首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nowadays, increased use of nanomaterials in industry and biomedicine poses potential risks to human health and the environment. Studying their possible toxicological effects is therefore of great significance. The present investigation was designed to examine the status of oxidative stress induced by nanoparticles (NPs) of ferric oxide (Fe2O 3) and titanium oxide (TiO 2) with their micro-sized counterpart on mouse lung and bone marrow–derived normal tissue cells. We assessed the induction of oxidative stress by measuring its indicators such as antioxidant scavenging activity of superoxide dismutase and catalase as well as malondialdehyde concentration. Moreover, colony formation of bone marrow cells was assayed following induction with colony stimulating factor (CSF) from lung cells. NPs had a more potent stimulatory effect on the oxidative stress status than their micron-sized counterparts. In addition, the highest level of oxidative stress derived from TiO 2 NPs was observed in both tissue types. Cotreatment with NPs and the antioxidant α-tocopherol reduced antioxidant activities and membrane lipid peroxidation (LPO) in the lung cells, but increased CSF-induced colony formation activity of bone marrow cells, suggesting that oxidative stress may be the cause of the cytotoxic effects of NPs. It is concluded that free radicals generated following exposure to NPs resulted in significant oxidative stress in mouse cells, indicated by increased LPO and antioxidant enzyme activity and decreased colony formation.  相似文献   

2.
Broad applications of iron oxide nanoparticles require an improved understanding of their potential effects on human health. In the present study, we explored the underlying mechanism through which iron oxide nanoparticles induce toxicity in human breast cancer cells (MCF-7). MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) and lactate dehydrogenase assays were used to examine mechanisms of cytotoxicity. Concentration- and time-dependent cytotoxicity was observed in MCF-7 cells. Iron oxide nanoparticles were found to induce oxidative stress evidenced by the elevation of reactive oxygen species generation, lipid peroxidation, and depletion of superoxide dismutase, glutathione, and catalase activities in MCF-7 cells. Nuclear staining was performed using 4′, 6-diamidino-2-phenylindole (DAPI), and cells were analyzed with a fluorescence microscope. Iron oxide nanoparticles (60 μg/ml) induced substantial apoptosis that was identified by morphology, condensation, and fragmentation of the nuclei of the MCF-7 cells. It was also observed that the iron oxide NPs induced caspase-3 activity. DNA strand breakage was detected by comet assay, and it occurred in a concentration- and time-dependent manner. Thus, the data indicate that iron oxide nanoparticles induced cytotoxicity and genotoxicity in MCF-7 cells via oxidative stress. This study warrants more careful assessment of iron oxide nanoparticles before their industrial applications.  相似文献   

3.
4.
5.
Copper oxide nanoparticles (CuO NPs) are increasingly used in various applications. Recent studies suggest that oxidative stress may be the cause of the cytotoxicity of CuO NPs in mammalian cells. However, little is known about the genotoxicity of CuO NPs following exposure to human cells. This study was undertaken to investigate CuO NPs induced genotoxic response through p53 pathway in human pulmonary epithelial cells (A549). In addition, cytotoxicity and oxidative stress markers were also assessed. Results showed that cell viability was reduced by CuO NPs and degree of reduction was dose dependent. CuO NPs were also found to induce oxidative stress in dose-dependent manner indicated by depletion of glutathione and induction of lipid peroxidation, catalase and superoxide dismutase. The expression of Hsp70, the first tier biomarker of cellular damage was induced by CuO NPs. Further, CuO NPs up-regulated the cell cycle checkpoint protein p53 and DNA damage repair proteins Rad51 and MSH2 expression. These results demonstrate that CuO NPs possess a genotoxic potential in A549 cells which may be mediated through oxidative stress. Our short-term exposure study of high level induction of genotoxic response of CuO NPs will need to be further investigated to determine whether long-term exposure consequences may exist for CuO NPs application.  相似文献   

6.
Titanium dioxide (TiO2) nanoparticles (NPs) are widely used in several manufactured products. The small size of NPs facilitates their uptake into cells as well as transcytosis across epithelial cells into blood and lymph circulation to reach different sites, such as the central nervous system. Different studies have shown the risks that TiO2 NPs in the neuronal system and other organs present. As membrane-bound layer aggregates or single particles, TiO2 NPs can enter not only cells, but also mitochondria and nuclei. Therefore these particles can interact with cytoplasmic proteins such as microtubules (MTs). MTs are cytoskeletal proteins that are essential in eukaryotic cells for a variety of functions, such as cellular transport, cell motility and mitosis. MTs in neurons are used to transport substances such as neurotransmitters. Single TiO2 NPs in cytoplasm can interact with these proteins and affect their crucial functions in different tissues. In this study, we showed the effects of TiO2 NPs on MT polymerization and structure using ultraviolet spectrophotometer and fluorometry. The fluorescent spectroscopy showed a significant tubulin conformational change in the presence of TiO2 NPs and the ultraviolet spectroscopy results showed that TiO2 NPs affect tubulin polymerization and decrease it. The aim of this study was to find the potential risks that TiO2 NPs pose to human organs and cells.  相似文献   

7.
Superparamagnetic iron oxide nanoparticles (SPIO NPs), utilized as carriers are attractive materials widely applied in biomedical fields, but target-specific SPIO NPs with lower toxicity and excellent biocompatibility are still lacking for intracellular visualization in human brain tumor diagnosis and therapy. Herein, bovine serum albumin (BSA) coated superparamagnetic iron oxide, i.e. γ-Fe2O3 nanoparticles (BSA-SPIO NPs), are synthesized. Tumor-specific ligand folic acid (FA) is then conjugated onto BSA-SPIO NPs to fabricate tumor-targeted NPs, FA-BSA-SPIO NPs as a contrast agent for MRI imaging. The FA-BSA-SPIO NPs are also labeled with fluorescein isothiocyanate (FITC) for intracellular visualization after cellular uptake and internalization by glioma U251 cells. The biological effects of the FA-BSA-SPIO NPs are investigated in human brain tumor U251 cells in detail. These results show that the prepared FA-BSA-SPIO NPs display undetectable cytotoxicity, excellent biocompatibility, and potent cellular uptake. Moreover, the study shows that the made FA-BSA-SPIO NPs are effectively internalized for MRI imaging and intracellular visualization after FITC labeling in the targeted U251 cells. Therefore, the present study demonstrates that the fabricated FITC-FA-BSA-SPIO NPs hold promising perspectives by providing a dual-modal imaging as non-toxic and target-specific vehicles in human brain tumor treatment in future.  相似文献   

8.
Smokers have an elevated risk of cardiovascular disease, but the origin(s) of this increased risk are incompletely defined. Evidence supports an accumulation of the oxidant-generating enzyme myeloperoxidase (MPO) in the inflamed artery wall, and smokers have high levels of SCN?, a preferred MPO substrate, with this resulting in HOSCN formation. We hypothesised that HOSCN, a thiol-specific oxidant may target the iron-sulphur cluster of aconitase (both isolated, and within primary human coronary artery endothelial cells; HCAEC) resulting in enzyme dysfunction, release of iron, and conversion of the cytosolic isoform to iron response protein-1, which regulates intracellular iron levels. We show that exposure of isolated aconitase to increasing concentrations of HOSCN releases iron from the aconitase [Fe-S]4 cluster, and decreases enzyme activity. This is associated with protein thiol loss and modification of specific Cys residues in, and around, the [Fe-S]4 cluster. Exposure of HCAEC to HOSCN resulted in increased intracellular levels of chelatable iron, loss of aconitase activity and increased iron response protein-1 (IRP-1) activity. These data indicate HOSCN, an oxidant associated with oxidative stress in smokers, can induce aconitase dysfunction in human endothelial cells via Cys oxidation, damage to the [Fe-S]4 cluster, iron release and generation of IRP-1 activity, which modulates ferritin protein levels and results in dysregulation of iron metabolism. These data may rationalise, in part, the presence of increased levels of iron in human atherosclerotic lesions and contribute to increased oxidative damage and endothelial cell dysfunction in smokers. Similar reactions may occur at other sites of inflammation.  相似文献   

9.
Copper oxide nanoparticles (CuO NPs) are heavily utilized in semiconductor devices, gas sensor, batteries, solar energy converter, microelectronics and heat transfer fluids. It has been reported that liver is one of the target organs for nanoparticles after they gain entry into the body through any of the possible routes. Recent studies have shown cytotoxic response of CuO NPs in liver cells. However, the underlying mechanism of apoptosis in liver cells due to CuO NPs exposure is largely lacking. We explored the possible mechanisms of apoptosis induced by CuO NPs in human hepatocellular carcinoma HepG2 cells. Prepared CuO NPs were spherical in shape with a smooth surface and had an average diameter of 22 nm. CuO NPs (concentration range 2–50 µg/ml) were found to induce cytotoxicity in HepG2 cells in dose-dependent manner, which was likely to be mediated through reactive oxygen species generation and oxidative stress. Tumor suppressor gene p53 and apoptotic gene caspase-3 were up-regulated due to CuO NPs exposure. Decrease in mitochondrial membrane potential with a concomitant increase in the gene expression of bax/bcl2 ratio suggested that mitochondria mediated pathway involved in CuO NPs induced apoptosis. This study has provided valuable insights into the possible mechanism of apoptosis caused by CuO NPs at in vitro level. Underlying mechanism(s) of apoptosis due to CuO NPs exposure should be further invested at in vivo level.  相似文献   

10.
According to undiscovered toxicity and safety of magnesium oxide nanoparticles (MgO NPs) in isolated pancreatic islet cells, this study was designed to examine the effects of its various concentrations on a time-course basis on the oxidative stress, viability, and function of isolated islets of rat’s pancreas. Pancreatic islets were isolated and exposed to different MgO NP (<100 nm) concentrations within three different time points. After that, oxidative stress biomarkers were investigated and the best exposure time was selected. Then, safety of MgO NPs was investigated by flow cytometry and fluorescent staining, and levels of insulin secretion and caspase activity were measured. The results illustrated a considerable decrease in oxidative stress markers such as reactive oxygen species (ROS) and lipid peroxidation (LPO) levels of pancreatic islets which were treated by MgO NPs for 24 h. Also, in that time of exposure, cell apoptosis investigation by flow cytometry and insulin test showed that MgO NPs, in a concentration of 100 μg/ml, decreased the rate of apoptotic cells via inhibiting caspase-9 activity and made a significant increase in the level of insulin secretion. Data of function and apoptosis biomarkers correlated with each other. It is concluded that the use of MgO NPs in concentration of as low as 100 μg/ml can induce antiapoptotic, antioxidative, and antidiabetic effects in rat pancreatic islets, which support its possible benefit in islet transplantation procedures.  相似文献   

11.
Chen EY  Garnica M  Wang YC  Chen CS  Chin WC 《PloS one》2011,6(1):e16198
Nanoparticle (NP) exposure has been closely associated with the exacerbation and pathophysiology of many respiratory diseases such as Chronic Obstructive Pulmonary Disease (COPD) and asthma. Mucus hypersecretion and accumulation in the airway are major clinical manifestations commonly found in these diseases. Among a broad spectrum of NPs, titanium dioxide (TiO(2)), one of the PM10 components, is widely utilized in the nanoindustry for manufacturing and processing of various commercial products. Although TiO(2) NPs have been shown to induce cellular nanotoxicity and emphysema-like symptoms, whether TiO(2) NPs can directly induce mucus secretion from airway cells is currently unknown. Herein, we showed that TiO(2) NPs (<75 nm) can directly stimulate mucin secretion from human bronchial ChaGo-K1 epithelial cells via a Ca(2+) signaling mediated pathway. The amount of mucin secreted was quantified with enzyme-linked lectin assay (ELLA). The corresponding changes in cytosolic Ca(2+) concentration were monitored with Rhod-2, a fluorescent Ca(2+) dye. We found that TiO(2) NP-evoked mucin secretion was a function of increasing intracellular Ca(2+) concentration resulting from an extracellular Ca(2+) influx via membrane Ca(2+) channels and cytosolic ER Ca(2+) release. The calcium-induced calcium release (CICR) mechanism played a major role in further amplifying the intracellular Ca(2+) signal and in sustaining a cytosolic Ca(2+) increase. This study provides a potential mechanistic link between airborne NPs and the pathoetiology of pulmonary diseases involving mucus hypersecretion.  相似文献   

12.
The sensitivity of endothelial cells to oxidative stress and the high concentrations of iron in mitochondria led us to test the hypotheses that (1) changes in respiratory capacity alter iron homeostasis, and (2) lack of aerobic metabolism decreases labile iron stores and attenuates oxidative stress. Two respiration-deficient (rho(o)) endothelial cell lines with selective deletion of mitochondrial DNA (mtDNA) were created by exposing a parent endothelial cell line (EA) to ethidium bromide. Surviving cells were cloned and mtDNA-deficient cell lines were demonstrated to have diminished oxygen consumption. Total cellular and mitochondrial iron levels were measured, and iron uptake and compartmentalization were measured by inductively coupled plasma atomic emission spectroscopy. Iron transport and storage protein expression were analyzed by real-time polymerase chain reaction and Western blot or ELISA, and total and mitochondrial reactive oxygen species (ROS) generation was measured. Mitochondrial iron content was the same in all three cell lines, but both rho(o) lines had lower iron uptake and total cellular iron. Protein and mRNA expressions of major cytosolic iron transport constituents were down-regulated in rho(o) cells, including transferrin receptor, divalent metal transporter-1 (-IRE isoform), and ferritin. The mitochondrial iron-handling protein, frataxin, was also decreased in respiration-deficient cells. The rho(o) cell lines generated less mitochondrial ROS but released more extracellular H(2)O(2), and demonstrated significantly lower levels of lipid aldehyde formation than control cells. In summary, rho(o) cells with a minimal aerobic capacity had decreased iron uptake and storage. This work demonstrates that mitochondria regulate iron homeostasis in endothelial cells.  相似文献   

13.
Wide applications and extreme potential of metal oxide nanoparticles (NPs) increase occupational and public exposure and may yield extraordinary hazards for human health. Exposure to NPs has a risk for dysfunction of the vascular endothelial cells. The objective of this study was to assess the cytotoxicity of six metal oxide NPs to human cardiac microvascular endothelial cells (HCMECs) in vitro. Metal oxide NPs used in this study included zinc oxide (ZnO), iron(III) oxide (Fe2O3), iron(II,III) oxide (Fe3O4), magnesium oxide (MgO), aluminum oxide (Al2O3), and copper(II) oxide (CuO). The cell viability, membrane leakage of lactate dehydrogenase, intracellular reactive oxygen species, permeability of plasma membrane, and expression of inflammatory markers vascular cell adhesion molecule-1, intercellular adhesion molecule-1, macrophage cationic peptide-1, and interleukin-8 in HCMECs were assessed under controlled and exposed conditions (12–24 h and 0.001–100 μg/ml of exposure). The results indicated that Fe2O3, Fe3O4, and Al2O3 NPs did not have significant effects on cytotoxicity, permeability, and inflammation response in HCMECs at any of the concentrations tested. ZnO, CuO, and MgO NPs produced the cytotoxicity at the concentration-dependent and time-dependent manner, and elicited the permeability and inflammation response in HCMECs. These results demonstrated that cytotoxicity, permeability, and inflammation in vascular endothelial cells following exposure to metal oxide nanoparticles depended on particle composition, concentration, and exposure time.  相似文献   

14.
BackgroundNanotoxicology is a major field of study that reveals hazard effects of nanomaterials on the living cells.MethodsIn the present study, Copper/Copper oxide nanoparticles (Cu/CuO NPs) were prepared by the chemical reduction method and characterized by different techniques such as: X-Ray Diffraction, Transmission and Scanning Electron Microscopy. Evaluation of the toxicity of Cu/CuO NPs was performed on 2 types of cells: human lung normal cell lines (WI-38) and human lung carcinoma cell (A549). To assess the toxicity of the prepared Cu/CuOs NPs, the two cell types were exposed to Cu/CuO NPs for 72 h. The half-maximal inhibitory concentration IC50 of Cu/CuO NPs for both cell types was separately determined and used to examine the cell genotoxicity concurrently with the determination of some oxidative stress parameters: nitric oxide, glutathione reduced, hydrogen peroxide, malondialdehyde and superoxide dismutase.ResultsCu/CuO NPs suppressed proliferation and viability of normal and carcinoma lung cells. Treatment of both cell types with their IC50’s of Cu/CuO NPs resulted in DNA damage besides the generation of reactive oxygen species and consequently the generation of a state of oxidative stress.ConclusionOverall, it can be concluded that the IC50's of the prepared Cu/CuO NPs were cytotoxic and genotoxic to both normal and cancerous lung cells.  相似文献   

15.
Iron oxide particles are a promising marker in molecular magnetic resonance imaging. They are used to label distinct cell populations either in vitro or in vivo. We investigated for the first time whether small citrate-coated very small superparamagnetic iron oxide particles (VSOPs) can lead to an increase in cellular oxidative stress. We incubated rat macrophages (RAW) in vitro with iron oxide particles. We observed a massive uptake of VSOPs measured both with atomic absorption spectroscopy and with NMR, which could be visualized by confocal laser scanning microscopy. After incubation, cells were lysed and the levels of malonyldialdehyde (MDA) and protein carbonyls were determined. We found a significant increase in both MDA and protein carbonyl levels after incubation with the particles. Surprisingly, 24 h after incubation, a significant indication of oxidative stress could no longer be observed. The increase in oxidative stress seems to be transient and closely linked to the incubation procedure. The iron chelator desferal and the intracellular spin trap PBN caused a significant reduction in oxidative stress to almost control levels. This indicates that the augmentation of oxidative stress is closely linked to the free iron during incubation. Proliferation assays showed that incorporation of VSOPs did not lead to long-term cytotoxic effects even though the iron oxide particles remained in the cell. Magnetic labeling of cells with VSOPs seems to cause transient oxidative conditions not affecting cellular viability and seems to be a usable approach for molecular magnetic resonance imaging.  相似文献   

16.
Y Li  W Wang  Q Wu  Y Li  M Tang  B Ye  D Wang 《PloS one》2012,7(9):e44688
With growing concerns of the safety of nanotechnology, the in vivo toxicity of nanoparticles (NPs) at environmental relevant concentrations has drawn increasing attentions. We investigated the possible molecular mechanisms of titanium nanoparticles (Ti-NPs) in the induction of toxicity at predicted environmental relevant concentrations. In nematodes, small sizes (4 nm and 10 nm) of TiO(2)-NPs induced more severe toxicities than large sizes (60 nm and 90 nm) of TiO(2)-NPs on animals using lethality, growth, reproduction, locomotion behavior, intestinal autofluorescence, and reactive oxygen species (ROS) production as endpoints. Locomotion behaviors could be significantly decreased by exposure to 4-nm and 10-nm TiO(2)-NPs at concentration of 1 ng/L in nematodes. Among genes required for the control of oxidative stress, only the expression patterns of sod-2 and sod-3 genes encoding Mn-SODs in animals exposed to small sizes of TiO(2)-NPs were significantly different from those in animals exposed to large sizes of TiO(2)-NPs. sod-2 and sod-3 gene expressions were closely correlated with lethality, growth, reproduction, locomotion behavior, intestinal autofluorescence, and ROS production in TiO(2)-NPs-exposed animals. Ectopically expression of human and nematode Mn-SODs genes effectively prevented the induction of ROS production and the development of toxicity of TiO(2)-NPs. Therefore, the altered expression patterns of Mn-SODs may explain the toxicity formation for different sizes of TiO(2)-NPs at predicted environmental relevant concentrations. In addition, we demonstrated here a strategy to investigate the toxicological effects of exposure to NPs upon humans by generating transgenic strains in nematodes for specific human genes.  相似文献   

17.
Recent results demonstrated that S-nitrosoglutathione (GSNO) and nitric oxide (*NO) protect brain dopamine neurons from hydroxyl radical (*OH)-induced oxidative stress in vivo because they are potent antioxidants. GSNO and *NO terminate oxidant stress in the brain by (i) inhibiting iron-stimulated hydroxyl radicals formation or the Fenton reaction, (ii) terminating lipid peroxidation, (iii) augmenting the antioxidative potency of glutathione (GSH), (iv) mediating neuroprotective action of brain-derived neurotrophin (BDNF), and (v) inhibiting cysteinyl proteases. In fact, GSNO--S-nitrosylated GSH--is approximately 100 times more potent than the classical antioxidant GSH. In addition, S-nitrosylation of cysteine residues by GSNO inactivates caspase-3 and HIV-1 protease, and prevents apoptosis and neurotoxicity. GSNO-induced antiplatelet aggregation is also mediated by S-nitrosylation of clotting factor XIII. Thus the elucidation of chemical reactions involved in this GSNO pathway (GSH GS* + *NO-->[GSNO]-->GSSG + *NO-->GSH) is necessary for understanding the biology of *NO, especially its beneficial antioxidative and neuroprotective effects in the CNS. GSNO is most likely generated in the endothelial and astroglial cells during oxidative stress because these cells contain mM GSH and nitric oxide synthase. Furthermore, the transfer of GSH and *NO to neurons via this GSNO pathway may facilitate cell to neuron communications, including not only the activation of guanylyl cyclase, but also the nitrosylation of iron complexes, iron containing enzymes, and cysteinyl proteases. GSNO annihilates free radicals and promotes neuroprotection via its c-GMP-independent nitrosylation actions. This putative pathway of GSNO/GSH/*NO may provide new molecular insights for the redox cycling of GSH and GSSG in the CNS.  相似文献   

18.
The aim of this study was to investigate the kinetics of L-arginine transport mechanisms and the role of extracellular L-arginine in nitric oxide formation during shear stress activation of endothelial cells. Porcine aortic endothelial cells were grown to confluence and were exposed to various amounts of shear stress for 40 min. Formation of nitric oxide was monitored by measuring elevation of endothelial cGMP. Activity of amino acid transport systems was determined by measuring the uptake of L-[3H]leucine (L system) and L-[3H]arginine (y+) under resting and shear stress condition. Shear stress-mediated nitric oxide formation critically depended on the presence of extracellular L-arginine, which increased shear stress-induced cGMP increases in a concentration dependent manner (EC50=123 microM). In addition, shear stress increased L-arginine uptake, while the transport capacity for neutral amino acids (L system) remained unchanged under shear stress conditions. Analysis of the kinetics of the uptake of L-arginine under resting and shear stress conditions indicate that shear stress increased velocity of the high affinity, low capacity transport (y+) without affecting affinity of this system. These data suggest that shear stress selectively activates uptake of L-arginine in endothelial cells and that the uptake of L-arginine might be important for shear stress-mediated nitric oxide formation.  相似文献   

19.
Internalization of citrate-coated and uncoated superparamagnetic iron oxide nanoparticles by human breast cancer (MCF-7) cells was verified by transmission electron microscopy imaging. Cytotoxicity studies employing metabolic and trypan blue assays manifested their excellent biocompatibility. The production of reactive oxygen species in iron oxide nanoparticle loaded MCF-7 cells was explained to originate from both, the release of iron ions and their catalytically active surfaces. Both initiate the Fenton and Haber-Weiss reaction. Additional oxidative stress caused by X-ray irradiation of MCF-7 cells was attributed to the increase of catalytically active iron oxide nanoparticle surfaces.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号