首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The distribution of glutamate, GABA and ChAT and of NADPH-diaphorase was immunocytochemically and histochemically investigated in the mushroom bodies of the cricket (Gryllus bimaculatus) and of the fruitfly (Drosophila melanogaster). Glutamate and NO are considered as putative transmitters of mushroom body Kenyon cell types. In the input area (calyces) of the mushroom bodies of Drosophila, the majority of olfactory projection neurons is stained with antibodies against ChAT. In addition, small GABA-immunoreactive presynaptic fibres of extrinsic neurons occur intermingled with the ChAT-immunoreactive elements in the calyces, and occupy distinct compartments in the stalk and lobes. Complex synaptic connectivity of putatively cholinergic and GABAergic extrinsic neurons and of Keyon cell dendrites within the calycal glomeruli of mushroom bodies is discussed.  相似文献   

2.
Behavioral functions of the insect mushroom bodies   总被引:8,自引:0,他引:8  
New methods of intervention in Drosophila and other insect species reveal that the mushroom bodies are involved in a diverse set of behavioral functions. The intrinsic Kenyon cells (those neurons with projections within the mushroom bodies) house part of the short-term memory trace for odors and are required for courtship conditioning memory. A pair of extrinsic mushroom body neurons (neurons with projections both inside and outside the mushroom bodies) provides a neuropeptide important for 1-hour olfactory memory. In addition, the mushroom bodies are necessary for context generalization in visual learning and for regulating the transition from walking to rest.  相似文献   

3.
The temporal pairing of a neutral stimulus with a reinforcer (reward or punishment) can lead to classical conditioning, a simple form of learning in which the animal assigns a value (positive or negative) to the formerly neutral stimulus. Olfactory classical conditioning in Drosophila is a prime model for the analysis of the molecular and neuronal substrate of this type of learning and memory. Neuronal correlates of associative plasticity have been identified in several regions of the insect brain. In particular, the mushroom bodies have been shown to be necessary for aversive olfactory memory formation. However, little is known about which neurons mediate the reinforcing stimulus. Using functional optical imaging, we now show that dopaminergic projections to the mushroom-body lobes are weakly activated by odor stimuli but respond strongly to electric shocks. However, after one of two odors is paired several times with an electric shock, odor-evoked activity is significantly prolonged only for the "punished" odor. Whereas dopaminergic neurons mediate rewarding reinforcement in mammals, our data suggest a role for aversive reinforcement in Drosophila. However, the dopaminergic neurons' capability of mediating and predicting a reinforcing stimulus appears to be conserved between Drosophila and mammals.  相似文献   

4.
We have studied the formation of Drosophila mushroom bodies using enhancer detector techniques to visualize specific components of these complex intrinsic brain structures. During embryogenesis, neuronal proliferation begins in four mushroom body neuroblasts and the major axonal pathways of the mushroom bodies are pioneered. During larval development, neuronal proliferation continues and further axonal projections in the pedunculus and lobes are formed in a highly structured manner characterized by spatial heterogeneity of reporter gene expression. Enhancer detector analysis identifies many genomic locations that are specifically activated in mushroom body intrinsic neurons (Kenyon cells) during the transition from embryonic to postembryonic development and during metamorphosis.  相似文献   

5.
A Nighorn  M J Healy  R L Davis 《Neuron》1991,6(3):455-467
Drosophila dunce (dnc) flies are defective in learning and memory as a result of lesions in the gene that codes for a cAMP-specific phosphodiesterase (PDE). Antibodies to the dnc PDE showed that the most intensely stained regions in the adult brain were the mushroom body neuropil--areas previously implicated in learning and memory. In situ hybridization demonstrated that dnc RNA was enriched in the mushroom body perikarya. The mushroom bodies of third instar larval brains were also stained intensely by the antibody, suggesting that the dnc PDE plays an important role in these neurons throughout their development. The role of the dnc PDE in mushroom body physiology is discussed, and a circuit model describing a possible role of the mushroom bodies in mediating olfactory learning and memory is presented.  相似文献   

6.
7.
Waddell S  Armstrong JD  Kitamoto T  Kaiser K  Quinn WG 《Cell》2000,103(5):805-813
Mutations in the amnesiac gene in Drosophila affect both memory retention and ethanol sensitivity. The predicted amnesiac gene product, AMN, is an apparent preproneuropeptide, and previous studies suggest that it stimulates cAMP synthesis. Here we show that, unlike other learning-related Drosophila proteins, AMN is not preferentially expressed in mushroom bodies. Instead, it is strongly expressed in two large neurons that project over all the lobes of the mushroom bodies, a finding that suggests a modulatory role for AMN in memory formation. Genetically engineered blockade of vesicle recycling in these cells abbreviates memory as in the amnesiac mutant. Moreover, restoration of amn gene expression to these cells reestablishes normal olfactory memory in an amn deletion background. These results indicate that AMN neuropeptide release onto the mushroom bodies is critical for normal olfactory memory.  相似文献   

8.
Nociception, warning of injury that should be avoided, serves an important protective function in animals. In this study, we show that adult Drosophila avoids noxious heat by a jump response. To quantitatively analyze this nociceptive behavior, we developed two assays. In the CO2 laser beam assay, flies exhibit this behavior when a laser beam heats their abdomens. The consistency of the jump latency in this assay meets an important criterion for a good nociceptive assay. In the hot plate assay, flies jump quickly to escape from a hot copper plate (>45 degrees C). Our results demonstrate that, as in mammals, the latency of the jump response is inversely related to stimulus intensity, and innoxious thermosensation does not elicit this nociceptive behavior. To explore the genetic mechanisms of nociception, we examined several mutants in both assays. Abnormal nociceptive behavior of a mutant, painless, indicates that painless, a gene essential for nociception in Drosophila larvae, is also required for thermal nociception in adult flies. painless is expressed in certain neurons of the peripheral nervous system and thoracic ganglia, as well as in the definite brain structures, the mushroom bodies. However, chemical or genetic insults to the mushroom bodies do not influence the nociceptive behavior, suggesting that different painless-expressing neurons play diverse roles in thermal nociception. Additionally, no-bridge(KS49), a mutant that has a structural defect in the protocerebral bridge, shows defective response to noxious heat. Thus, our results validate adult Drosophila as a useful model to study the genetic mechanisms of thermal nociception.  相似文献   

9.
Balkenius A  Hansson B 《PloS one》2012,7(4):e32133

Background

The mushroom bodies of the insect brain play an important role in olfactory processing, associative learning and memory. The mushroom bodies show odor-specific spatial patterns of activity and are also influenced by visual stimuli.

Methodology/Principal Findings

Functional imaging was used to investigate changes in the in vivo responses of the mushroom body of the hawkmoth Manduca sexta during multimodal discrimination training. A visual and an odour stimulus were presented either together or individually. Initially, mushroom body activation patterns were identical to the odour stimulus and the multimodal stimulus. After training, however, the mushroom body response to the rewarded multimodal stimulus was significantly lower than the response to the unrewarded unimodal odour stimulus, indicating that the coding of the stimuli had changed as a result of training. The opposite pattern was seen when only the unimodal odour stimulus was rewarded. In this case, the mushroom body was more strongly activated by the multimodal stimuli after training. When no stimuli were rewarded, the mushroom body activity decreased for both the multimodal and unimodal odour stimuli. There was no measurable response to the unimodal visual stimulus in any of the experiments. These results can be explained using a connectionist model where the mushroom body is assumed to be excited by olfactory stimulus components, and suppressed by multimodal configurations.

Conclusions

Discrimination training with multimodal stimuli consisting of visual and odour cues leads to stimulus specific changes in the in vivo responses of the mushroom body of the hawkmoth.  相似文献   

10.
11.
Kang J  Kim J  Choi KW 《PloS one》2011,6(12):e29800
Perception of temperature is an important brain function for organisms to survive. Evidence suggests that temperature preference behavior (TPB) in Drosophila melanogaster, one of poikilothermal animals, is regulated by cAMP-dependent protein kinase (PKA) signaling in mushroom bodies of the brain. However, downstream targets for the PKA signaling in this behavior have not been identified. From a genome-wide search for the genes regulated by PKA activity in the mushroom bodies, we identified the cyp6a17 Cytochrome P450 gene as a new target for PKA. Our detailed analysis of mutants by genetic, molecular and behavioral assays shows that cyp6a17 is essential for temperature preference behavior. cyp6a17 expression is enriched in the mushroom bodies of the adult brain. Tissue-specific knockdown and rescue experiments demonstrate that cyp6a17 is required in the mushroom bodies for normal temperature preference behavior. This is the first study, to our knowledge, to show PKA-dependent expression of a cytochrome P450 gene in the mushroom bodies and its role as a key factor for temperature preference behavior. Taken together, this study reveals a new PKA-Cytochrome P450 pathway that regulates the temperature preference behavior.  相似文献   

12.
Alcohol activates reward systems through an unknown mechanism, in some cases leading to alcohol abuse and dependence. Herein, we utilized a two-choice Capillary Feeder assay to address the neural and molecular basis for ethanol self-administration in Drosophila melanogaster. Wild-type Drosophila shows a significant preference for food containing between 5% and 15% ethanol. Preferred ethanol self-administration does not appear to be due to caloric advantage, nor due to perceptual biases, suggesting a hedonic bias for ethanol exists in Drosophila. Interestingly, rutabaga adenylyl cyclase expression within intrinsic mushroom body neurons is necessary for robust ethanol self-administration. The expression of rutabaga in mushroom bodies is also required for both appetitive and aversive olfactory associative memories, suggesting that reinforced behavior has an important role in the ethanol self-administration in Drosophila. However, rutabaga expression is required more broadly within the mushroom bodies for the preference for ethanol-containing food than for olfactory memories reinforced by sugar reward. Together these data implicate cAMP signaling and behavioral reinforcement for preferred ethanol self-administration in D. melanogaster.  相似文献   

13.
To elucidate the effect of feminization of male Drosophila brain cells on courtship control, we performed a large scale screening of expression drivers that can suppress male-specific behavior with transformer gene expression. Two drivers caused essentially total courtship suppression. The expression pattern of these drivers did not show any correlation with the mushroom bodies or the antennal lobes, the regions that have been suggested to play important roles in courtship. Ablation of mushroom bodies using hydroxyurea treatment did not affect this courtship suppression. The ablation did not change either wild-type heterosexual behavior or bisexual behavior caused by transformer expression driven by the same drivers used in the previous studies to suggest the involvement of the mushroom bodies in courtship. Our results show that feminization of different nonoverlapping cells in other parts of the protocerebrum was sufficient to cause the same bisexual or suppressed-courtship phenotype. Thus, contrary to previous assumptions, the mushroom bodies are not required for the control of courtship. Present evidence supports its mediation by other distributed protocerebral regions.  相似文献   

14.
15.
Preat T 《Neuron》2004,44(3):404-405
Two dorsal paired medial (DPM) neurons express the Amnesiac neuropeptide and project onto mushroom bodies, the Drosophila olfactory memory center. In this issue of Neuron, Keene et al. show that higher-level brain circuits process various olfactory memories differently. DPM neurons are required during acquisition of some odors and during memory consolidation of others. These findings reveal a surprising level of complexity for the formation of olfactory memories in Drosophila.  相似文献   

16.
The associative learning abilities of the fruit fly, Drosophila melanogaster, have been demonstrated in both classical and operant conditioning paradigms. Efforts to identify the neural pathways and cellular mechanisms of learning have focused largely on olfactory classical conditioning. Results derived from various genetic and molecular manipulations provide considerable evidence that this form of associative learning depends critically on neural activity and cAMP signaling in brain neuropil structures called mushroom bodies. Three other behavioral learning paradigms in Drosophila serve as the main subject of this review. These are (1) visual and motor learning of flies tethered in a flight simulator, (2) a form of spatial learning that is independent of visual and olfactory cues, and (3) experience-dependent changes in male courtship behavior. The present evidence suggests that at least some of these modes of learning are independent of mushroom bodies. Applying targeted genetic manipulations to these behavioral paradigms should allow for a more comprehensive understanding of neural mechanisms responsible for diverse forms of associative learning and memory.  相似文献   

17.
The insect mushroom bodies play important roles in a number of higher processing functions such as sensory integration, higher level olfactory processing, and spatial and associative learning and memory. These functions have been established through studies in a handful of tractable model systems, of which only the fruit fly Drosophila melanogaster has been readily amenable to genetic manipulations. The red flour beetle Tribolium castaneum has a sequenced genome and has been subject to the development of molecular tools for the ready manipulation of gene expression; however, little is known about the development and organization of the mushroom bodies of this insect. The present account bridges this gap by demonstrating that the organization of the Tribolium mushroom bodies is strikingly like that of the fruit fly, with the significant exception that the timeline of neurogenesis is shifted so that the last population of Kenyon cells is born entirely after adult eclosion. Tribolium Kenyon cells are generated by two large neuroblasts per hemisphere and segregate into an early-born delta lobe subpopulation followed by clear homologs of the Drosophila gamma, alpha'/beta' and alpha/beta lobe subpopulations, with the larval-born cohorts undergoing dendritic reorganization during metamorphosis. BrdU labeling and immunohistochemical staining also reveal that a proportion of individual Tribolium have variable numbers of mushroom body neuroblasts. If heritable, this variation represents a unique opportunity for further studies of the genetic control of brain region size through the control of neuroblast number and cell cycle dynamics.  相似文献   

18.
The role of the mushroom bodies and of the central complex of Drosophila melanogaster brain in the control of courtship behavior and sound production was studied by comparative analysis of courtship characteristics and singing parameters in wild type males (Canton S and Berlin), in Berlin males treated with hydroxyurea (HU) during development and thus devoid of the mushroom bodies (chemical ablation of the mushroom bodies) and in males from three mutant strains with anatomical defects in different parts of the central complex. It was shown that the mushroom bodies were practically not involved in this function, whereas the central complex plays a very important role in the organization of courtship behavior, in the control of accuracy of male following movements during the pursuit of a female, in the control of form stability of sound elements in courtship songs, in the control of rhythmic structure of courtship songs determined by the stability of the respective pacemakers and in setting up a correspondence between the current behavior and the context of the external situation. The contribution of different substructures of the central body to realization of these functions is different. So, despite the thoracic song center in Drosophila contains all the necessary elements for the generation of normal courtship signals of all types, modulating and stabilizing influences from the highest brain centers are necessary for the choice of its operating mode corresponding to the context of the external situation and for maintenance of its stability.Translated from Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, Vol. 40, No. 6, 2004, pp. 521–530.  相似文献   

19.
Integrins are cell adhesion molecules that mediate numerous developmental processes in addition to a variety of acute physiological events. Two reports implicate a Drosophila beta integrin, betaPS, in olfactory behavior. To further investigate the role of integrins in Drosophila olfaction, we used Gal4-driven expression of RNA interference (RNAi) transgenes to knock down expression of myospheroid (mys), the gene that encodes betaPS. Expression of mys-RNAi transgenes in the wing reduced betaPS immunostaining and produced morphological defects associated with loss-of-function mutations in mys, demonstrating that this strategy knocked down mys function. Expression of mys-RNAi transgenes in the antennae, antennal lobes, and mushroom bodies via two Gal4 lines, H24 and MT14, disrupted olfactory behavior but did not alter locomotor abilities or central nervous system structure. Olfactory behavior was normal in flies that expressed mys-RNAi transgenes via other Gal4 lines that specifically targeted the antennae, the projection neurons, the mushroom bodies, bitter and sweet gustatory neurons, or Pox neuro neurons. Our studies confirm that mys is important for the development or function of the Drosophila olfactory system. Additionally, our studies demonstrate that mys is required for normal behavioral responses to both aversive and attractive odorants. Our results are consistent with a model in which betaPS mediates events within the antennal lobes that influence odorant sensitivity.  相似文献   

20.
The mushroom bodies of the insect brain are sensory integration centers best studied for their role in learning and memory. Studies of mushroom body structure and development in neopteran insects have revealed conserved morphogenetic mechanisms. The sequential production of morphologically distinct intrinsic neuron (Kenyon cell) subpopulations by mushroom body neuroblasts and the integration of newborn neurons via a discrete ingrowth tract results in an age-based organization of modular subunits in the primary output neuropil of the mushroom bodies, the lobes. To determine whether these may represent ancestral characteristics, the present account assesses mushroom body organization and development in the basal wingless insect Thermobia domestica. In this insect, a single calyx supplied by the progeny of two neuroblast clusters, and three perpendicularly oriented lobes are readily identifiable. The lobes are subdivided into 15 globular subdivisions (Trauben). Lifelong neurogenesis is observed, with axons of newborn Kenyon cells entering the lobes via an ingrowth core. The Trauben do not appear progressively during development, indicating that they do not represent the ramifications of sequentially produced subpopulations of Kenyon cells. Instead, a single Kenyon cell population produces highly branched axons that supply all lobe subdivisions. This suggests that although the ground plan for neopteran mushroom bodies existed in early insects, the organization of modular subunits composed of separate Kenyon cell subpopulations is a later innovation. Similarities between the calyx of Thermobia and the highly derived fruit fly Drosophila melanogaster also suggest a correlation between calyx morphology and Kenyon cell number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号