首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spread of the Formosan subterranean termite, Coptotermes fornwsanus Shiraki (Isoptera: Rhinotermitidae), is connected with the transport of infested wood, in particular, railroad ties. Therefore, efficient treatment of infestations, especially along railroads, is imperative to prevent further termite damage and spread. Evaluation of treatment success hinges on the ability to assign infestation sites to colonies and compare colony identity before and after treatment. Because colonies of the Formosan subterranean termite can be headed by a pair of reproductives (simple families) or by multiple reproductives (extended families), the question arises whether the breeding system of a colony influences treatment success and whether treatment of an area might have an impact on the breeding system. We used microsatellite genotyping to compare colony affiliation and breeding systems of Formosan termites infesting the Riverfront Railroad, New Orleans, LA, before and after treatment with 0.5% noviflumuron. Before treatment, four colonies were simple families, and 11 colonies were extended families. A year after treatment began, all treated colonies had vanished and did not reappear during this study. One colony from an untreated monitoring station moved into a nearby station after treatment. Colonies that were detected after treatment consisted of 12 simple families and six extended families; extended families found after treatment contained a higher number of reproductive neotenics than the extended families found before treatment. Extended families were more likely than simple families to move into inground stations that had been previously occupied by termite colonies.  相似文献   

2.
The Formosan subterranean termite, Coptotermes formosanus Shiraki, is an invasive species that originated in China and has been introduced to Hawaii and the U.S. mainland. Colonies are headed either by a pair of reproductives (simple families) or by varying numbers of inbreeding reproductives (extended families), and therefore have variable degrees of inbreeding. Worker size also varies among colonies of Formosan termites. We tested whether variation in worker size can be explained by the breeding system. Workers were collected from colonies from three geographically separated populations (China, Hawaii, and Louisiana), and body weight and head size were measured. Microsatellite genotyping was used to establish whether colonies were simple or extended families and to determine the heterozygosity of workers and their degree of inbreeding relative to their colony (F (IC), sensitive to the number of reproductives). All Chinese colonies contained multiple inbreeding neotenics. In Hawaii, 37% of the colonies were simple families and 63% were extended families, both having considerable degrees of inbreeding. In Louisiana, 57% of the colonies were simple families, which were mostly headed by unrelated pairs, and 43% were extended families. In simple families, size and body weight of workers were not associated with F (IC) or heterozygosity. In extended families of two populations, both size parameters were negatively correlated with F (IC); however, heterozygosity was not associated with worker size in any of the populations. This suggests that the number of reproductives within colonies has a stronger influence on worker size than the individuals' genetic diversity in Formosan subterranean termite colonies.  相似文献   

3.
Summary The Formosan subterranean termite, Coptotermes formosanus Shiraki is the most destructive, difficult to control and economically important species of termite in the southern United States. At present, no information is available on the genetic relatedness of primary Formosan subterranean termite reproductives that establish new colonies. Information on survivorship and fitness components of primary reproductives from different sibships (sibling or nonsibling) is helpful to our understanding of biological and ecological characteristics of different breeding generations in C. formosanus. The present study examined the effects of sibship and colony origin on growth and mortality of incipient colonies of C. formosanus. Seven stock colonies of C. formosanus were collected in 1996 through 1997 in New Orleans and Lake Charles, La, USA. A total of 338 incipient colonies of sibling pairs or nonsibling pairs of C. formosanus were set up. The study indicated that mate relatedness significantly affected mortality and fitness. Nonsibling mates suffered significantly higher mortality than sibling mates originated from New Orleans. However, the decreased success of outbred mates was offset by an increased fecundity compared to inbred colonies over time. Both sibling- and nonsibling-founded colonies from Lake Charles had a significantly higher survival rate than did colonies from New Orleans. Colonies from Lake Charles also produced a significantly higher number of larvae/workers than colonies from New Orleans. The mismatch of habits by mates from different locations and the potential for greater disease risks may be associated with higher mortality in outbred pairs. However, heterozygous offspring of outbred pairs probably have increased genetic variation, which provides greater adaptation potential, thus making the colony more robust in the face of environmental fluctuations.Received 11 March 2002; revised 26 February 2003; accepted 14 March 2003.  相似文献   

4.
This study was the first to use DNA sequencing data to infer the origin of a Formosan subterranean termite, Coptotermes formosanus Shiraki, infestation. Cytochrome oxidase II gene sequence was used to define eight specific maternal lineages from 14 geographic locations across the southeastern United States, Hawaii, and China. One maternal lineage, A, was unique to all the Atlanta collections and one New Orleans collection, which indicated that termites at these sites shared a common maternal ancestor. The impact of interstate commerce in terms of Formosan subterranean termite introductions is addressed as is the industry response needed to arrest the spread of these termites via commercial traffic in used railroad cross ties.  相似文献   

5.
Alates of the Formosan subterranean termite, Coptotermes formosanus Shiraki, collected after swarming in 2002 died within 48 h, and the cadavers were visibly infected with a fungus. Fungi were picked from the cadavers, transferred to media, and ultimately isolated to purity. The individual fungal cultures were then used to infect Formosan subterranean termite workers. A single fungal isolate, C4-B, taxonomically identified as Metarhizium anisopliae (Metschnikoff), was found to cause rapid mortality of Formosan subterranean termite alates. This is the first report of a biological control agent for termite alates. In initial experiments, C4-B was more lethal to both alates and workers compared with M. anisopliae strain ESC 1, previously marketed as the termite biocontrol agent BioBlast. Dose-response assays in which Formosan subterranean termite alates were exposed to a known concentration of C4-B spores revealed that 10(6) spores/microl killed 100% of the alates in 3 d, both 10(5) and 10(4) spores/microl in 6 d, 10(3) spores/microl in 9 d, and 10(0) spores/microl in 12 d. Assays with workers demonstrated that 10(6) and 10(5) spores/microl killed 100% of the workers in 6 d. In an experiment to test the transfer of inoculum from infected workers to uninfected nestmates, 62.8% of the workers died in 21 d when only 20% of the workers had been inoculated. Mortality of alates caused by C4-B was tested at two field sites by dispersing fungal spores on grassy lawns and collecting alates from the treated areas. Alates thus infected showed 100% mortality by day 5, whereas only 64.8% of untreated control alates from the same collection area were dead on that day.  相似文献   

6.
Hurricane Katrina (2005) resulted in extensive flooding in the city of New Orleans, LA. Periodic sampling of monitors before the flood, and of different monitors in the same areas after the flood, was used to evaluate the effects of long-term flooding on populations of Formosan subterranean termites, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Monitors were located adjacent to buildings and in urban forests. Significant population reductions occurred in areas that flooded 2-3 wk with brackish water, with termite populations associated with pine (Pinus spp.) trees and buildings slower to recover than populations associated with oak trees. Alate production in flooded areas showed no reduction from previous years.  相似文献   

7.
The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a costly invasive urban pest in warm and humid regions around the world. Feeding workers of the Formosan subterranean termite genetically engineered yeast strains that express synthetic protozoacidal lytic peptides has been shown to kill the cellulose digesting termite gut protozoa, which results in death of the termite colony. In this study, we tested if Melittin, a natural lytic peptide from bee venom, could be delivered into the termite gut via genetically engineered yeast and if the expressed Melittin killed termites via lysis of symbiotic protozoa in the gut of termite workers and/or destruction of the gut tissue itself. Melittin expressing yeast did kill protozoa in the termite gut within 56 days of exposure. The expressed Melittin weakened the gut but did not add a synergistic effect to the protozoacidal action by gut necrosis. While Melittin could be applied for termite control via killing the cellulose-digesting protozoa in the termite gut, it is unlikely to be useful as a standalone product to control insects that do not rely on symbiotic protozoa for survival.  相似文献   

8.
Indigenous gut bacteria of the Formosan subterranean termite (Coptotermes formosanus Shiraki, Isoptera: Rhinotermitidae) were used as shuttle systems to deliver, express and spread foreign genes in termite colonies. The gut bacterium Enterobacter cloacae was transformed with a recombinant plasmid (pEGFP) containing genes encoding ampicillin resistance and green fluorescent protein (GFP). In laboratory experiments, termite workers and soldiers from three colonies were fed with filter paper inoculated with transformed bacteria. Transformed bacteria were detected in termite guts by growing the entire gut flora under selective conditions and checking the cultures visually for fluorescence. We demonstrated that (1) transformed bacteria were ingested within a few hours and the GFP gene was expressed in the termite gut; (2) transformed bacteria established a persistent population in the termite gut for up to 11 weeks; (3) transformed bacteria were efficiently transferred throughout a laboratory colony, even when the donor (termites initially fed with transformed bacteria) to recipient (not fed) ratio was low; (4) transformed E. cloacae were transferred into soil; however, they did not accumulate over time and the GFP plasmid was not transferred to other soil bacteria. In the future, transgenic bacteria may be used to shuttle detrimental genes into termite colonies for improved pest control.  相似文献   

9.
Cellulose baits containing 0.5% hexaflumuron were hermetically sealed in a closed cell polyethylene sheet envelope and placed in soil to test their durability and efficacy against field colonies of the Formosan subterranean termite, Coptotermes formosanus Shiraki, or the eastern subterranean termite, Reticulitermes flavipes (Kollar). The closed cell polyethylene sheet was readily tunneled through by termites, yet it was impervious to water and protected the cellulose baits and hexaflumuron from the environment. Only in a few incidents did the polyethylene envelope become infiltrated by plant roots, resulting in water intrusion and apparent degradation of cellulose baits. After consuming one to three sealed baits, three colonies each of both termite species were eliminated. The sealed baits may be placed in soil for months or years without the need of monitoring, and they are readily penetrated and fed upon by termites when they are present. Application of baits hermetically sealed in a protective sheet may save labor costs by bypassing the monitoring phase, circumvent the station avoidance by some termite species, and enable the use of baiting technologies in large areas such as agricultural fields in which the manual monitoring is impractical.  相似文献   

10.
Three foam board types, one untreated control, one containing 2,000 ppm disodium octaborate tetrahydrate (DOT), and one containing 1,000 ppm deltamethrin, were exposed to field populations of the eastern subterranean termite, Reticulitermes flavipes (Kollar), and the Formosan subterranean termite, Coptotermes formosanus Shiraki. There was no significant difference in termite damage between foam boards treated with 2,000 ppm DOT and the untreated control. Form boards containing 1,000 ppm deltamethrin were not damaged by R. flavipes, whereas only minor damage occurred after exposure to C. formosanus.  相似文献   

11.
The efficacy and nonrepellency of indoxacarb (150 SC, 150 g [AI]/liter) and fipronil (Termidor SC, 9.1% [Al]) against field-collected eastern subterranean termite, Reticulitermes flavipes (Kollar), and the Formosan subterranean termite, Coptotermes formosanus Shiraki, were evaluated for mortality and penetration into treated soil in laboratory glass tube bioassays. Both insecticides were tested at five concentrations (0, 1, 10, 50, and 100 ppm) and two thicknesses (20 and 50 mm) of treated soil. Indoxacarb caused significantly greater mortality than controls at all treatment thicknesses of > or = 10 ppm, but not at 1 ppm. Concentration and treatment thickness of indoxacarb significantly affected termite mortality. Eastern subterranean termites were significantly more susceptible to indoxacarb than Formosan subterranean termites, but there were no intercolony differences in either species. Termites completely penetrated through all treatment thickness of indoxacarb-treated soil at all concentrations, except one of the six Formosan subterranean termite replicates of 50 mm at 50 ppm, when all termites were killed before tunneling through the treated soil. Fipronil resulted in significantly faster and greater termite mortality than indoxacarb at corresponding concentrations. Concentration and treatment thickness of fipronil also significantly affected termite mortality. There was no intercolony difference in susceptibility to either insecticide in either termite. Both termite species completely penetrated 20-mm treatments of all tested fipronil concentrations, as well as 50-mm soil treated with fipronil at < or = 10 ppm. At 50 and 100 ppm fipronil, termites tunneled only a mean of 87 +/- 0.21 and 47 +/- 0.18% deep into 50-mm treated soil, respectively, before death. Both insecticides demonstrated a delayed mode of activity and nonrepellency against the two termite species.  相似文献   

12.
胡兴平  祝芳 《动物学报》2003,49(3):295-302
设计了5个实验以研究台湾乳白蚁(Coptotermes formosanus)和黄肢散白蚁(Reticulitermes flavipes)的种间斗争关系。所试白蚁来自阿拉巴马州。实验1将两组白蚁的兵蚁和工蚁以自然比例混合(台湾乳白蚁工蚁:兵蚁=20:5,黄肢散白蚁工蚁:兵蚁=24:1);实验2观察了双方同数量(各25头)工蚁的种间斗争能力;实验3观察两者同数量(各5头)兵蚁的种间斗争关系;实验4、5分别研究双方工蚁与兵蚁的斗争关系。因两种工蚁形态相似,所以在实验前用0.1%Nile blue A染过的滤纸饲喂一方白蚁24h使虫体着色以便观察。所有实验在22℃,65%RH荧光灯下进行。每个实验将两方白蚁同时放入一培养皿中,观察至一方100%受伤,然后把培养皿移到培养箱内,24小时后统计死亡率。结果表明,实验一开始,双方的工蚁和兵蚁都立即进入残酷的厮杀斗争,台湾乳白蚁兵蚁和工蚁的斗争能力都明显强于黄肢散白蚁;兵蚁的斗争行为不受工蚁的影响,工蚁的斗争能力也不受兵蚁的制约。实验中台湾乳白蚁的工蚁与黄肢散白蚁的兵蚁攻击能力相当,但黄肢散白蚁的工蚁却远弱于台湾乳白蚁的兵蚁。上述结果说明,自然界中不可能出现此两种白蚁群体的偶然性融合;外来的台湾乳白蚁很可能在其群体建立的地区占据优势[动物学报49(3):295—302,2003]。  相似文献   

13.
Cuticular hydrocarbon patterns of the Formosan subterranean termite, Coptotermes formosanus Shiraki, were similar among colonies from the same geographical location. Hydrocarbon patterns of Florida colonies were easily distinguished from those of Hawaii colonies by using canonical discriminant analysis. Groups of termites from the same colony did not fight one another when placed in an arena. Intercolonial aggression was not recorded among C. formosanuspopulations from Florida but three colonies from Hawaii fought with the other Hawaiian and three Florida colonies. Of the 12 colonies (six each from Florida and Hawaii) tested, 3 Florida colonies did not direct or receive aggression from any other colony. Cuticular hydrocarbon patterns were not correlated with agonistic behavior.  相似文献   

14.
The potential for transfer of nonrepellent termiticide toxicants between workers of the Formosan subterranean termite, Coptotermes formosanus Shiraki, was examined using two commercially available pesticide formulations and a simple donor-recipient model modified from current methods in the literature. Pesticides used were imidacloprid, formulated as Premise 75 WP, and fipronil, formulated as Termidor SC, in concentrations of 1, 10, and 100 ppm (weight of active ingredient/weight of sand) in sand. The results of the first experiment showed a significant increase in recipient mortality over control mortality when donor workers were treated with 100 ppm imidacloprid or 100 ppm fipronil. Although all three colonies studied were affected, one colony (colony 3) was affected to a significantly greater extent than the other colonies. This effect was not correlated with termite body size (dry mass). In a second study, recipient mortality was evaluated after exposure of donors to 1 ppm insecticide for 3, 6, 12, or 24 h, Recipient mortality indicated that these exposures did not consistently lead to lethal transfer of the insecticides.  相似文献   

15.
The success of evaluating areawide control of the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae), in urban landscapes hinges on detailed understanding of colony movement and plasticity of the breeding system. Most previous studies of colony affiliation and breeding systems of C. formosanus have been conducted in relatively undisturbed park-like areas. However, disturbance in the form of landscaping, construction, and nearby treatment may impact termite colony dynamics in urban habitats. Therefore, we used microsatellite genotyping to identify the number of colonies, assess colony movement, and investigate the breeding structure of colonies surrounding the Supreme Court Building in New Orleans, LA. During 4 yr, 18 distinct colonies were identified in the study area. In contrast to earlier studies in park-like areas, which indicated stable foraging areas, colonies in this study moved frequently into and out of inground stations. Five colonies were simple families; two of these colonies were headed by inbred nestmate pairs, and three of these colonies were headed by outbred unrelated pairs. Thirteen colonies were extended families headed by fewer than five neotenic reproductives. During the study, the predominant breeding system shifted; simple family colonies either moved or were eliminated, and they were replaced with new extended family colonies. In one case, a generation turnover within a colony from simple to extended family was observed.  相似文献   

16.
Three Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae), colonies located inside the 12.75-ha Louis Armstrong Park, New Orleans, were selected for elimination by using the chitin synthesis inhibitor hexaflumuron. Once eliminated, each vacated foraging territory was monitored for reinvasion by neighboring C. formosanus colonies, Reticulitermnes flavipes (Kollar) (Isoptera: Rhinotermitidae) colonies, or both. Each selected colony was eliminated in approximately 3 mo by using baits containing hexaflumuron. Overall activity of each untreated colony in the park remained unchanged during the same period. New C. formosanus and R. flavipes activity was detected in two of the three vacated territories, and in both areas, within days of selected colony elimination. The third vacated territory was completely reoccupied by a new C. formosanus colony approximately 7 mo later. Mark-recapture studies and DNA fingerprinting confirmed the distinctness of the reinvaders from eliminated and neighboring colonies.  相似文献   

17.
The Formosan subterranean termite, Coptotermes formosanus Shiraki, is an aggressive, invasive termite species that has caused billions of dollars of damage across the United States for the past 50 years. Termites depend on intestinal microorganisms for cellulose digestion. Symbiotic microorganisms in the termite gut play key physiological functions such as cellulose and hemicellulose digestion, acetogenesis, hydrogenesis, methanogenesis, sulfate reduction, and nitrogen fixation. Additionally, intestinal microbes create suitable conditions for symbiotic protozoans through the production of nutrients and the maintenance of the pH and the anaerobic conditions in the gut. Although extensive research has been done on the symbiotic relationship of these termites and the microbes found in its gut, there is little information available on the role of facultative anaerobes in the gut. We isolated four enteric bacteria from the hindgut of Formosan subterranean termite, C. formosanus. All isolates were facultative anaerobes and G-. The isolates were identified as Serratia marcescens, Enterobacter aerogens, Enterobacter cloacae, and Citrobacter farmeri by using BIOLOG assay and fatty acid methyl ester analysis (FAME). Each isolate was characterized using sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis and biochemical study. This is the first report on the presence of facultative microbes in termite gut. Results of this first study on facultative microbes in the termite gut indicate that the role of facultative organisms in the Formosan termite gut may be to scavenge oxygen and create anaerobic conditions for the anaerobic microorganisms, which are essential for digestion of cellulose consumed by the termite.  相似文献   

18.
Cellulose digestion in lower termites, mediated by carbohydrases originating from both termite and endosymbionts, is well characterized. In contrast, limited information exists on gut proteases of lower termites, their origins and roles in termite nutrition. The objective of this study was to characterize gut proteases of the Formosan subterranean termite (Coptotermes formosanus Shiraki) (Isoptera: Rhinotermitidae). The protease activity of extracts from gut tissues (fore-, mid- and hindgut) and protozoa isolated from hindguts of termite workers was quantified using hide powder azure as a substrate and further characterized by zymography with gelatin SDS-PAGE. Midgut extracts showed the highest protease activity followed by the protozoa extracts. High level of protease activity was also detected in protozoa culture supernatants after 24 h incubation. Incubation of gut and protozoa extracts with class-specific protease inhibitors revealed that most of the proteases were serine proteases. All proteolytic bands identified after gelatin SDS-PAGE were also inhibited by serine protease inhibitors. Finally, incubation with chromogenic substrates indicated that extracts from fore- and hindgut tissues possessed proteases with almost exclusively trypsin-like activity while both midgut and protozoa extracts possessed proteases with trypsin-like and subtilisin/chymotrypsin-like activities. However, protozoa proteases were distinct from midgut proteases (with different molecular mass). Our results suggest that the Formosan subterranean termite not only produces endogenous proteases in its gut tissues, but also possesses proteases originating from its protozoan symbionts.  相似文献   

19.
Periodic sampling of 43 independent monitors, initially active with Formosan subterranean termite, Coptotermes formosanus Shiraki, or the eastern subterranean termite, Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae), was conducted to evaluate the effects of cellulose baits containing one of three chitin synthesis inhibitors (CSIs)-diflubenzuron, hexaflumuron, or chlorfluazuron-on termite populations. Diflubenzuron at 0.1% active ingredient (AI, wt:wt) had no noticeable effect on termite populations. Chlorfluazuron (0.25% [AI]) significantly reduced termite populations in approximately 3 yr. Chlorfluazuron used after > 2-yr diflubenzuron treatment significantly reduced termite populations within months. This suggests diflubenzuron exposure increased the termite's sensitivity to chlorfluazuron accelerating population collapse. Hexaflumuron (0.5% [AI]) also reduced termite populations in approximately 2 yr. The process of removing most detectable termite populations from the approximately 160,000-m2 campus of the Southern Regional Research Center, New Orleans, LA, with CSIs baits required approximately 3 yr. Adjustments in the specific bait formulations and application procedures might reduce time to suppression. Establishment of new independent termite populations provides a mechanism to minimize the effects of baits. Remedial control measures around and under structures should be considered when implementing an area wide management strategy.  相似文献   

20.
The Formosan subterranean termite, Coptotermes formosanus Shiraki, is an invasive species in many parts of the world, including the U.S. mainland. The reasons for its invasive success may have to do with the flexible social and spatial organization of colonies. We investigated the population and breeding structure of 14 C. formosanus colonies in Louis Armstrong Park, New Orleans, LA. This population has been the focus of extensive study for many years, providing the opportunity to relate aspects of colony breeding structure to previous findings on colony characteristics such as body weight and number of workers, wood consumption, and intercolony aggression. Eight colonies were headed by a single pair of outbred reproductives (simple families), whereas six colonies were headed by low numbers of multiple kings and/or queens that were likely the neotenic descendants of the original colony (extended families). Within the foraging area of one large extended family colony, we found genetic differentiation among different collection sites, suggesting the presence of separate reproductive centers. No significant difference between simple family colonies and extended family colonies was found in worker body weight, soldier body weight, foraging area, population size, or wood consumption. However, level of inbreeding within colonies was negatively correlated with worker body weight and positively correlated with wood consumption. Also, genetic distance between colonies was positively correlated with aggression levels, suggesting a genetic basis to nestmate discrimination cues in this termite population. No obvious trait associated with colony reproductive structure was found that could account for the invasion success of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号