首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The redbay ambrosia beetle, Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae), and its fungal symbiont, Raffaelea sp., are new introductions to the southeastern United States responsible for the wilt of mature redbay, Persea borbonia (L.) Spreng., trees. In 2006 and 2007, we investigated the seasonal flight activity of X. glabratus, its host associations, and population levels at eight locations in South Carolina and Georgia where infestations ranged from very recent to at least several years old. Adults were active throughout the year with peak activity in early September. Brood development seems to take 50-60 d. Wood infested with beetles and infected with the Raffaelea sp. was similar in attraction to uninfested redbay wood, whereas both were more attractive than a nonhost species. Sassafras, Sassafras albidium (Nutt.) Nees, another species of Lauraceae, was not attractive to X. glabratus and very few beetle entrance holes were found in sassafras wood compared with redbay. Conversely, avocado, Persea americana Mill., was as attractive to X. glabratus as swampbay, P. palustris (Raf.) Sarg., and both were more attractive than the nonhost red maple, Acer rubrum L. However, avocado had relatively few entrance holes in the wood. In 2007, we compared X. glabratus populations in areas where all mature redbay have died to areas where infestations were very active and more recent. Trap catches of X. glabratus and numbers of entrance holes in trap bolts of redbay were correlated with the number of dead trees with leaves attached. Older infestations where mature host trees had been eliminated by the wilt had low numbers of beetles resulting in trap catches ranging from 0.04 to 0.12 beetles per trap per d compared with 4-7 beetles per trap per d in areas with numerous recently dead trees. Our results indicate beetle populations drop dramatically after suitable host material is gone and provide hope that management strategies can be developed to restore redbay trees. The lack of attraction of X. glabratus to sassafras suggests that spread of X. glabratus may slow once it is outside the range of redbay.  相似文献   

2.
3.
The non-native redbay ambrosia beetle, Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae), has recently emerged as a significant pest of southeastern U.S. coastal forests. Specifically, a fungal symbiont (Raffaelea sp.) of X. glabratus has caused mortality of redbay (Persea borbonia) and sassafras (Sassafras albidum) trees in the region; several other Lauraceae species also seem susceptible. Although the range of X. glabratus continues to expand rapidly, little is known about the species' biology and behavior. In turn, there has been no broad-scale assessment of the threat it poses to eastern U.S. forests. To provide a basic information framework, we performed analyses exploiting relevant spatio-temporal data available for X. glabratus. First, we mapped the densities of redbay and sassafras from forest inventory data. Second, we used climate matching to delineate potential geographic limits for X. glabratus. Third, we used county infestation data to estimate the rate of spread and modeled spread through time, incorporating host density as a weighting factor. Our results suggest that (1) key areas with high concentrations of redbay have yet to be invaded, but some are immediately threatened; (2) climatic conditions may serve to constrain X. glabratus to the southeastern U.S. coastal region; and (3) if unchecked, X. glabratus may spread throughout the range of redbay in <40 yr. Disruption of anthropogenic, long-distance dispersal could reduce the likelihood of this outcome.  相似文献   

4.
The exotic redbay ambrosia beetle, Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae), and its fungal symbiont Raffaellea lauricola Harrington, Fraedrich, and Aghayeva are responsible for widespread redbay, Persea borbonia (L.) Spreng., mortality in the southern United States. Effective traps and lures are needed to monitor spread of the beetle and for early detection at ports-of-entry, so we conducted a series of experiments to find the best trap design, color, lure, and trap position for detection of X. glabratus. The best trap and lure combination was then tested at seven sites varying in beetle abundance and at one site throughout the year to see how season and beetle population affected performance. Manuka oil proved to be the most effective lure tested, particularly when considering cost and availability. Traps baited with manuka oil lures releasing 5 mg/d caught as many beetles as those baited with lures releasing 200 mg/d. Distributing manuka oil lures from the top to the bottom of eight-unit funnel traps resulted in similar numbers of X. glabratus as a single lure in the middle. Trap color had little effect on captures in sticky traps or cross-vane traps. Funnel traps caught twice as many beetles as cross-vane traps and three times as many as sticky traps but mean catch per trap was not significantly different. When comparing height, traps 1.5 m above the ground captured 85% of the beetles collected but a few were caught at each height up to 15 m. Funnel trap captures exhibited a strong linear relationship (r2 = 0.79) with X. glabratus attack density and they performed well throughout the year. Catching beetles at low densities is important to port of entry monitoring programs where early detection of infestations is essential. Our trials show that multiple funnel traps baited with a single manuka oil lure were effective for capturing X. glabratus even when no infested trees were visible in the area.  相似文献   

5.
The invasive redbay ambrosia beetle, Xyleborus glabratus, is the primary vector of Raffaelea lauricola, a symbiotic fungus and the etiologic agent of laurel wilt. This lethal disease has caused severe mortality of redbay (Persea borbonia) and swampbay (P. palustris) trees in the southeastern USA, threatens avocado (P. americana) production in Florida, and has potential to impact additional New World species. To date, all North American hosts of X. glabratus and suscepts of laurel wilt are members of the family Lauraceae. This comparative study combined field tests and laboratory bioassays to evaluate attraction and boring preferences of female X. glabratus using freshly-cut bolts from nine species of Lauraceae: avocado (one cultivar of each botanical race), redbay, swampbay, silkbay (Persea humilis), California bay laurel (Umbellularia californica), sassafras (Sassafras albidum), northern spicebush (Lindera benzoin), camphor tree (Cinnamomum camphora), and lancewood (Nectandra coriacea). In addition, volatile collections and gas chromatography-mass spectroscopy (GC-MS) were conducted to quantify terpenoid emissions from test bolts, and electroantennography (EAG) was performed to measure olfactory responses of X. glabratus to terpenoids identified by GC-MS. Significant differences were observed among treatments in both field and laboratory tests. Silkbay and camphor tree attracted the highest numbers of the beetle in the field, and lancewood and spicebush the lowest, whereas boring activity was greatest on silkbay, bay laurel, swampbay, and redbay, and lowest on lancewood, spicebush, and camphor tree. The Guatemalan cultivar of avocado was more attractive than those of the other races, but boring response among the three was equivalent. The results suggest that camphor tree may contain a chemical deterrent to boring, and that different cues are associated with host location and host acceptance. Emissions of α-cubebene, α-copaene, α-humulene, and calamenene were positively correlated with attraction, and EAG analyses confirmed chemoreception of terpenoids by antennal receptors of X. glabratus.  相似文献   

6.
Redbay ambrosia beetle, Xyleborus glabratus Eichhoff, is an exotic wood-borer that vectors the fungal agent (Raffaelea lauricola) responsible for laurel wilt. Laurel wilt has had severe impact on forest ecosystems in the southeastern United States, killing a large proportion of native Persea trees, particularly redbay (P. borbonia) and swampbay (P. palustris), and currently poses an economic threat to avocado (P. americana) in Florida. To control the spread of this lethal disease, effective attractants are needed for early detection of the vector. Two 12-wk field tests were conducted in Florida to evaluate efficacy and longevity of manuka and phoebe oil lures, and to relate captures of X. glabratus to release rates of putative sesquiterpene attractants. Two trap types were also evaluated, Lindgren funnel traps and sticky panel traps. To document lure emissions over time, a separate set of lures was aged outdoors for 12 wk and sampled periodically to quantify volatile sesquiterpenes using super-Q adsorbant and gas chromatography-mass spectroscopy analysis. Phoebe lures captured significantly more X. glabratus than manuka lures, and sticky traps captured more beetles than funnel traps. Phoebe lures captured X. glabratus for 10-12 wk, but field life of manuka lures was 2-3 wk. Emissions of alpha-copaene, alpha-humulene, and cadinene were consistently higher from phoebe lures, particularly during the 2-3 wk window when manuka lures lost efficacy, suggesting that these sesquiterpenes are primary kairomones used by host-seeking females. Results indicate that the current monitoring system is suboptimal for early detection of X. glabratus because of rapid depletion of sesquiterpenes from manuka lures.  相似文献   

7.
The exotic ambrosia beetles Xylosandrus crassiusculus (Motschulsky) and Xylosandrus germanus (Blandford) (Coleoptera: Curculionidae: Scolytinae) are serious pests in ornamental tree nurseries. To optimize bottle-traps as a monitoring system for X. crassiusculus and X. germanus in nurseries, we tested whether increasing the rate of commercial ethanol lures improved captures or early detection of these species. Experiments were conducted in Ohio (2008 and 2009) and Virginia (2008), two states that have experienced significant damage from X. crassiusculus, X. germanus, or both. There were four treatments: no-lure (unbaited control), 1-ethanol lure, 2-ethanol lures and 1 + 1-ethanol lures (one lure in the trap and one suspended 0.5 m above the trap). Captures of X. crassiusculus and X. germanus were higher in all ethanol treatments than unbaited controls, and were generally higher in treatments with two lures versus one. There was no difference in beetle captures between the 2-lure and 1 + 1-lure treatments. First detection of X. crassiusculus and X. germanus occurred more consistently in the treatments with two lures than one lure. Xyleborinus saxesenii (Ratzeburg), Anisandrus sayi Hopkins, Hypothenemus dissimilis Zimmermann, and Hypothenemus eruditus Westwood were also more attracted to traps baited with ethanol than unbaited controls. X. saxesenii was captured in higher numbers in the treatments with two lures than one in Virginia but not in Ohio. There was no difference in captures of the other species among ethanol treatments. The current research shows that ethanol release rates influence sensitivity of traps for detecting emergence of overwintered ambrosia beetles.  相似文献   

8.
The research field of animal and plant symbioses is advancing from studying interactions between two species to whole communities of associates. High-throughput sequencing of microbial communities supports multiplexed sampling for statistically robust tests of hypotheses about symbiotic associations. We focus on ambrosia beetles, the increasingly damaging insects primarily associated with fungal symbionts, which have also been reported to support bacteria. To analyze the diversity, composition, and specificity of the beetles' prokaryotic associates, we combine global sampling, insect anatomy, 454 sequencing of bacterial rDNA, and multivariate statistics to analyze prokaryotic communities in ambrosia beetle mycangia, organs mostly known for transporting symbiotic fungi. We analyze six beetle species that represent three types of mycangia and include several globally distributed species, some with major economic importance (Dendroctonus frontalis, Xyleborus affinis, Xyleborus bispinatus-ferrugineus, Xyleborus glabratus, Xylosandrus crassiusculus, and Xylosandrus germanus). Ninety-six beetle mycangia yielded 1,546 bacterial phylotypes. Several phylotypes appear to form the core microbiome of the mycangium. Three Mycoplasma (originally thought restricted to vertebrates), two Burkholderiales, and two Pseudomonadales are repeatedly present worldwide in multiple beetle species. However, no bacterial phylotypes were universally present, suggesting that ambrosia beetles are not obligately dependent on bacterial symbionts. The composition of bacterial communities is structured by the host beetle species more than by the locality of origin, which suggests that more bacteria are vertically transmitted than acquired from the environment. The invasive X. glabratus and the globally distributed X. crassiusculus have unique sets of bacteria, different from species native to North America. We conclude that the mycangium hosts in multiple vertically transmitted bacteria such as Mycoplasma, most of which are likely facultative commensals or parasites.  相似文献   

9.
The laurel wilt pathogen Raffaelea lauricola was hypothesized to have been introduced to the southeastern USA in the mycangium of the redbay ambrosia beetle, Xyleborus glabratus, which is native to Asia. To test this hypothesis adult X. glabratus were trapped in Taiwan and on Kyushu Island, Japan, in 2009, and dead beetles were sent to USA for isolation of fungal symbionts. Individual X. glabratus were macerated in glass tissue grinders, and the slurry was serially diluted and plated onto malt agar medium amended with cycloheximide, a medium semiselective for Ophiostoma species and their anamorphs, including members of Raffaelea. R. lauricola was isolated from 56 of 85 beetles in Taiwan and 10 of 16 beetles in Japan at up to an estimated 10 000 CFUs per beetle. The next most commonly isolated species was R. ellipticospora, which also has been recovered from X. glabratus trapped in the USA, as were two other fungi isolated from beetles in Taiwan, R. fusca and R. subfusca. Three unidentified Raffaelea spp. and three unidentified Ophiostoma spp. were isolated rarely from X. glabratus collected in Taiwan. Isolations from beetles similarly trapped in Georgia, USA, yielded R. lauricola and R. ellipticospora in numbers similar to those from beetles trapped in Taiwan and Japan. The results support the hypothesis that R. lauricola was introduced into the USA in mycangia of X. glabratus shipped to USA in solid wood packing material from Asia. However differences in the mycangial mycoflora of X. glabratus in Taiwan, Japan and USA suggest that the X. glabratus population established in USA originated in another part of Asia.  相似文献   

10.
The black twig borer, Xylosandrus compactus (Eichhoff) (Coleoptera: Curculionidae: Scolytinae), is a pest of coffee and many endemic Hawaiian plants. Traps baited with chemical attractants commonly are used to capture ambrosia beetles for purposes of monitoring, studying population dynamics, predicting outbreaks, and mass trapping to reduce damage. The objectives of this research were to optimize trapping systems for X. compactus and other ambrosia beetles such as Xylosandrus crassiusculus (Motschulsky) and Xyleborinus saxesenii (Ratzeburg) by comparing efficacy of several attractants, repellents, and trap types. The ability of certain chemicals to act as beetle repellents and thus interfere with trap catch was tested for purposes of protecting host plants from attack. Potential attractants and application methods tested were as follows: ethyl alcohol pouch delivery system, ethyl alcohol vial delivery system, α-pinene in Eppendorf tubes, eugenol bubblecaps, ginger oil bubblecaps, manuka oil bubblecaps, phoebe oil bubblecaps, and an unbaited control. Potential repellents tested were limonene and verbenone. Ethyl alcohol vials were as attractive as ethyl alcohol sleeves, and were more effective than traps baited with eugenol and α-pinene. Japanese beetle traps were more effective for black twig borer trapping than Lindgren funnel traps, and were easier to deploy. Verbenone and limonene significantly reduced trap catch of Xylosandrus compactus and X. crassiusculus, suggesting that they may be effective for reducing attraction to host plants. These results show the importance of developing a combination of several monitoring techniques to enhance management procedures for the black twig borer.  相似文献   

11.
12.
  1. The redbay ambrosia beetle, Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae), vectors the mycopathogen that causes laurel wilt, a lethal vascular disease of trees in the Lauraceae. Since being detected in Georgia, USA in 2002, this invasive pest has become established in 11 additional states.
  2. With continued spread, X. glabratus will likely enter Mexico. In advance of this event, this study was initiated to assess the risk posed to eight native laurels and Hass avocados, the predominant cultivar grown in Mexico.
  3. Wood bolts from each species were used in (a) field tests to determine the relative attraction of female X. glabratus, (b) laboratory bioassays to evaluate boring preferences, and (c) GC–MS analyses to identify host kairomones. For comparison, tests included control bolt treatments consisting of silkbay (an attractive U.S. laurel) and Simmonds avocado (a Florida cultivar susceptible to laurel wilt).
  4. Hass avocado and two native laurels (Persea schiedeana and Ocotea heribertoi vel aff.) were highly attractive to females and elicited strong boring responses. These species were high in sesquiterpene hydrocarbons, including α-copaene and α-cubebene.
  5. Results of this study suggest that X. glabratus could become a serious agricultural and forest pest upon incursion into Mexico, with severe economic and ecological impacts.
  相似文献   

13.
Xylosandrus germanus (Blandford) and other species of ambrosia beetles are key pests of ornamental nursery trees. A variety of laboratory- and field-based experiments were conducted in pursuit of improved monitoring strategies and to develop a trap tree strategy for ambrosia beetles. Traps baited with bolts prepared from Magnolia virginiana L. injected with ethanol caught five times more X. germanus than ethanol-baited traps. Basal stem injections of ethanol into M. virginiana induced more ambrosia beetle attacks than irrigating or baiting with ethanol, and no attacks occurred on water-injected trees. A positive correlation was also detected between concentration of injected ethanol and cumulative attacks. Solid phase microextraction-gas chromatography-mass spectrometry characterized bark emissions from ethanol- and water-injected M. virginiana at 1, 2, 10, and 16 d after treatment. Ethanol emission from injected trees steadily declined from 1 to 16 d after treatment, but was not emitted from water-injected trees. A variety of monoterpenes were also emitted in trace amounts from the ethanol- and water-injected trees. Antennal responses of X. germanus via gas chromatography-electroantennographic detection to volatiles from ethanol-injected M. virginiana occurred for ethanol, but not the various monoterpenes. X. germanus and other ambrosia beetles were also equally attracted to traps baited with ethanol alone compared with a synthetic mixture of ethanol plus various monoterpenes formulated to mimic ethanol-injected M. virginiana. Injecting concentrated solutions of ethanol into trees may be useful for establishing odor-based trap trees, which could aid with monitoring programs and/or potentially deflect ambrosia beetles away from valuable nursery stock.  相似文献   

14.
The redbay ambrosia beetle, Xyleborus glabratus, is the vector of the laurel wilt disease fungal pathogen, Raffaelea lauricola. Since the vector's initial detection in the USA in the early 2000s, laurel wilt has killed millions of redbay, Persea borbonia, trees and other members of the plant family Lauraceae. To protect host trees from beetle attack and laurel wilt infection, we tested the efficacy of host‐ and non‐host‐derived and commercial compounds as X. glabratus repellents in field experiments. In our first trial, the major constituents of the non‐host tree, longleaf pine, Pinus palustris, and SPLAT Verb (verbenone 10%) were paired with manuka oil attractants and beetle captures were counted. Verbenone and a 1 : 1 blend of myrcene and camphene were intermediate to both the manuka positive and blank negative controls. Subsequently, we tested different blends of methyl salicylate (MeSA), a host defence and signalling compound, and verbenone in SPLAT dispensers using freshly cut redbay bolts as an attractant. All treatments reduced X. glabratus captures and boring holes as compared to the redbay (‐) repellent positive control; however, SPLAT Verb and SPLAT MeSA‐Verb (5% each) achieved the highest repellency, with results comparable to that of the non‐host (laurel oak). These trials establish that host‐derived and commercially available repellent compounds can reduce X. glabratus attacks and therefore have potential as part of an integrated management strategy against laurel wilt and its vector.  相似文献   

15.
Economic and biological consequences are associated with exotic ambrosia beetles and their fungal associates. Despite this, knowledge of ambrosia beetles and their ecological interactions remain poorly understood, especially in the oak-hickory forest region. We examined how forest stand and site characteristics influenced ambrosia beetle habitat use as evaluated by species richness and abundance of ambrosia beetles, both the native component and individual exotic species. We documented the species composition of the ambrosia beetle community, flight activity, and habitat use over a 2-yr period by placing flight traps in regenerating clearcuts and older oak-hickory forest stands differing in topographic aspect. The ambrosia beetle community consisted of 20 species with exotic ambrosia beetle species dominating the community. Similar percentages of exotic ambrosia beetles occurred among the four forest habitats despite differences in stand age and aspect. Stand characteristics, such as stand age and forest structure, influenced ambrosia beetle richness and the abundances of a few exotic ambrosia beetle species and the native ambrosia beetle component. Topographic aspect had little influence on ambrosia beetle abundance or species richness. Older forests typically have more host material than younger forests and our results may be related to the amount of dead wood present. Different forms of forest management may not alter the percent contribution of exotic ambrosia beetles to the ambrosia beetle community.  相似文献   

16.
Abstract: In most temperate deciduous forests, windstorm is the main source of dead wood. However, the effects of this natural disturbance on ambrosia and bark beetle communities are poorly known. In managed oak‐hornbeam forests storm‐damaged in France in 1999, we sampled ambrosia (and second bark beetles) by ethanol‐baited window‐flight traps in 2001. By comparing uncleared gaps, undisturbed closed‐canopy controls and seedling‐sapling stands, we investigated the short‐term effects of gap formation, gap size and surrounding landscape to provide a snapshot of scolytid response. Contrary to expectations, neither the abundance nor the richness of ambrosia beetle species was significantly higher in gaps than in undisturbed stands. Few responses in abundance at the species level and only a slight difference in assemblage composition were detected between gaps and closed‐canopy controls. Gaps were more dissimilar from seedling‐sapling stands, than from closed‐canopy controls. More scolytid individuals and species were caught in gaps than in seedling‐sapling stands. Mean local and cumulative richness peaked in mid‐size gaps. Only mid‐size gaps differed from closed‐canopy controls in terms of species composition. We identified generalist gap species (Xyleborus saxesenii, X. cryptographus), but also species significantly more abundant in mid‐size gaps (Platypus cylindrus, Xyloterus signatus). The faunistic peculiarity of mid‐size gaps seemed to be partly related to a bias in oak density among gap size classes. Few landscape effects were observed. Only the scolytids on the whole and X. dispar were slightly favoured by an increasing density in fellings at the 78 ha scale. We did not find any correlation between scolytid abundance and the surrounding closed‐forest percentage area. We confirmed that temperate, deciduous, managed stands did not come under threat by ambrosia and bark beetle pests after the 1999 windstorm. Nonetheless, our data stressed the current expansion in Western Europe of two invasive species, X. peregrinus and especially X. germanus, now the predominant scolytid in the three oak forests studied.  相似文献   

17.
Earwigs (Dermaptera), such as Forficula auricularia L., are important euryphagous predators for a wide variety of prey and can markedly influence the populations of orchard pests. Most previous studies on earwig feeding behaviour have not used adult beetles of the prey species; few researchers have focused on prey preference in earwigs. Some fragments of beetle exoskeleton and an earwig adult, Anisolabella marginalis (Dohrn), were found in the same cage, where adults of ambrosia beetle, Euwallacea interjectus (Blandford), were emerging from the logs of a fig tree infected with Ceratocystis canker (fig wilt disease). Thus, A. marginalis was suspected of being a predator of E. interjectus. To shed light on this issue, in the laboratory, we set up a test arena and observed and recorded behavioural interactions between A. marginalis and E. interjectus. E. interjectus was collected from the logs of fig trees and reared on an artificial diet, along with six different ambrosia beetle species, which were collected from a trap (baited with ethanol) and a fallen maple tree. A series of laboratory experiments demonstrated that A. marginalis is actually a predator of E. interjectus and other species of ambrosia beetle, indicating its a potential for use in effective pest control in the field. The predators frequently consume and tend to select their prey depending on prey size, rather than sex and beetle species. Furthermore, earwigs have alternative predatory strategies for dealing with seven different species, although they use their forceps to cut the body of most tested beetles.  相似文献   

18.
  1. Laurel wilt is a disease that has caused extensive mortality of redbay Persea borbonia in the southeastern U.S.A. The redbay ambrosia beetle Xyleborus glabratus is the vector of the causal agent of laurel wilt, the fungus Raffaelea lauricola.
  2. We tested two potential repellents to the redbay ambrosia beetle, verbenone and methyl salicylate (MeSA) in an 8‐month large‐scale experiment conducted in three locations in Florida. In each location, redbay trees were treated with a single or double application of SPLAT (Specialized Pheromone and Lure Application Technology; ISCA Technologies, Riverside, California) verbenone, as well as SPLAT with a 1:2 mix of MeSA and verbenone.
  3. The MeSA + verbenone mixes did not reduce beetle captures compared with the control treatment, whereas SPLAT verbenone alone significantly reduced the number of beetles captured on sticky traps placed on redbay trees in the three locations. The reduction of beetle capture was similar regardless of one or two treatments of SPLAT verbenone. The reduction of tree death with the SPLAT verbenone treatment was not statistically significant.
  4. The results of the present study suggest that trunk application of verbenone can reduce landing rates of the redbay ambrosia beetle on live redbay trees and shows promise for use in an integrated pest management strategy against laurel wilt.
  相似文献   

19.
Abstract  Ambrosia beetles have an obligate relationship with the ambrosia fungi that they feed on. This requires that the beetles have means to transport those fungi when they colonise new hosts. Some ambrosia beetles have special structures called mycangia to transport fungi in. This paper describes the mycangia of the ambrosia beetle Austroplatypus incompertus and illustrates how the mycangical hairs are probably used by the beetle to acquire fungal spores for transport. The mycangia and probable method of fungal acquisition of this species are compared with those of other ambrosia beetles.  相似文献   

20.
Ethanol emitted by stressed trees is an olfactory cue used by ambrosia beetles (Coleoptera; Curculionidae; Scolytinae) to locate susceptible hosts to colonize. In addition, ethanol enhances the growth of ambrosia beetle fungal symbionts, improving colonization. Whether host selection and colonization are affected also by the amount of ethanol produced by stressed trees and by tree species is unclear. To investigate these mechanisms, we induced attacks by ambrosia beetles in bolts of eight tree species by coring and filling them with either 5% or 90% ethanol solutions in water. For each ethanol concentration, bolts of the eight different tree species were replicated six times in a randomized complete block design. Entry holes were used as a proxy for host selection whereas gallery development stage was used as a proxy for colonization. Ethanol concentration differentially affected host selection of the three ambrosia beetles that were active during this study. Anisandrus dispar Fabricius preferentially attacked bolts with 90% ethanol concentration, Xylosandrus crassiusculus (Motschulsky) preferentially attacked bolts with 5% ethanol concentration, and Xyleborinus saxesenii (Ratzeburg) attacked bolts irrespective of ethanol concentration. Colonization of X. crassiusculus reflected the same pattern observed for entry holes. The effect of host tree species on host selection was most prominent for Xsaxesenii, while Xcrassiusculus established a higher number of developed galleries in Ostrya carpinifolia Scopoli bolts than on five of the other tested tree species. Our results suggest that ethanol concentration and host tree species may influence ecological niche partitioning among ambrosia beetle species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号