首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
棉铃虫抗药性的生理生化机制研究   总被引:12,自引:2,他引:10  
张友军  张文吉 《昆虫学报》1997,40(3):247-253
本文报道了棉铃虫Helicoverpa armigera田间抗性种群对杀虫剂抗药性的生理生化机制。抗性种群(HJ-R)5龄幼虫羧酸酯酶、谷胱甘肽转移酶、多功能氧化酶活力均明显高于相对敏感种群(HD-S)。两种群乙酰胆碱酯酶对杀虫剂敏感性没有显著差异。HJ-R种群的腹神经索对氰戊菊酯表现了2-3倍的神经不敏感性。HJ-R种群对氨基甲酸酯类杀虫剂的抗性主要是由代谢机制引起,其中多功能氧化酶可能起主导作用;对菊酯的抗性是由多功能氧化酶、酯酶、以及神经不敏感性几个因子综合作用的结果。  相似文献   

2.
3.
To investigate insecticide resistance and dynamic changes of carboxylesterase polymorphism in mosquitoes with time in the Culex pipiens complex (Diptera: Culicidae), nine field mosquito populations were collected in China. The resistance levels of fourth-instar larvae to organophosphate (dichlorvos, parathion, and chlorpyrifos), carbamate (fenobucarb and propoxur), and pyrethroid (permethrin, deltamethrin and tetramethrin) insecticides were determined by bioassay. Larvae had more resistance to organophosphate insecticides than to carbamate insecticides. A low but significant resistance was observed for carbamate insecticides. The resistance to pyrethroid insecticides varied from sensitive to high. Starch gel electrophoresis revealed the presence of the overproduced esterases B1, A2B2, A8B8, A9B9, B10 and A11B11. The frequency of each overproduced esterases varied depending on its regional localities. Compared with published surveys, the C. pipiens complex, which exhibited a high polymorphism of applied esterase alleles in China, showed dynamic evolution over time under local specific insecticide selection. The results are discussed in the context of recent alterations to insecticide campaigns, and in the evolution of resistance genes in Chinese C. pipiens populations.  相似文献   

4.
Eighty-seven populations of California red scale, Aonidiella aurantii (Maskell), from the San Joaquin Valley of California were tested for insecticide resistance by using chlorpyrifos, methidathion, and/or carbaryl in a standard fruit-dip bioassay as well as for general esterase activity by using alpha-naphthyl acetate as a substrate in a colorimetric test. The percentage of individuals that survived a discriminating concentration of methidathion, chlorpyrifos, or carbaryl was significantly correlated with the percentage of individuals showing > 0.4 nmol of esterase activity per minute per microgram of protein in the colorimetric test. Scale survival of the organophosphates showed a higher correlation with esterase activity than survival of carbaryl. These results suggest that the colorimetric test of esterase activity is useful as an indicator of the frequency of organophosphate-resistant and, to a lesser extent, carbamate-resistant individuals in California red scale populations. The results of tests for activity and inhibition of acetylcholinesterase activity suggest that California red scale is using increased amounts of esterase enzymes, including acetylcholinesterase, to sequester organophosphate and carbamate insecticides, rather than modified acetylcholinesterase. Third instars collected from twigs, leaves, and fruit showed similar levels of esterase activity. The colorimetric test of esterase activity is a useful tool to detect organophosphate and carbamate resistance in San Joaquin Valley California red scale because of its speed of testing over a wide range of months, allowing for within-season decision making by citrus growers.  相似文献   

5.
Abstract. A high level of DDT resistance and low levels of resistance to organophosphorus, carbamate and pyrethroid insecticides were detected by discriminating dose assays in field populations of Anopheles albimanus in Chiapas, southern Mexico, prior to a large-scale resistance management project described by Hemingway et al. (1997) . Biochemical assays showed that the DDT resistance was caused by elevated levels of glutathione S-transferase (GST) activity leading to increased rates of metabolism of DDT to DDE. The numbers of individuals with elevated GST and DDT resistance were well correlated, suggesting that this is the only major DDT resistance mechanism in this population. The carbamate resistance in this population is conferred by an altered acetylcholinesterase (AChE) -based resistance mechanism. The level of resistance observed in the bioassays correlates with the frequency of individuals homozygous for the altered AChE allele. This suggests that the level of resistance conferred by this mechanism in its heterozygous state is below the level of detection by the WHO carbamate discriminating dosage bioassay. The low levels of organophosphate (OP) and pyrethroid resistance could be conferred by either the elevated esterase or monooxygenase enzymes. The esterases were elevated only with the substrate pNPA, and are unlikely to be causing broad spectrum OP resistance. The altered AChE mechanism may also be contributing to the OP but not the pyrethroid resistance. Significant differences in resistance gene frequencies were obtained from the F1 mosquitoes resulting from adults obtained by different collection methods. This may be caused by different insecticide selection pressures on the insects immediately prior to collection, or may be an indication that the indoor- and outdoor-resting A. albimanus collections are not from a randomly mating single population. The underlying genetic variability of the populations is currently being investigated by molecular methods.  相似文献   

6.
Resistance to malathion has been reported in field populations of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), in areas of Spain where an intensive use of this insecticide was maintained for several years. The main goal of this study was to determine whether resistance to malathion confers cross-resistance to different types of insecticides. Susceptibility bioassays showed that the malathion-resistant W-4Km strain (176-fold more resistant to malathion than the susceptible C strain) has moderate levels of cross-resistance (three- to 16-fold) to other organophosphates (trichlorphon, diazinon, phosmet and methyl-chlorpyrifos), the carbamate carbaryl, the pyrethroid lambda-cyhalothrin, and the benzoylphenylurea derivative lufenuron, whereas cross-resistance to spinosad was below two-fold. The W-4Km strain was selected with lambda-cyhalothrin to establish the lambda-cyhalothrin-resistant W-1Klamda strain (35-fold resistant to lambda-cyhalothrin). The synergistic activity of the esterase inhibitor DEF with lambda-cyhalothrin and the increase in esterase activity in the W-1Klamda strain suggests that esterases may be involved in the development of resistance to this insecticide. Our results showed that resistance to malathion may confer some degree of cross-resistance to insecticides currently approved for the control of Mediterranean fruit fly in citrus crops (lambda-cyhalothrin, lufenuron, and methyl-chlorpyrifos). Especially relevant is the case of lambda-cyhalothrin, because we have shown that resistance to this insecticide can rapidly evolve to levels that may compromise its effectiveness in the field.  相似文献   

7.
天津地区家蝇抗药性水平及与两种解毒酶的关系   总被引:2,自引:0,他引:2  
用点滴法对采自天津市7个郊区县的7个不同生境野外家蝇种群的抗药性进行了测定并与实验室内的相对敏感种群进行比较;对不同地区家蝇种群进行了羧酸酯酶(carboxylesterase, CarE)和谷胱甘肽S-转移酶(glutathione S-transferase, GSTs)活性检测。结果表明,不同家蝇种群对DDVP、高效氯氰菊酯和残杀威的抗性倍数不同,对DDVP抗性最高为18.563倍,最低为1.885倍;对高效氯氰菊酯最高为14.071倍,最低为1.071倍;对残杀威抗性倍数最高为7.499倍,最低为1.071倍。从CarE平均比活力看,室外家蝇种群CarE的比活力均高于室内相对敏感种群的比活力,CarE活性的分布在敏感种群和不同地区野外种群间具有明显的重叠现象。天津不同地区F2代家蝇GSTs的比活力抗性种群普遍高于室内相对敏感种群,大约在2~4倍之间,不同地区间也具有比较大的差异,而抗药性高的种群GSTs活性也高,GSTs活性变化与不同种群抗性差异是相符的。  相似文献   

8.
何玉仙  赵建伟  黄建  翁启勇  梁智生 《昆虫学报》2009,52(12):1373-1378
为了探讨烟粉虱Bemisia tabaci不同种群个体乙酰胆碱酯酶敏感性差异及其与抗药性的关系, 我们选用室内饲养的烟粉虱SUD S敏感品系和6个田间抗性种群, 采用酶标板酶动力学法测定了各品系 (种群)乙酰胆碱酯酶对抑制剂的敏感性反应以及抑制剂存在时各抗性种群个体乙酰胆碱酯酶残余活性频率分布。结果表明: 在抑制剂浓度为300 μmol/L时, 敏感品系乙酰胆碱酯酶的活性基本上被完全抑制, 可以明显地区分敏感品系与田间抗性种群。在抑制剂浓度为2 000 μmol/L时, 各抗性种群个体乙酰胆碱酯酶残余活性频率分布差异明显, 其中ZZ-R种群和FZ-R种群的乙酰胆碱酯酶残余活性频率分布相似, 大部分个体的乙酰胆碱酯酶残余活性分布在1.00~1.80 mOD/min之间; SM-R种群和ND-R种群的乙酰胆碱酯酶残余活性频率分布也相似, 大部分个体的乙酰胆碱酯酶残余活性分布在0.40~1.00 mOD/min之间; LY-R和NP-R种群大部分个体的乙酰胆碱酯酶残余活性分别分布在1.00~1.60 mOD/min和0.80~1.20 mOD/min之间。各抗性种群乙酰胆碱酯酶高残余活性 (大于1.00 mOD/min)个体频率与对敌敌畏的抗性水平之间具有明显相关性, 相关系数为0.86 (P<0.05)。考虑到乙酰胆碱酯酶对抑制剂作用不敏感是一些昆虫对有机磷和氨基甲酸酯类杀虫剂抗性的重要机制之一, 建议可以将乙酰胆碱酯酶对敌敌畏的敏感性作为烟粉虱抗药性生化检测的一个参考指标。  相似文献   

9.
Black flies, a non-target species of the insecticides used in fruit production, represent a severe medical and veterinary problem. Large increases in the level of resistance to the pyrethroids fenvalerate (more than 355-fold) and deltamethrin (162-fold) and a small increase in resistance to the organophosphate azinphos methyl (2-fold) were observed between 1996-2008 in black fly larvae under insecticide pressure. Eventually, no change or a slight variation in insecticide resistance was followed by a subsequent increase in resistance. The evolution of pesticide resistance in a field population is a complex and stepwise process that is influenced by several factors, the most significant of which is the insecticide selection pressure, such as the dose and frequency of application. The variation in insecticide susceptibility within a black fly population in the productive area may be related to changes in fruit-pest control. The frequency of individuals with esterase activities higher than the maximum value determined in the susceptible population increased consistently over the sampling period. However, the insecticide resistance was not attributed to glutathione S-transferase activity. In conclusion, esterase activity in black flies from the productive area is one mechanism underlying the high levels of resistance to pyrethroids, which have been recently used infrequently. These enzymes may be reselected by currently used pesticides and enhance the resistance to these insecticides.  相似文献   

10.
Bifenazate, a new and frequently used carbazate, is a pro-acaricide which needs to be activated by carboxylesterases. We evaluated the possible antagonism of organophosphate and carbamate insecticides on bifenazate toxicity in Tetranychus urticae applied in mixtures. Two organophosphate resistant strains were used (WI and MR-VL) and several organophosphate (chlorpyrifos, azinphosmethyl and phosmet) and carbamate (carbaryl and methomyl) insecticides were evaluated. Mixing chlorpyrifos with bifenazate decreased bifenazate toxicity in both tested strains. However, in the strain with a higher esterase activity, antagonism decreased after 2 days. Of all other tested chemicals, only methomyl displayed an antagonistic effect 1 day after treatment. These findings indicate that mixing organophosphate and carbamate insecticides with bifenazate may inhibit bifenazate efficacy under field conditions, especially when resistant strains are present.  相似文献   

11.
To increase our knowledge of the natural susceptibility of Triatoma infestans to an organophosphate insecticide, we performed toxicological and biochemical studies on three sylvatic populations from Bolivia and two populations from domestic dwellings from Bolivia and Argentina. Fifty-per-cent lethal doses (LD50) were determined based on the topical application of fenitrothion on first instar nymphs and mortality was assessed at 24 h. Both type of populations exhibited LD50ratios significantly higher than 1 with a range of the values (1.42-2.47); the maximum value were found in a sylvatic (-S) population, Veinte de Octubre-S. Samples were biochemically analysed using a glutathione S-transferase activity assay. The highest significant activity was obtained for Veinte de Octubre-S and the lowest activity was obtained for the reference population (102.69 and 54.23 pmol per minute per mg of protein respectively). Two out of the three sylvatic populations (Veinte de Octubre-S and Kirus Mayu-S) exhibited significantly higher glutathione S-transferase activity than that of the reference population. Based on this analysis of the natural susceptibility of this organism to organophosphate insecticides, continental and focal surveys of organophosphate susceptibility should be conducted to evaluate the evolution and distribution of this phenomenon.  相似文献   

12.
用酶标板法测定了不同浓度有机磷和氨基甲酸酯杀虫剂在反应不同时间内对棉蚜Aphis gossypii乙酰胆碱酯酶(AChE)的抑制作用。结果表明有机磷杀虫剂甲基1605,辛硫磷,久效磷,氧乐果和乙酰甲胺磷对棉蚜AChE均无明显的抑制作用。当用0.01 mol/L灭多威与酶及底物反应1 h对北京棉蚜(敏感)种群AChE的抑制率可达82.4%,与反应2 h 89.4%仅差7%。因此以0.01 mol/L灭多威反应1 h测定棉蚜AChE对它的敏感性是合理的。通过测定北京地区寄主为鼠李和棉花以及山东高密寄主为棉花的棉蚜种群中个体AChE活性的分布和灭多威对其抑制的分布,表明3个棉蚜种群中AChE个体频率的分布差异不大,而灭多威对三个种群个体AChE的抑制率小于30%的个体分别为2.4%、16%和29%。抑制率大于70%的个体分别为72%、33%和1%,与生物测定结果一致。因此,用酶标板法测定棉蚜个体AChE对氨基甲酸酯的不敏感性频率可作为棉蚜对氨基甲酸酯抗性的监测技术,为棉蚜化学防治提供依据。  相似文献   

13.
白背飞虱不同地区种群的抗药性研究   总被引:4,自引:0,他引:4  
测定了白背飞虱浙江和广西种群(迁入虫源),云南和海南种群(当地虫源(的抗药性程度,以及与抗性相关酶系即非特异性酯酶、羧酸酯酶,谷胱甘肽-S-转移酶和乙酰胆碱酯酶等比活力,云南和海南种群对各药剂抗性水平明显较高,但个体异质性则低于浙江和广西种群;4种酶平均比活性以浙江和广西种群明显为高,其中浙江种群个体间酶活频率分布较宽而广西种群则相反,最后,就白背飞虱不同种群抗药性水平及其相关酶活性的地区差异性与该飞虱长距离迁飞的关系进行了讨论。  相似文献   

14.
The tobacco-feeding race of Myzus persicae (Sulzer), formerly known as M. nicotianae Blackman, was introduced into Chile during the last decade. In order to evaluate the genetic diversity and insecticide resistance status of Chilean tobacco aphid populations, a field survey was conducted in 35 tobacco fields covering a 300 km latitudinal survey. The populations sampled were characterized using microsatellite markers and morphometric multivariate analysis. Insecticide resistance levels were assessed through a microplate esterase assay and the mutation status of the kdr gene. All samples collected corresponded to the same anholocyclic aphid genotype, and showed morphological variation within the range expected for the tobacco-feeding race of M. persicae. Esterase activity showed the level and variability expected for an R1 clone lacking mutations in the sodium channels (susceptible kdr), thus corresponding to a type slightly resistant to organophosphate and carbamate, and susceptible to pyrethroid insecticides.  相似文献   

15.
Wu H  Yang M  Guo Y  Xie Z  Ma E 《Journal of economic entomology》2007,100(4):1409-1415
The malathion susceptibility, acetylcholinesterase (AChE) sensitivity, and the activity of selected detoxification enzymes including general esterase (EST) and glutathione S-transferase (GST) were compared among field populations of the grasshopper Oxya chinensis (Thunberg) (Orthoptera: Acrididae) collected from nine regions of China. Bioassay results showed that these populations had various levels of the susceptibility to malathion with the LDo values ranging from 1.4- to 22.6-fold compared with the most susceptible population (Xiangyuan or XY). The Jinnan (JN) population seemed to be malathion resistant (22.6-fold), whereas other populations exhibited 1.4- to 6.8-fold reduced malathion susceptibility with a rank order of Changan > Baodi > Hanzhong > Xinxiang > Yinchuan > Beidagang > Jinyuan. It seemed that the observed malathion resistance in the JN population was attributed to at least two resistance mechanisms, including increased EST activity (2.2-fold) and reduced sensitivity of AChE to inhibition by malaoxon (4.6-fold) compared with those of the XY population. In contrast, differential malathion susceptibilities in other populations may be due to increased activities of certain detoxification enzymes (e.g., EST and GST), reduced sensitivity of AChE, or other factors, which were not consistent across the populations examined. Such differential susceptibilities to malathion were likely due to different population habitats (e.g., grasslands, rice [Oryza sativa L.]-producing regions) with very different insecticide application histories and pest management practices.  相似文献   

16.
Changes in the susceptibility and detoxifying enzyme activity were measured in laboratory strains of Banks grass mite, Oligonychus pratensis (Banks), and twospotted spider mite, Tetranychus urticae Koch, that were repeatedly exposed to three insecticides. Three strains of each mite species were exposed to one of two pyrethroids, bifenthrin, and lambda-cyhalothrin, or an organophosphate, dimethoate, for 10 selection cycles at the LC60 for each insecticide. A reference or nonselected strain of each mite species was not exposed to insecticides. After 10 cycles of exposure, susceptibility to the corresponding insecticides, bifenthrin, lambda-cyhalothrin, and dimethoate, decreased 4.5-, 5.9-, and 289.2-fold, respectively, relative to the reference strain in the respective O. pratensis strains, and 14.8-, 5.7-, and 104.7-fold, respectively, relative to the reference strain in the respective T. urticae strains. In the bifenthrin-exposed O. pratensis strain, there was a 88.9-fold cross-resistance to dimethoate. In the dimethoate-exposed T. urticae strain, there was a 15.9-fold cross-resistance to bifenthrin. These results suggest that there may be cross-resistance between dimethoate and bifenthrin. The reduced susceptibility to dimethoate remained stable for three months in the absence of selection pressure in both mites. The decrease in susceptibility in the O. pratensis strains exposed to bifenthrin, lambda-cyhalothrin, and dimethoate was associated with a 4.7-, 3.0-, and 3.6-fold increase in general esterase activity, respectively. The decrease in susceptibility in the T. urticae strains exposed to bifenthrin and lambda-cyhalothrin was associated with a 1.3- and 1.1-fold increase in general esterase activity, respectively. The mean general esterase activity was significantly higher in the pyrethroid-exposed O. pratensis and T. urticae strains than in the nonselected strain. There was no significant increase in esterase activity in the dimethoate-exposed T. urticae strain. The decrease in susceptibility to insecticides was also associated with reduced glutathione S-transferase 1-chloro-2, 4-dinitrobenzene conjugation activity, but this did not appear to be related to changes in insecticide susceptibility. These results suggest that in these mites, the general esterases may play a role in conferring resistance to pyrethroids. However, some other untested mechanism, such as target site insensitivity, must be involved in conferring dimethoate resistance.  相似文献   

17.
Introduction. The susceptibility of Anopheles albimanus to organophosphates, carbamates and pyrethroid insecticides was unknown in the Panama communities of Aguas Claras, Pintupo and Puente Bayano, located in the Amerindian Reservation of Madungandi. This region is considered a malaria transmission area, where An. albimanus is the main vector. Objective. The resistance to organophosphate insecticides, carbamates and pyrethroids was evaluated in field populations of the Anopheles albimanus in Panama. Materials and methods. Progeny of An. albimanus collected in three localities in the indigenous Madugandi region were exposed to bioassays of susceptibility to organophosphate insecticides (fenitrothion, malathion and chlorpyrifos), the carbamate (propoxur) and pyrethroids (deltamethrin, lambdacyhalothrin, cyfluthrin and cypermethrin). The protocols were in accordance with those established for adult mosquitoes by World Health Organization. Results. The three strains of the An. albimanus were resistant to the pyrethroid insecticides deltamethrin, lambdacyhalothrin, cyfluthrin and cypermethrin. Susceptibility remained for the organophosphate insecticides fenitrothion, malathion, chlorpyrifos, and the carbamate insecticide propoxur. Conclusion. The results provided important information to the vector control program, contributing to the application of new strategies on the use of insecticides, and thereby lengthening the life of the insecticide in use.  相似文献   

18.
斜纹夜蛾对氯氟氰菊酯不同抗性水平与解毒代谢酶的关系   总被引:1,自引:0,他引:1  
肖鹏  贺金  刘永杰  邱秀翠  焦艳艳 《昆虫学报》2009,52(10):1097-1102
为探讨斜纹夜蛾Spodoptera litura (Fabricius)对氯氟氰菊酯抗性水平与解毒代谢酶之间的关系, 以泰安郊区对氯氟氰菊酯抗性为543.7倍的斜纹夜蛾田间种群为材料, 研究了药剂汰选与否的抗性动态及不同抗性水平的解毒代谢酶活性变化。结果表明: 室内继代饲养至第30代, 不接触任何药剂的抗性下降至102.3倍, 用氯氟氰菊酯汰选28代后, 抗性上升到3 049.3倍, 而在药剂汰选至第14代, 抗性已至2 593.8倍时, 停止用氯氟氰菊酯汰选, 到第30代的抗性又降至786.3倍。表明斜纹夜蛾抗氯氟氰菊酯田间种群, 在无药剂选择压力时抗性水平会显著下降, 继续给予药剂汰选会使抗性水平显著上升。检测斜纹夜蛾田间种群5龄幼虫中肠酯酶和谷胱甘肽S-转移酶活性, 发现与敏感种群有显著性差异, 而多功能氧化酶O-脱甲基活性与敏感种群的差异不明显; 给予氯氟氰菊酯药剂汰选, 酯酶、谷胱甘肽S 转移酶和多功能氧化酶O-脱甲基3种酶的活性均呈显著增加趋势; 停止用氯氟氰菊酯汰选后, 3种酶的活性又呈显著下降趋势; 不接触任何药剂, 随着饲养世代数的增加, 其酯酶和谷胱甘肽S-转移酶的活性也呈下降趋势。结果提示斜纹夜蛾幼虫酯酶、谷胱甘肽S-转移酶和多功能氧化酶O-脱甲基活性的提高是斜纹夜蛾对氯氟氰菊酯抗性上升的重要原因。  相似文献   

19.
小菜蛾及菜蛾绒茧蜂乙酰胆碱酯酶敏感性的相关变化   总被引:10,自引:3,他引:7  
用生物测定和生化检测的方法,对福州地区小菜蛾Plutella xylostella和菜蛾绒茧蜂Apanteles plutellae的抗药性及两种昆虫乙酰胆碱酯酶对杀虫剂的敏感性进行了田间监测。结果显示,从1998年9月至1999年4月,小菜蛾乙酰胆碱酯酶对6种有机磷和氨基甲酸酯杀虫剂敏感性逐渐恢复,寄生于同一虫源的菜蛾绒茧蜂乙酰胆碱酯酶敏感性的变化也呈明显的相关性,但菜蛾绒茧蜂乙酰胆碱酯酶的敏感性高于其寄主小菜蛾。脱离选择压力后,两种昆虫对杀虫剂的敏感性迅速恢复,乙酰胆碱酯酶的Ki值显著增高。对乙酰胆碱酯酶的KmVmaxKi值测定结果表明,两种昆虫对有机磷和氨基甲酸酯杀虫剂的抗性与乙酰胆碱酯酶对杀虫剂的不敏感性有关。此外还研究了不同发育期小菜蛾乙酰胆碱酯酶活性及其Ki值的变化。探讨了在杀虫剂选择压力下,两种昆虫乙酰胆碱酯酶敏感性的环境适应性变化机制。  相似文献   

20.
侍甜  车午男  吴益东  杨亦桦 《昆虫知识》2012,49(6):1482-1489
甜菜夜蛾Spodoptera exigua(Hübner)云南晋宁、上海奉贤和江苏六合种群对甲氨基阿维菌素苯甲酸盐抗性为45~437倍,对高效氯氰菊酯抗性为211~555倍,对其它药剂抗性不明显。这3个田间种群3龄幼虫多功能氧化酶、谷胱甘肽S-转移酶和酯酶的活力分别为室内敏感种群的2.7~8.4倍、1.9~8.6倍和1.6~5.7倍。多功能氧化酶抑制剂PBO和酯酶抑制剂DEF对甲氨基阿维菌素苯甲酸盐的增效比为1.2~4.3和1.3~7.7;PBO和DEF对高效氯氰菊酯的增效比为1.8~58和3.6~245;谷胱甘肽S-转移酶抑制剂DEM对这2种药剂均无增效作用。上述结果表明,解毒代谢增强可能是甜菜夜蛾田间种群对甲氨基阿维菌素苯甲酸盐和高效氯氰菊酯的重要抗性机理,与酯酶和多功能氧化酶活性升高有关,与谷胱甘肽S-转移酶活性升高无关。本文的研究结果还表明,对于代谢抗性机理复杂的多抗性田间种群,根据不同解毒酶抑制剂对药剂的增效作用判断不同解毒代谢酶在抗性形成中的作用更加可靠。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号