首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Water and sediment samples were collected during summer and early fall 1999–2004 from coastal waters of New York State, USA, to test for the presence of Pfiesteria piscicida and Pfiesteria shumwayae. Physical and chemical conditions were characterized, and real-time polymerase chain reaction assays were conducted. Both species were relatively common and found at most sites at least once, and the frequency of positive assays was higher in sediments than in the water column. In a subset of the data from Suffolk County, Long Island, the presence of Pfiesteria was related to high chlorophyll a and relatively high nutrient concentrations. Partial SSU rDNA sequences of four PCR amplicons generated using P. shumwayae primers indicated two sequences: three were identical to GenBank P. shumwayae entries, but one showed enough sequence difference (15 positions in a 454 bp amplicon) to suggest a possible new species. Three isolates were tested for toxicity, and one was found to kill fish in bioassays. Despite the widespread presence of both Pfiesteria species and demonstration of potential to harm fish, no blooms of these dinoflagellates have been observed, nor has there been evidence of Pfiesteria-related fish or human health problems in these waters, likely related to colder temperatures than optimal for Pfiesteria species.  相似文献   

2.
Pfiesteria piscicida is a heterotrophic dinoflagellate widely distributed along the middle Atlantic shore of the United States and associated with fish kills in the Neuse River (North Carolina) and the Chesapeake Bay (Maryland and Virginia). We constructed a genomic DNA library from clonally cultured P. piscicida and characterized the nontranscribed spacer (NTS), small subunit, internal transcribed spacer 1 (ITS1), 5.8S region, ITS2, and large subunit of the rRNA gene cluster. Based on the P. piscicida ribosomal DNA sequence, we developed a PCR-based detection assay that targets the NTS. The assay specificity was assessed by testing clonal P. piscicida and Pfiesteria shumwayae, 35 additional dinoflagellate species, and algal prey (Rhodomonas sp.). Only P. piscicida and nine presumptive P. piscicida isolates tested positive. All PCR-positive products yielded identical sequences for P. piscicida, suggesting that the PCR-based assay is species specific. The assay can detect a single P. piscicida zoospore in 1 ml of water, 10 resting cysts in 1 g of sediment, or 10 fg of P. piscicida DNA in 1 μg of heterologous DNA. An internal standard for the PCR assay was constructed to identify potential false-negative results in testing of environmental sediment and water samples and as a competitor for the development of a quantitative competitive PCR assay format. The specificities of both qualitative and quantitative PCR assay formats were validated with >200 environmental samples, and the assays provide simple, rapid, and accurate methods for the assessment of P. piscicida in water and sediments.  相似文献   

3.
Pfiesteria complex species are heterotrophic and mixotrophic dinoflagellates that have been recognized as harmful algal bloom species associated with adverse fish and human health effects along the East Coast of North America, particularly in its largest (Chesapeake Bay in Maryland) and second largest (Albermarle-Pamlico Sound in North Carolina) estuaries. In response to impacts on human health and the economy, monitoring programs to detect the organism have been implemented in affected areas. However, until recently, specific identification of the two toxic species known thus far, Pfiesteria piscicida and P. shumwayae (sp. nov.), required scanning electron microscopy (SEM). SEM is a labor-intensive process in which a small number of cells can be analyzed, posing limitations when the method is applied to environmental estuarine water samples. To overcome these problems, we developed a real-time PCR-based assay that permits rapid and specific identification of these organisms in culture and heterogeneous environmental water samples. Various factors likely to be encountered when assessing environmental samples were addressed, and assay specificity was validated through screening of a comprehensive panel of cultures, including the two recognized Pfiesteria species, morphologically similar species, and a wide range of other estuarine dinoflagellates. Assay sensitivity and sample stability were established for both unpreserved and fixative (acidic Lugol's solution)-preserved samples. The effects of background DNA on organism detection and enumeration were also explored, and based on these results, we conclude that the assay may be utilized to derive quantitative data. This real-time PCR-based method will be useful for many other applications, including adaptation for field-based technology.  相似文献   

4.
The putative harmful algal bloom dinoflagellate, Pfiesteria piscicida (Steidinger et Burkholder), frequently co‐occurs with other morphologically similar species collectively known as Pfiesteria‐like organisms (PLOs). This study specifically evaluated whether unique sequences in the internal transcribed spacer (ITS) regions, ITS1 and ITS2, could be used to develop PCR assays capable of detecting PLOs in natural assemblages. ITS regions were selected because they are more variable than the flanking small subunit or large subunit rRNA genes and more likely to contain species‐specific sequences. Sequencing of the ITS regions revealed unique oligonucleotide primer binding sites for Pfiesteria piscicida, Pfiesteria shumwayae (Glasgow et Burkholder), Florida “Lucy” species, two cryptoperidiniopsoid species, “H/V14” and “PLO21,” and the estuarine mixotroph, Karlodinium micrum (Leadbetter et Dodge). These PCR assays had a minimum sensitivity of 100 cells in a 100‐mL sample (1 cell·mL?1) and were successfully used to detect PLOs in the St. Johns River system in Florida, USA. DNA purification and aspects of PCR assay development, PCR optimization, PCR assay controls, and collection of field samples are discussed.  相似文献   

5.
While several DNA-based methods have been developed for the putatively toxic dinoflagellate Pfiesteria piscicida Burkholder et Steidinger, an independent detection method such as immunofluorescence can be a useful alternative. In this study, P. piscicida-specific antisera were developed, and an immunofluorescence (IF) procedure was optimized. A total of six antisera were raised using whole cells (WCA) and the insoluble cellular fraction (ICF) as antigens, respectively, and their titer and specificity were examined using dot blot analysis and whole cell IF. Results showed that the two antisera produced from the ICF antigen had a markedly higher titer (1500) than the other four yielded from the WCA (200). In addition, the two ICF-derived antisera exhibited much higher species specificity, showing no cross-reaction with P. shumwayae, Cryptoperidiniopsis sp., Karlodinium micrum, and other more distant algae tested, and very low background for field collected samples. In evaluation of the IF technique using a P. piscicida-specific polymerase chain reaction (PCR) technique, results from both methods generally agreed well for both field samples (from eastern Long Island Sound) spiked with cultured P. piscicida and those containing naturally occurring P. piscicida (from Chesapeake Bay tributaries).  相似文献   

6.
7.
Cryptoperidiniopsis brodyi is a common heterotrophic dinoflagellate known to often co-occur with Pfiesteria species in eastern U.S. estuaries. In this study, C. brodyi from Australia and Pfiesteria piscicida from ballast water from Indonesia were characterized by morphological and genetic analyses. Two P. piscicida strains originating from ballast water samples showed little genetic differences compared to P. piscicida from other countries and their morphology was identical. This finding indicates a potential inflow of P. piscicida into Australian estuaries via ballast water. Nine cultures of C. brodyi were established from Tasmania, South Australia and Western Australia. All C. brodyi cultures exhibited identical thecal plate patterns and could not be discriminated from other non-Australian strains. In contrast, two distinct genotypes could be identified by rDNA sequence analyses which were distinct from the U.S. genotype of C. brodyi. A previous survey using PCR-based methods reported a wide distribution of Pfiesteria shumwayae in Australia. However, the present study demonstrated that SSU rDNA-based P. shumwayae-specific primers produce false-positive PCR reactions with Australian C. brodyi. These results suggest that genetic variants of C. brodyi are widely distributed in Australia and Australian genotypes of C. brodyi had previously been misidentified as P. shumwayae. This finding also indicates that previous Australian distribution studies of P. shumwayae using SSU rDNA-based primers are potentially erroneous and need to be revisited.  相似文献   

8.
The toxic dinoflagellate, Pfiesteria piscicida, is a common constituent of the phytoplankton community in the Delaware Inland Bays, USA. In this study, molecular methods were used to investigate the distributions of benthic stages (cysts) of P. piscicida in sediment cores from the Delaware Inland Bays. Cores from 35 sites were partitioned into nephloid and anoxic layers and analyzed for P. piscicida by nested amplification of the 18S rDNA gene using P. piscicida-specific primers. The presence of inhibitory substances in the PCR reaction was evaluated by inclusion of an exogenous control DNA in the extraction buffer, thus eliminating samples that may yield false-negative results. Our results indicate a patchy distribution of P. piscicida in sediments of the Delaware Inland Bays, with distinct differences between each of the three bays. Overall, P. piscicida was found more frequently in sediments from Rehoboth Bay compared to Indian River and Little Assawoman Bays. These differences suggest (i) that populations of P. piscicida may be more widely distributed in Rehoboth Bay, (ii) that populations of P. piscicida may have been introduced to Rehoboth Bay at an earlier time, (iii) that past blooms of P. piscicida in Rehoboth Bay estuaries may have seeded the sediments with higher numbers of cysts, and/or (iv) that Rehoboth Bay sediments may be more resistant to clearing due to storm turbulence.  相似文献   

9.
Recent research emphasis on the ecology of Pfiesteria spp. (Dinophyceae) has led to recognition of several morphologically similar heterotrophic dinoflagellates that often co-occur with Pfiesteria spp. in estuaries along the United States Atlantic coast. These include cryptoperidiniopsoid dinoflagellates, which resemble Pfiesteria spp. in having complex life cycles that include zoospores capable of kleptoplastidy. To examine and compare the role of kleptoplastidy in Cryptoperidiniopsis sp. and Pfiesteria piscicida, we tested the effects of irradiance on growth under prey-saturated (Storeatula major, Cryptophyceae) conditions. Growth of Cryptoperidiniopsis was strongly influenced by light intensity while no major effects were observed in P. piscicida. In Cryptoperidiniopsis, highest cell numbers and specific growth rates, but lowest specific cryptophyte consumption rates, were found at the highest light intensity tested (100 μmol photons m−2 s−1). A growth model was developed and used to estimate that the average half-life of chloroplasts ingested by Cryptoperidiniopsis decreased 3.4-fold from 12.6 h at high light to 3.7 h in the dark. These results show that light strongly enhances specific growth rate and growth efficiency of Cryptoperidiniopsis feeding on cryptophytes, and suggest that retained kleptochloroplasts may play a quantitatively significant role in carbon and energy metabolism of this organism. Differences in the effects of light between Cryptoperidiniopsis and P. piscicida may reflect different nutritional strategies, and allow these closely related dinoflagellates to occupy different niches and co-exist.  相似文献   

10.
The rates of uptake of a range of forms of nitrogenous nutrients were measured in cultures of Pfiesteria piscicida and Pfiesteria shumwayae maintained at varying physiological states. The measured rates of dissolved N uptake under some conditions approached the rates of N uptake that are achieved through phagotrophy. Rates of dissolved N uptake by P. piscicida contributed <10% of the cellular N of flagellated cells feeding on algae, but were equal to or greater than phagotrophic N acquisition in cells recently removed from fish cultures. Specific N uptake rates (V, h−1) were higher for cells that were maintained on algal prey for long periods (months) than those that were grown with live fish. However, rates of N uptake on a cellular basis for cells grown on or recently removed from fish were comparable to those maintained on algal prey, likely reflecting differences in the sizes of cells of different physiological condition. Preferences for form of N generally followed a decreasing trend of amino acids > urea > NH4+ > NO3. Nitrate consistently was not a preferred form of N. Although Pfiesteria spp. are often found in eutrophic environments, the relationship between Pfiesteria spp. and nutrient availability is likely to be primarily indirect, mediated through the production of various prey on which Pfiesteria spp. feed. These findings also confirm, however, that when dissolved N concentrations are elevated, they can contribute to the supplemental nutrition of these cells, and thus may provide a significant source of N to Pfiesteria spp. in nature.  相似文献   

11.
In response to concerns that there may be an association between harmful algal bloom (HAB) species and fish health, including the widespread use of fish health as one indicator of a possible HAB warranting further investigation, evidence for such an association was evaluated in Chesapeake Bay and other mid-Atlantic estuaries (1999–2001). A statistical approach was used, without invoking causality, to test whether there is an association between the prevalence of externally-visible lesions in fish populations above background levels and the presence of Pfiesteria spp. in co-located water and fish samples. Externally visible anomalies (e.g. ulcers, necrosis, parasites, etc.) were recorded for Atlantic menhaden (Brevoortia tyrannus) and all other fish collected. Polymerase chain reaction (PCR) techniques were used to test for the presence of Pfiesteria spp. in water samples collected at routine and rapid response sampling events. No actively toxic Pfiesteria was found during this study. Fine-scale (within a given sample site) and broad-scale (estuary-wide sampling) comparisons showed positive associations between externally-visible fish lesions in menhaden populations and the presence of Pfiesteria spp. in co-located samples. Logistic regression modeling of Pfiesteria detection probabilities as a function of prevalence of menhaden with lesions was significant (P = 0.0096). Reductions in the false positive (tests indicating Pfiesteria presence when its absent) and false negative (tests indicating Pfiesteria is absent when it is actually present) rates occurred when the minimum sample size threshold increased from 1 to 30 fish (P = 0.003–0.001). This association served as a useful field indicator of potential HAB activity that could warrant further field investigation and testing.  相似文献   

12.
The heterotrophic dinoflagellate Pfiesteria piscicida was detected in Ace Lake in the Vestfold Hills, eastern Antarctica by using real-time PCR based on 18S rDNA sequences. Antarctic water samples collected in 2004 were tested by species-specific real-time PCR assays for the identification of P. piscicida and P. shumwayae. Positive results were shown with P. piscicida-specific real-time PCR, and PCR products were examined by sequence analysis for confirmation. A phylogenetic tree made from partial 18S rDNA sequences showed that the Antarctic clone clustered with P. piscicida. This result suggests that P. piscicida is present in the extreme conditions of an Antarctic saline lake which has not contained fish for thousands of years.  相似文献   

13.
A molecular method using the polymerase chain reaction (PCR) amplification of small subunit gene sequences (18S rDNA) and denaturing gradient gel electrophoresis (DGGE) was used to determine both the population complexity and species identification of organisms in harmful algal blooms. Eighteen laboratory cultures of dinoflagellates, including Akashiwo, Gymnodinium, Heterocapsa, Karenia, Karlodinium, Pfiesteria, and Pfiesteria-like species were analyzed using dinoflagellate-specific oligonucleotide primers and DGGE. The method is sensitive and able to determine the number of species in a sample, as well as the taxonomic identity of each species, and is particularly useful in detecting differences between species of the same genus, as well as differences between morphologically similar species. Using this method, each of eight Pfiesteria-like species was verified as being clonal isolates of Pfiesteria piscicida. The sensitivity of dinoflagellate DGGE is approximately 1000 cells/ml, which is 100-fold less sensitive than real-time PCR. However, the advantage of DGGE lies in its ability to analyze dinoflagellate community structure without needing to know what is there, while real-time PCR provides much higher sensitivity and detection levels, if probes exist for the species of interest, attributes that complement DGGE analysis. In a blinded test, dinoflagellate DGGE was used to analyze two environmental fish kill samples whose species composition had been previously determined by other analyses. DGGE correctly identified the dominant species in these samples as Karlodinium micrum and Heterocapsa rotundata, proving the efficacy of this method on environmental samples. Toxin analysis of a clonal isolate obtained from the fish kill samples confirmed the presence of KmTx2, corroborating the earlier genetic identification of toxic K. micrum in the fish kill water sample.  相似文献   

14.
Pfiesteria spp. are mixotrophic armored dinoflagellates populating the Atlantic coastal waters of the United States. They have been a focus of intense research due to their reported association with several fish mortality events. We have now used a clonal culture of Pfiesteria piscicida and several new environmental isolates to describe growth characteristics, feeding, and factors contributing to the encystment and germination of the organism in both laboratory and environmental samples. We also discuss applied methods of detection of the different morphological forms of Pfiesteria in environmental samples. In summary, Pfiesteria, when grown with its algal prey, Rhodomonas sp., presents a typical growth curve with lag, exponential, and stationary phases, followed by encystment. The doubling time in exponential phase is about 12 h. The profiles of proliferation under a standard light cycle and in the dark were similar, although the peak cell densities were markedly lower when cells were grown in the dark. The addition of urea, chicken manure, and soil extracts did not enhance Pfiesteria proliferation, but crude unfiltered spent aquarium water did. Under conditions of food deprivation or cold (4°C), Pfiesteria readily formed harvestable cysts that were further analyzed by PCR and scanning electron microscopy. The germination of Pfiesteria cysts in environmental sediment was enhanced by the presence of live fish: dinospores could be detected 13 to 15 days earlier and reached 5- to 10-times-higher peak cell densities with live fish than with artificial seawater or f/2 medium alone. The addition of ammonia, urea, nitrate, phosphate, or surprisingly, spent fish aquarium water had no effect.  相似文献   

15.
The ichthyocidal activity of Pfiesteria piscicida dinospores was examined in an aquarium bioassay format by exposing fish to either Pfiesteria-containing environmental sediments or clonal P. piscicida. The presence of Pfiesteria spp. and the complexity of the microbial assemblage in the bioassay were assessed by molecular approaches. Cell-free water from bioassays that yielded significant fish mortality failed to show ichthyocidal activity. Histopathological examination of moribund and dead fish failed to reveal the skin lesions reported elsewhere. Fish larvae within “cages” of variable mesh sizes were killed in those where the pore size exceeded that of Pfiesteria dinospores. In vitro exposure of fish larvae to clonal P. piscicida indicated that fish mortality was directly proportional to the dinospore cell density. Dinospores clustered around the mouth, eyes, and operculi, suggesting that fish health may be affected by their direct interaction with skin, gill epithelia, or mucous surfaces. Molecular fingerprinting revealed the presence of a very diverse microbial community of bacteria, protists, and fungi within bioassay aquaria containing environmental sediments. Some components of the microbial community were identified as potential fish pathogens, preventing the rigorous identification of Pfiesteria spp. as the only cause of fish death. In summary, our results strongly suggest (i) that this aquarium bioassay format, which has been extensively reported in the literature, is unsuitable to accurately assess the ichthyocidal activity of Pfiesteria spp. and (ii) that the ichthyocidal activity of Pfiesteria spp. is mostly due to direct interactions of the zoospores with fish skin and gill epithelia rather than to soluble factors.  相似文献   

16.
The dinoflagellate, Pfiesteria piscicida, can form harmful algal blooms in estuarine environments. The dominant copepod species usually found in these waters is Acartia tonsa. We tested the ability of A. tonsa to graze the non-toxic zoospore stage of P. piscicida and thus serve as a potential biological control of blooms of this algal species. A. tonsa grazed the non-toxic zoospore stages of both a non-inducible P. piscicida strain (FDEPMDR23) and a potentially toxic strain (Tox-B101156) at approximately equal rates. Ingestion of P. piscicida increased with cell concentration and exhibited a saturated feeding response. Both the maximum number of cells ingested (Imax) and the slope of the ingestion curve (α) of A. tonsa feeding on P. piscicida were comparable to these ingestion parameters for A. tonsa fed similar-sized phytoplankton and protozoan species. When these laboratory ingestion rates were combined with abundance estimates of A. tonsa from the Pocomoke Estuary and Chesapeake Bay, we found that significant grazing control of the non-toxic zoospore stage of P. piscicida by A. tonsa would only occur at high copepod abundances (>10 copepods L−1). We conclude that under most in situ conditions the potential biological control of blooms of P. piscicida is exerted by microzooplankton grazers. However, in the less saline portions of estuaries where maximum concentrations of copepods often occur with low abundances of microzooplankton, copepod grazing coefficients can be similar to the growth rates of P. piscicida.  相似文献   

17.
Craig A. Stow 《Ecosystems》1999,2(3):237-241
A recently identified dinoflagellate, Pfiesteria piscicida, has been implicated as a cause of fishkills in mid-Atlantic estuaries. To date, field evidence supporting this argument has consisted of samples, analyzed for the presence of the toxic Pfiesteria forms, gathered during a fishkill. I present a probabilistic approach to examine the use of this kind of a posteriori information as an indication of cause and effect relationships. The analysis shows that the conditional probability of the presence of Pfiesteria after a fishkill has begun provides little support for Pfiesteria as a cause of fishkills, without also knowing the probability of Pfiesteria's presence under all conditions. Documenting the relative presence of toxic life stages during fishkills and under non-fishkill conditions will provide supporting evidence to assess Pfiesteria's role in fishkills. However, proving that Pfiesteria causes estuarine fishkills using only ‘after the fact‘ information is essentially impossible.  相似文献   

18.
Pfiesteria piscicida is a heterotrophic dinoflagellate widely distributed along the middle Atlantic shore of the United States and associated with fish kills in the Neuse River (North Carolina) and the Chesapeake Bay (Maryland and Virginia). We constructed a genomic DNA library from clonally cultured P. piscicida and characterized the nontranscribed spacer (NTS), small subunit, internal transcribed spacer 1 (ITS1), 5.8S region, ITS2, and large subunit of the rRNA gene cluster. Based on the P. piscicida ribosomal DNA sequence, we developed a PCR-based detection assay that targets the NTS. The assay specificity was assessed by testing clonal P. piscicida and Pfiesteria shumwayae, 35 additional dinoflagellate species, and algal prey (Rhodomonas sp.). Only P. piscicida and nine presumptive P. piscicida isolates tested positive. All PCR-positive products yielded identical sequences for P. piscicida, suggesting that the PCR-based assay is species specific. The assay can detect a single P. piscicida zoospore in 1 ml of water, 10 resting cysts in 1 g of sediment, or 10 fg of P. piscicida DNA in 1 micro g of heterologous DNA. An internal standard for the PCR assay was constructed to identify potential false-negative results in testing of environmental sediment and water samples and as a competitor for the development of a quantitative competitive PCR assay format. The specificities of both qualitative and quantitative PCR assay formats were validated with >200 environmental samples, and the assays provide simple, rapid, and accurate methods for the assessment of P. piscicida in water and sediments.  相似文献   

19.
Toxicity of Pfiesteria piscicida (strain CAAE #2200) in the presence of fish (juvenile hybrid tilapia, Oreochromis sp., total length 3–6 cm) has been maintained in the laboratory for 19 months by serial transfer of toxic cells using a modified maintenance protocol. Toxicity was re-induced when toxin-producing P. piscicida cells were separated from fish and cultured on algal prey for 50 days and then re-introduced to new tanks containing fish. We confirmed toxicity in a strain of P. shumwayae (strain CAAE #101272). Toxicity to fish was demonstrated in culture filtrates (0.2 μm) derived from cultures of both Pfiesteria spp., however, it was markedly reduced in comparison to unfiltered water. Filtrates retained toxic activity when stored at −20 °C for up to 6 months. Toxicity to fish was retained when filtrates were held at room temperature for 48 h, at 70 °C for 30 min or at 88–92 °C for 2 h. P. piscicida killed all finfish species tested. Grass shrimp (Paleomonetes pugio; adult 2–3 cm), blue crab (Callinectes sapidus; juvenile 4–7 cm) and brine shrimp (Artemia sp.; 18–24 h post-hatch) were unaffected by concentrations of toxin(s) that killed juvenile tilapia in 4–24 h. Ichthyotoxic activity of filtrates from fish-killing cultures and stability of the toxic activity were similar among P. piscicida and P. shumwayae. These results confirm previously reported observations on toxicity of P. piscicidaand P. shumwayae to finfish. We have maintained toxicity in the laboratory for longer periods than have previously been routinely achieved, and we have demonstrated that the toxic activity is heat stable. In contrast to previous studies with other toxic P. piscicida strains, we did not observe toxic activity to blue crabs or other crustaceans.  相似文献   

20.
Extraordinary spring blooms of the dinoflagellate Prorocentrum minimum have been a recurring feature of upper Chesapeake Bay for many years. Though not thought to be toxic in Chesapeake Bay, these blooms produce extraordinarily high concentrations of chlorophyll, thereby increasing light attenuation. A particularly large event occurred in the spring of 2000. Here, we assess the impact of the spring 2000 P. minimum bloom on habitat quality for submerged aquatic vegetation (SAV) in the mesohaline region of Chesapeake Bay and its tributaries. We determined the light absorption and scattering spectrum of P. minimum on a per cell basis by analyzing inherent optical properties of natural samples from the Rhode River, Maryland, which were overwhelmingly dominated by P. minimum. Using these per cell properties, we constructed a model of light penetration incorporating observed cell counts of P. minimum to predict the impact of the bloom on other tributaries and main stem locations that experienced the bloom. Model estimates of diffuse attenuation coefficients agreed well with the limited measurements that were available. Impacts of the mahogany tide on diffuse attenuation coefficient ranged from negligible (10–30% increase above the seasonal median in the Patapsco and Magothy rivers), to a greater than six-fold increase (Potomac River). Attenuation coefficients in tributaries to the north and south of the bloom region either decreased or were unchanged relative to seasonal medians. Segments with SAV losses in 2000 were mostly the same as those that experienced the P. minimum bloom. Segments north and south of the bloom area mostly had SAV increases in 2000. Though all of the segments that experienced a decline in SAV area after the spring 2000 bloom showed an increase in 2002, the 2000 setback interrupted what otherwise has been a slow recovery in mid-Bay SAV, demonstrating the adverse impact of P. minimum blooms on SAV populations in Chesapeake Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号