis. HULC functioned as an endogenous sponge for miR‐122, and its silence functioned through upregulating miR‐122. HNF4G was a target of miR‐122, and the effect of HNF4G on OS‐732 cells was the same as HULC. Furthermore, overexpression of miR‐122 inactivated PI3K/AKT, JAK/STAT, and Notch pathways by downregulation of HNF4G. These findings suggest that knockdown of HULC inhibited proliferation, migration, and invasion by sponging miR‐122 in osteosarcoma cells. HULC may act as a novel therapeutic target for management of osteosarcoma.  相似文献   

2.
Zhao JJ  Pan K  Li JJ  Chen YB  Chen JG  Lv L  Wang DD  Pan QZ  Chen MS  Xia JC 《PloS one》2011,6(10):e26608

Background

LZAP was isolated as a binding protein of the Cdk5 activator p35. LZAP has been highly conserved during evolution and has been shown to function as a tumor suppressor in various cancers. This study aimed to investigate LZAP expression and its prognostic value in hepatocellular carcinoma (HCC). Meanwhile, the function of LZAP in hepatocarcinogenesis was further investigated in cell culture models and mouse models.

Methods

Real-time quantitative PCR, western blot and immunohistochemistry were used to explore LZAP expression in HCC cell lines and primary HCC clinical specimens. The functions of LZAP in the proliferation, colony formation, cell cycle, migration, invasion and apoptosis of HCC cell lines were also analyzed by infecting cells with an adenovirus containing full-length LZAP. The effect of LZAP on tumorigenicity in nude mice was also investigated.

Results

LZAP expression was significantly decreased in the tumor tissues and HCC cell lines. Clinicopathological analysis showed that LZAP expression was significantly correlated with tumor size, histopathological classification and serum α-fetoprotein (AFP). The Kaplan–Meier survival curves revealed that decreasing LZAP expression was associated with poor prognosis in HCC patients. LZAP expression was an independent prognostic marker of overall HCC patient survival in a multivariate analysis. The re-introduction of LZAP expression in the HepG2 and sk-Hep1 HCC cell lines significantly inhibited proliferation and colony formation in the HCC cells and induced G1 phase arrest and apoptosis of the HCC cells in vitro. Restoring LZAP expression in the HCC cell lines also inhibited migration and invasion. In addition, experiments with a mouse model revealed that LZAP overexpression could suppress HCC tumorigenicity in vivo.

Conclusions

Our data suggest that LZAP may play an important role in HCC progression and could be a potential molecular therapy target for HCC.  相似文献   

3.
4.
Osteosarcoma (OS) is one of the most common bone malignancies and occurs almost exclusively in children and adolescents. This study aimed to explore the role of lncRNA maternally expressed gene 3 (MEG3) in OS cells growth and metastasis, and to uncover the possible underlying mechanism. In this study, the expressions of MEG3 in five OS cell lines (MG63, OS‐732, SaOS, G292, and 143B) and in a human osteoblast cell line hFOB1.19 were measured by qRT‐PCR analysis. The expressions of MEG3, miR‐127, and ZEB1 in OS‐732 cells were overexpressed or suppressed by transfection. Cell viability, migration, invasion, and apoptosis were then assessed. The results showed that MEG3 was highly expressed in OS cell lines when compared to hFOB1.19 cell. MEG3 silence significantly suppressed OS‐732 cells growth and metastasis, as evidenced by the decreases in cell viability, migration, invasion, and increase in apoptotic cell rate. MEG3 acted as an endogenous sponge by binding to miR‐127. More interestingly, MEG3 silence could not suppress OS‐732 cells growth and metastasis when miR‐127 was knocked down. ZEB1 was a target gene of miR‐127, and miR‐127 overexpression‐induced impairments in cell growth and metastasis were attenuated when ZEB1 was overexpressed. Moreover,miR‐127 suppression activated JNK and Wnt signaling pathways, while these activations were recovered by ZEB1 silence. To conclude, our findings suggest that lncRNA MEG3 promoted OS cells growth and metastasis in vitro through sponging miR‐127. This study provides the evidence that MEG3 may be a potential therapeutic target for OS.  相似文献   

5.
Golgi phosphoprotein 3 (GOLPH3) has been implicated in the development of carcinomas in many human tissues, and is currently considered a bona fide oncoprotein. Importantly, several tumor types show overexpression of GOLPH3, which is associated with tumor progress and poor prognosis. However, the underlying molecular mechanisms that connect GOLPH3 function with tumorigenicity are poorly understood. Experimental evidence shows that depletion of GOLPH3 abolishes transformation and proliferation of tumor cells in GOLPH3-overexpressing cell lines. Conversely, GOLPH3 overexpression drives transformation of primary cell lines and enhances mouse xenograft tumor growth in vivo. This evidence suggests that overexpression of GOLPH3 could result in distinct features of GOLPH3 in tumor cells compared to that of non-tumorigenic cells. GOLPH3 is a peripheral membrane protein mostly localized at the trans-Golgi network, and its association with Golgi membranes depends on binding to phosphatidylinositol-4-phosphate. GOLPH3 is also contained in a large cytosolic pool that rapidly exchanges with Golgi-associated pools. GOLPH3 has also been observed associated with vesicles and tubules arising from the Golgi, as well as other cellular compartments, and hence it has been implicated in several membrane trafficking events. Whether these and other features are typical to all different types of cells is unknown. Moreover, it remains undetermined how GOLPH3 acts as an oncoprotein at the Golgi. Therefore, to better understand the roles of GOLPH3 in cancer cells, we sought to compare some of its biochemical and cellular properties in the human breast cancer cell lines MCF7 and MDA-MB-231 with that of the non-tumorigenic breast human cell line MCF 10A. We found unexpected differences that support the notion that in different cancer cells, overexpression of GOLPH3 functions in diverse fashions, which may influence specific tumorigenic phenotypes.  相似文献   

6.

Background

Forkhead box L1 (FOXL1), considered as a novel candidate tumor suppressor, suppresses proliferation and invasion in certain cancers. However, the regulation and function of FOXL1 in gallbladder cancer (GBC) remains unclear.

Methods

FOXL1 expression at mRNA and protein levels in GBC tissues and cell lines were examined by RT-PCR, immunohistochemistry and western blot assay. FOXL1 expression in GBC cell lines was up-regulated by transfection with pcDNA-FOXL1. The effects of FOXL1 overexpression on cell proliferation, apoptosis, migration and invasion were evaluated in vitro or in vivo. In addition, the status of mediators involved in migration, invasion and apoptosis was examined using western blot after transfection with pcDNA-FOXL1.

Results

FOXL1 was frequently downregulated in GBC tissues and cell lines. Its higher expression is associated with better prognosis, while its lower expression is correlated with advanced TNM stage and poor differentiation. FOXL1 overexpression in NOZ cells significantly suppresses cell proliferation, migration and invasion in vitro and tumorigenicity in nude mice. FOXL1 overexpression disrupted mitochondrial transmembrane potential and triggered mitochondria-mediated apoptosis in NOZ cells. In addition, FOXL1 overexpression suppressed ZEB1 expression and induced E-cadherin expression in NOZ cells.

Conclusion

Our findings suggested that dysregulated FOXL1 is involved in tumorigenesis and progression of GBC and may serve as a predictor of clinical outcome or even a therapeutic target for patients with GBC.  相似文献   

7.
Increasing evidence has confirmed that microRNAs (miRs) are involved in tumor development and progression. A previous study reported that miR-421 could serve as a diagnostic marker in patients with osteosarcoma (OS). The present study explored the potential roles of miR-421 in the regulation of cell proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transition of OS cells. Our results showed that miR-421 was upregulated in OS tissues and cell lines (MG63, U2OS, HOS, and Saos-2) compared with the corresponding adjacent tissues or human osteoblast cells hFOB1.19, while the latent transforming growth factor β-binding protein 2 (LTBP2) expression was reduced. In MG63 and U2OS cells, CCK8 assay displayed that cell proliferation was repressed by the miR-421 inhibitor, conversely increased by miR-421 mimics. Inhibition of miR-421 promoted cell apoptosis rate, caspase 3 activity, cleaved-caspase 3 (c-caspase 3) expression, and Bax/Bcl-2 ratio, restoration of miR-421 showed the opposite functions. Suppression of miR-421 blocked migration and invasion, whereas miR-421 overexpression promoted the migration and invasion of MG63 and U2OS cells. In addition, real-time polymerase chain reaction and Western blot analysis revealed that miR-421 negatively regulated E-cadherin expression, and positively regulated the expression of N-cadherin and vimentin. The luciferase reporter assay determined that miR-421 could target LTBP2-3′-UTR, and LTBP2 expression was regulated negatively by miR-421 both in mRNA and protein levels. Depletion of LTBP2 partly abolished the biological functions of miR-421 inhibitor in OS. In conclusion, miR-421 plays an oncogenic role in OS via targeting LTBP2, suggesting that miR-421 may be a potential therapeutic target against OS.  相似文献   

8.
REIC is downregulated in immortalized cell lines compared with the parental normal counterparts. It may inhibit colony formation, tumor growth and induce apoptosis. Here, gastric carcinoma or epithelial cells transfected with REIC-expressing plasmid, its siRNA or treated with recombinant REIC were subjected to the phenotypes’ measurement or related molecules’ detection. REIC expression was examined in gastric carcinomas by RT-PCR, western blot and immunohistochemistry. REIC overexpression or treatment resulted in a low karyoplasmic ratio and proliferation, G1 arrest, high apoptosis, low migration, invasion or lamellipodia formation in AGS cells. REIC knockdown caused the opposite in GES-1 cells. Anti-REIC antibody blocked the effects of REIC overexpression on proliferation, G1/S progression and apoptosis. Ectopic REIC expression downregulated the expression of β-catenin, phosphorylated S6K (Thr389), phosphorylated Akt1/2/3 (Ser473), cyclin D2 and E, WAVE2 and upregulated phosphorylated mTOR (Ser2448) expression and the mRNA level of Akt1, Akt2, mTOR, Raptor and Rictor in AGS cells. REIC expression was negatively associated with tumor size, lymph node metastasis, dedifferentiation or poor prognosis of carcinoma. The serum REIC level was significantly higher in healthy individuals than the carcinoma patients and inversely linked to tumor size by ELISA. The possible mechanisms underlying the forced REIC overexpression or recombinant REIC mediated the reversal of the aggressive phenotypes of gastric carcinoma cells are to downregulate β-catenin and WAVE2 expression and to alter other related target proteins. Downregulated REIC expression was closely linked to aggressive behaviors and poor prognosis of gastric carcinoma.  相似文献   

9.
Osteosarcoma (OS) is a primary malignant bone tumour that mainly affects teenagers, with patients displaying poor prognosis. Budding uninhibited by benzimidazoles 1 (BUB1), a type of serine/threonine kinase that is linked to pro-tumorigenic phenomena, has not been well studied in OS. Hence, this study aimed to explore the role of BUB1 in OS. The expression of BUB1 in OS specimens and cell lines was assessed using immunohistochemistry and Western blot analysis. Univariate and multivariate analyses were applied to evaluate the impact of BUB1 on patient survival. Cell counting kit-8, wound-healing and Transwell assays, as well as flow cytometry, were used to investigate the influence of BUB1 inhibition on OS in vitro. Moreover, a tumour xenograft model was established to investigate the in vivo effect of BUB1 inhibition on OS tumour growth. Results showed that BUB1 was overexpressed in OS specimens and cell lines. Furthermore, BUB1 overexpression was closely associated with the poor clinical outcomes of patients with OS. Inhibition of BUB1 markedly suppressed cell proliferation and tumour growth, cell migration, invasion and induced cell apoptosis of OS by blocking the PI3K/Akt and ERK signalling pathways. Thus, our study suggested that overexpression of BUB1 protein contributed to poor survival of OS patients and that inhibition of BUB1 resulted in considerable anti-tumour activity associated with proliferation, migration, invasion and apoptosis of OS.  相似文献   

10.
Heat shock proteins (HSP) are highly conserved across eukaryotic and prokaryotic species. These proteins play a role in response to cellular stressors, protecting cells from damage and facilitating recovery. In tumor cells, HSPs can have cytoprotective effects and interfere with apoptotic cascades. This study was performed to assess the prognostic and predictive values of the gene expression of HSP family members in canine osteosarcoma (OS) and their potential for targeted therapy. Gene expressions for HSP were assessed using quantitative PCR (qPCR) on 58 snap-frozen primary canine OS tumors and related to clinic-pathological parameters. A significant increased expression of HSP60 was found in relation to shorter overall survival and an osteoblastic phenotype. Therefore, the function of HSP60 was investigated in more detail. Immunohistochemical analysis revealed heterogeneous staining for HSP60 in tumors. The highest immunoreactivity was found in tumors of short surviving dogs. Next HSP expression was shown in a variety of canine and human OS cell lines by qPCR and Western blot. In two highly metastatic cell lines HSP60 expression was silenced using siRNA resulting in decreased cell proliferation and induction of apoptosis in both cell lines. It is concluded that overexpression of HSP60 is associated with a poor prognosis of OS and should be evaluated as a new target for therapy.  相似文献   

11.
Mucin 15 (MUC15) is reportedly aberrant in human malignancies, including hepatocellular carcinoma (HCC). However, the role of MUC15 in the regulation of liver tumor-initiating cells (T-ICs) remains unknown. Here, we report that expression of MUC15 is downregulated in liver T-ICs, chemoresistance and recurrent HCC samples. Functional studies reveal that MUC15 inhibits hepatoma cells self-renewal, malignant proliferation, tumorigenicity, and chemoresistance. Mechanistically, MUC15 interacts with c-MET and subsequently inactivates the PI3K/AKT/SOX2 signaling pathway. Moreover, we find that miR-183-5p.1 directly targets MUC15 3′-UTR in liver T-ICs. Coincidentally, SOX2 feedback inhibits MUC15 expression by directly transactivating miR-183-5p.1, thus completing a feedforward regulatory circuit in liver T-ICs. Importantly, MUC15/c-MET/PI3K/AKT/SOX2 axis determines the responses of hepatoma cells to lenvatinib treatment, and MUC15 overexpression abrogated lenvatinib resistance. Analysis of patient cohort, patient-derived tumor organoids and patient-derived xenografts further suggests that the MUC15 may predict lenvatinib benefits in HCC patients. Collectively, our findings suggest the crucial role of the miR-183-5p.1/MUC15/c-MET/PI3K/AKT/SOX2 regulatory circuit in regulating liver T-ICs properties, suggesting potential therapeutic targets for HCC.Subject terms: Cancer stem cells, Tumour biomarkers, Liver cancer  相似文献   

12.
The TrkA tyrosine kinase is activated by autophosphorylation in response to NGF, and plays an important role in cell survival, differentiation, and apoptosis. To investigate its role in cell fate determination, we produced stable TrkA-inducible SK-N-MC and U2OS cell lines using the Tet-On system. Interestingly, TrkA overexpression induced substantial cell death even in the absence of NGF, by stimulating ERK phosphorylation and caspase-7 activation leading to PARP cleavage. TrkA-mediated cell death was shown by the annexin-V binding assay to be, at least in part, apoptotic in both SK-N-MC and U2OS cells. Furthermore, the truncated form (p18) of Bax accumulated in the TrkA-induced cells, suggesting that TrkA induces mitochondria-mediated apoptosis. NGF treatment augmented the cell death induced by TrkA overexpression. This TrkA-induced cell death was blocked by the tyrosine kinase inhibitors, K-252a and GW441756. Moreover, TrkA overexpression inhibited long-term proliferation of both the neuronal SK-N-MC cells and the non-neuronal U2OS cells, suggesting a potential role of TrkA as a tumor suppressor.  相似文献   

13.
Osteosarcoma (OS) is a highly aggressive bone tumor with a poor prognosis. MicroRNAs are revealed to exerts essential roles in the carcinogenesis and tumor invasion of OS. But, the function of miR-1296-5p and its related mechanism in OS progression have not yet been studied. This study discovered the levels of miR-1296-5p in OS and corresponding noncancerous tissues, and we demonstrated that miR-1296-5p level was markedly downregulated in tumor specimens as compared with nontumor tissues. In addition, we discovered that miR-1296-5p was also underexpressed in OS cells compared with the hFOB1.19 osteoblast cells. Interestingly, the reduced expression of miR-1296-5p was confirmed to associated with large tumor size, advanced tumor stages, and distance metastasis, respectively. Patients with OS low-expressing miR-1296-5p showed a prominent shorter survival. In addition, gain-of-function assays verified that miR-1296-5p overexpression remarkably repressed OS cell proliferation, migration, and invasion. Conversely, depletion of miR-1296-5p facilitated the growth and mobility of OS cells. Notably, miR-1296-5p inversely modulated notch receptor 2 (NOTCH2) in OS cells. The level of NOTCH2 messenger RNA was negatively correlated with miR-1296-5p level in OS samples. NOTCH2 knockdown markedly suppressed the abilities of MG-63 cell proliferation and mobility. More importantly, the restoration of NOTCH2 prominently rescued miR-1296-5p-induced tumor-suppressive effects on MG-63 cells. In conclusion, our study identified the reduced expression of miR-1296-5p, which contributed to OS progression. miR-1296-5p might be a promising prognostic marker and therapeutic target in OS.  相似文献   

14.
Long non-coding RNA (lncRNA) is emerging as a critical regulator in multiple cancers. Recently, lncRNA PCAT-1 was found to be up-regulated in prostate cancer and hepatocellular carcinoma, exerting oncogenic effects. However, the biological function and regulatory mechanism of PCAT-1 remain unclear in osteosarcoma (OS). In this study, we reported that PCAT-1 expression was also upregulated in OS tissues, and its overexpression was remarkably associated with tumor size, Enneking stage, tumor node metastasis (TNM) stage and metastasis in patients with OS. Knockdown of PCAT-1 suppressed OS cells proliferation, migration and invasion in vitro, and inhibited the tumorigenicity of OS cells in vivo. Mechanistic investigations revealed that PCAT-1 could interact with EZH2, thereby repressing p21 expression. Additionally, rescue experiments indicated that PCAT-1 functioned as an oncogene partly via suppressing p21 in OS cells. Collectively, our findings demonstrate that PCAT-1 is a new candidate for use in OS diagnosis, prognosis and therapy.  相似文献   

15.
MethodsWe used Western blotting and immunohistochemistry to examine BIRC6 expression in 7 CRC cell lines and 126 CRC clinical samples. We determined the biological significance of BIRC6 in CRC cell lines by a lentivirus-mediated silencing method.ResultsWe reported that BIRC6 was overexpressed in CRC cell lines and clinical CRC tissues. BIRC6 overexpression was correlated with tumor size and invasion depth of CRC. BIRC6 overexpression is associated with worse overall survival (OS) (P = 0.001) and shorter disease-free survival (DFS) (P = 0.010). BIRC6 knockdown inhibited cell proliferation, arrested cell cycle at S phase, downregulated cyclin A2, B1, D1 and E1 levels, and sensitized CRC cells to chemotherapy in vitro and in vivo.ConclusionsTaken together, these data suggests that BIRC6 overexpression is a predictor of poor prognosis in colorectal cancer and BIRC6 could be a potential target of CRC therapy.  相似文献   

16.
Colorectal cancer has become the third most common cancer and leads to high mortality worldwide. Although colorectal cancer has been studied widely, the underlying molecular mechanism remains unclear. PER3 is related to tumor differentiation and the progression of colorectal cancer. High expression of miR-103 is associated with poor prognosis in patients with colorectal cancer. However, the relationship between miR-103 and PER3 in CRC cells remains unclear. In this study, we found that PER3 was downregulated in CRC tissues and CRC cell lines, whereas miR-103 was upregulated in CRC cell lines. We also found that PER3 promoted CRC cells apoptosis. These results indicate that PER3 plays a suppressive role in CRC cells. Moreover, we found that PER3 was targeted, at least partially, by miR-103. Taken together, we provide evidence to characterize the role of PER3 in CRC, which may be a new therapeutic target for CRC. [BMB Reports 2014;47(9): 500-505]  相似文献   

17.
目的:探讨NALP1基因在骨肉瘤细胞株MG-63、U-2OS中的表达,以及高表达NALP1基因对于骨肉瘤细胞体外凋亡的影响。方法:使用RT-PCR、Western-blot法检测骨肉瘤细胞株MG-63、U-2OS中的mRNA及蛋白表达水平并与人成骨细胞株hFOB1.19比较。将NALP1基因转染质粒PcDNA3.1,将重组质粒转染骨肉瘤细胞,分成高表达基因组、空质粒组及对照组,加入抗肿瘤药物顺铂及甲氨蝶呤促使肿瘤细胞凋亡,使用流式细胞仪测定各组肿瘤细胞凋亡率。结果:通过统计分析,骨肉瘤细胞株MG-63、U-2OS中的mRNA及蛋白表达水平均低于人成骨细胞株hFOB1.19(P<0.05),NALP1高表达组的肿瘤细胞凋亡率明显高于空白质粒组及对照组。结论:上调骨肉瘤细胞株MG-63、U-2OS中的NALP1的表达量可以促进肿瘤细胞凋亡。  相似文献   

18.
19.
We have investigated the influence of Ki-ras oncogene on Met/hepatocyte growth factor (HGF) receptor signaling in human carcinoma cells. The model system used in these studies included the DLD-1 colon cancer cell line with a mutated Ki-ras allele, and the DKO-4 cell line generated from DLD-1, with its mutant Ki-ras allele inactivated by targeted disruption. These cell lines were transduced with cDNAs of either active Met receptor or dominant negative Met receptor. As compared to the DLD-1 cells, constitutive overexpression of Met receptor in this cell line (DLD-1-Met) resulted in increased tumorigenicity in SCID mice. In contrast, overexpression of Met in DKO-4 cells (DKO-4-Met) that have lost oncogenic Ras activity demonstrated suppressed tumorigenicity with respect to the parent DKO-4 cell line. Tumors formed by the DLD-1-Met cells showed increased levels of mitogen-activated protein kinase (MAPK) and lower levels of apoptosis compared to the DKO-4-Met tumors. Overexpression of the dominant negative Met receptor cDNA decreased the Met phosphorylation levels in both DLD-1 and DKO-4 cells, but only suppressed tumorigenicity in the DKO-4 cell line. In vitro, HGF stimulation of DLD-1 cells resulted in a prolonged duration of MAPK activation, while DKO-4 cells exhibited a rapid attenuation of MAPK phosphorylation. The results suggest that Ki-ras mutations and HGF signaling cooperate to enhance tumor growth by increased duration of MAPK activation and decreased apoptosis in human carcinoma cells.  相似文献   

20.
Long noncoding RNA small nucleolar RNA host gene 1 (lnc-SNHG1) was reported to play an oncogenic role in the progression of cancers. However, the roles of SNHG1 and its molecular mechanism in osteosarcoma (OS) cells are largely unknown. In present study, we found that the expression of SNHG1 was up-regulated in OS tissues and cell lines. OS patients with the high SNHG1 expression were positively correlated with tumor size, TNM stage and lymph node metastasis. In addition, SNHG1 overexpression promoted cell proliferation, cell migration and EMT process in U2OS and MG63 cells and tumor growth in vivo. Furthermore, we also found that miR-577 could act as a ceRNAof SNHG1 in OS cells and the promotion of OS progression induced by lnc-SNHG1 overexpression required the inactivity of miR-577. Besides, we identified that WNT2B acted as a target of miR-577, and WNT2B played the oncogenic role in OS cells by activating Wnt/β-catenin pathway. In short, our study suggested that lnc-SNHG1 could promote OS progression via miR-577 and WNT2B. The lnc-SNHG1/miR-577/WNT2B/Wnt/β-catenin axis regulatory network might provide a potential new therapeutic strategy for OS treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号