首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cDNA corresponding to the nitrate reductase (NR) gene from Dunaliella salina was isolated by RT-PCR and (5′/3′)-RACE techniques. The full-length cDNA sequence of 3,694 bp contained an open reading frame of 2,703 bp encoding 900 amino acids, a 5′-untranslated region of 151 bp and a 3′-untranslated sequence of 840 bp with a poly (A) tail. The putative gene product exhibited 78%, 65%, 59% and 50% identity in amino acid sequence to the corresponding genes of Dunaliella tertiolecta, Volvox carteri, Chlamydomonas reinhardtii, and Chlorella vulgaris, respectively. Phylogenetic analysis showed that D. salina NR clusters together with known NR proteins of the green algae. The molecular mass of the encoded protein was predicted to be 99.5 kDa, with an isoelectric point of 8.31. This protein shares common structural features with NRs from higher plants and green algae. The full-length cDNA was heterologously expressed in Escherichia coli as a fusion protein, and accumulated to up to 21% of total bacteria protein. Recombinant NR protein was active in an enzyme assay, confirming that the cloned gene from D. salina is indeed NR.  相似文献   

2.
Soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) is the most important pathogen in soybean production worldwide and causes substantial yield losses. An apparent narrow genetic base of SCN resistance was observed in current elite soybean cultivars, and searching for novel SCN resistance genes as well as novel resistance sources rather than focusing on the two important genes rhg1 and Rhg4 has become another major objective in soybean research. In the present paper we report a 1,477 bp Hs1 pro-1 homolog, named GmHs1 pro-1 . This gene was cloned from soybean variety Wenfeng 7 based on information for Hs1 pro-1 , a beet cyst nematode resistance gene in sugar beet. It has two domains, Hs1pro-1_N and Hs1pro-1_C, both of which are believed to confer resistance to nematodes. Of the 1,477 bp sequence in GmHs1 pro-1 , an open reading frame of 1,314 bp, encoding a protein with 437 amino acids, was flanked by a 5′-untranslated region of 27 bp and a 3′-untranslated region of 135 bp. Fourteen single-nucleotide polymorphisms (SNPs) were observed in 44 soybean accessions including 23 wild soybeans, 8 landraces, and 13 soybean varieties (or lines), among which 5 in wild soybeans and 3 in landrace accessions were unique. Sequence diversity analysis on the 44 soybean accessions showed π = 0.00168 and θ = 0.00218 for GmHs1 pro-1 ; landraces had the highest diversity, followed by wild soybeans, with varieties (or lines) having the lowest. Although we did not detect a significant effect of selection on GmHs1 pro-1 in the three populations, sequence diversity, unique SNPs, and phylogenetic analysis indicated a slight domestication bottleneck and an intensive selection bottleneck. High sequence diversity, more unique SNPs, and broader representation across the phylogenetic tree in wild soybeans and landraces indicated that wild collections and landrace accessions are invaluable germplasm for broadening the genetic base of elite soybean varieties resistant to SCN. C. Yuan and G. Zhou contributed to this paper equally.  相似文献   

3.
4.
A brown blotch bacterium,Pseudomonas tolaasii strain PT814, expresses a high degree of cross-protection against generalized stress imposed by physical/chemical treatment, H2O2, UV, high temperature, ethanol and NaCl during the interaction withPleurotus ostreatus. Stress resistance was also noted in the bacterium in vitro under limited carbon and nitrogen sources. In addition, changes in cell morphology from a “metabolically active” rod to an “energy-saving” spherical shape were detected during starvation and the interaction. All the changes under stress were reversible. A homologue ofrpoS (σ S), a regulator that controls such physiological status during starvation in other bacteria, was identified inP. tolaasii strain PT814. Data suggest that the bacterium is able to withstand a complex stress environment for its survival through changes in its metabolic pattern.  相似文献   

5.
Liu S  Hu Y  Wang X  Han L  Song S  Cheng H  Lin Z 《Molecular biology reports》2009,36(6):1605-1610
Cinnamate 4-hydroxylase (C4H, EC 1.14.13.11) plays an important role in the phenylpropanoid pathway, which produces many economically important secondary metabolites. A gene coding for C4H, designated as PhC4H (GenBank accession no. DQ211885) was isolated from Parthenocissus henryana. The full-length PhC4H cDNA is 1,747 bp long with a 1,518-bp open reading frame encoding a protein of 505 amino acids, a 40-bp 5′ non-coding region and a 189-bp 3′-untranslated region. Secondary structure of the deduced PhC4H protein consists of 41.78% alpha helix, 15.64% extended strand and 42.57% random coil. The genomic DNA of PhC4H is 2,895 bp long and contains two introns; intron I is 205-bp and intron II is 1,172-bp (GenBank accession no. EU440734). DNA gel blot analysis revealed that there might be a single copy of PhC4H in Parthenocissus henryana genome. By using anchored PCR, a 963-bp promoter sequence was isolated and it contains many responsive elements conserved in the upstream region of PAL, C4H and 4CL including the P-, A-, L- and H-boxes.  相似文献   

6.
To obtain an insight into the comprehensive molecular characteristics of the salt tolerance mechanism, we performed a screening for salt inducible genes in a halophytic plant, Salicornia herbacea, using mRNA differential display. A comparative analysis of gene expression in Salicornia grown in control and salt-stressed conditions led to the detection of a gene that was induced by salt. Both sequence analysis and a subsequent database search revealed that this gene was highly homologous to tonoplast intrinsic proteins (TIPs) from a variety of plant species. This gene, designated as ShTIP, is 1014 bp in size and contains a coding region of 762 nucleotides, which encodes a protein of 254 amino acids. Northern blot analysis revealed that ShTIP was predominantly expressed in shoots under normal conditions. However, salt stress induced high expression of ShTIP in both the shoots and roots. The expression of ShTIP in a salt-sensitive calcineurin-deficient yeast mutant (cnbΔ) resulted in a resistance to the high salt conditions. In addition, we compared the expression of a TIP gene in Arabidopsis with that of ShTIP under different conditions and found that the Salicornia TIP has a different regulatory mechanism for adapting to salt stress conditions compared with the glycophyte Arabidopsis TIP. These results indicate that ShTIP plays an important role in salt tolerance.  相似文献   

7.
Pseudomonas tolaasii strain PT814 produces extracellular toxins, tolaasins, and a volatile toxin, tovsin, that are responsible for the induction of brown blotch and rotting, respectively, in a cultivated mushroom,Pleurotus ostreatus. Insertions of single transposon mini-Tn5Km 1 into the chromosome ofP. tolaasii strain PT814 generated mutants that are pleiotropically defective in tolaasin and protease production, and altered in colony morphology. The mutants, however, produce tovsin at the level of wild-type. Variants phenotypically similar to the pleiotropic mutants ofP. tolaasii strain PT814 spontaneously occurred inP. tolaasii strain S8501 at 22–30°C in vitro. The occurrence of variants was significantly reduced in the presence of extracts ofP ostreatus or at a temperature of 15–20°C. ThertpA gene (rtpA=regulator gene of tolaasin production and other pleiotropic traits) isolated from aP. tolaasii strain PT814 gene library restored the wild-type phenotype in both the mini-Tn5km 1 insertion and spontaneous mutants. mini-Tn5km 1 insertions were also located in the allele ofrtpA. Nucleotide sequencing of thertpA DNA revealed an open reading frame of 2,751 bp predicted to encode a protein consisting of 917 amino acid residues with a molecular mass of 100.6 kDa and displaying the conserved amino acid sequence of both sensor, and receiver domains of “bacterial two-component regulators”. The data suggest that the machinery responding to environmental stimuli is essential for the pathogenic interaction ofP. tolaasii with the mushroom.  相似文献   

8.
A cDNA showing high sequence similarity (>70%) to plant protein phosphatase 1 catalytic subunit variants from other species has been isolated from a cDNA library derived from mRNAs expressed in elicitor-treated suspension-cultured cells. The clone appears to be a near full-length 1431 bp with a 172 bp 5-untranslated region and a 317 bp 3-untranslated region. The open reading frame, determined by sequence similarity, codes for a protein with predicted M r of 35552. Alternatively an ATG situated to the 5 end of the putative start site would increase the protein size by 6 amino acids.The mRNA for Pvpp1 was shown to be rapidly induced by elicitor treatment of suspension-cultured cells of French bean. The cloned cDNA represents one of the few examples of a gene product that is probably involved in dephosphorylation events arising after the initial responses to biotic stress.Abbreviations PAL phenylalanine ammonia-lyase - PP1 protein phosphatase 1 - Pvpp1 Phaseolus vulgaris protein phosphatase 1  相似文献   

9.
Esterase 6 (Est-6/EST6) is the major β-carboxylesterase inD. melanogaster and its siblingsD. simulans andD. mauritiana. It is expressed in several tissues but its major site of expression is the sperm ejaculatory duct of the adult male. Although EST6 activity affects reproductive fitness, there are high levels of electrophoretic and activity polymorphism, at least withinD. melanogaster andD. simulans. Here we present the nucleotide sequences of anEst-6 allele and its flanking regions from each ofD. simulans andD. mauritiana and compare them with the publishedD. melanogaster sequences. As might be expected, replacement sites are significantly less divergent than exon silent sites in all comparisons, suggesting that selection is acting to maintain EST6 structure and function among the three species. Nevertheless, the ratio of the levels of replacement to silent site divergence is still much higher forEst-6 than for seven of ten other genes (including both isozyme-coding loci) for which comparable data have been published for these species. This is consistent with the high levels of EST6 electrophoretic polymorphism withinD. melanogaster andD. simulans and implies that selective constraints against amino acid change are relatively weak for EST6. By contrast, comparisons involving promotor sequences show that the level of divergence in the first 350bp 5′ of the gene is significantly lower than those for four of the six other loci for which comparable data have been published for these species. In particular, there are two perfectly conserved stretches (−1 to −158bp and −219 to −334bp) each over 100bp long included in this 350bp region. Thus the data suggest a relatively low level of selective constraint on the amino acid sequence of EST6 but a relatively high level of constraint on sequences affecting aspects of its expression.  相似文献   

10.
红树植物杯萼海桑是最耐盐的红树植物之一。S-腺苷甲硫氨酸合成酶(S-adenosylmethionine synthetase,SAMS)是S-腺苷甲硫氨酸(S-adenosylmethionine,SAM)生物合成途径的关键酶。SAMS作为一个逆境胁迫响应蛋白在植物的耐盐调控中发挥着极其重要的作用。本文结合杯萼海桑根的转录组注释,根据编码区序列设计引物,通过PCR克隆杯萼海桑SAMS基因的编码区cDNA,并对其进行生物信息分析,为研究杯萼海桑适应逆境的机制奠定理论基础。结果显示PCR扩增了一个长1 182 bp的基因片段,该片段编码由393个氨基酸组成的S-腺苷甲硫氨酸合成酶。同源性比对及进化树分析显示杯萼海桑的SAMS氨基酸序列进化上相对保守。本研究首次从红树林植物杯萼海桑中克隆S-腺苷甲硫氨酸合成酶基因,并获得其编码区序列,为进一步研究杯萼海桑应对逆境胁迫的分子生物学机制与胁迫相关基因调控网络奠定基础。  相似文献   

11.
12.
In the attempt to discover new genes involved in the floral development in monocotyledonousin species, we have cloned and characterized the homologous PISTALLATA-like (PI-like) gene from Phalaenopsis hybrid cultivar named PhPI9 (Ph alaenopsis PI STILLATA # 9). The cDNA of PhPI9 has a fragment of 834 bp and has 60% identity with the PISTILATA from Arabidopsis. The deduced amino acid sequence of PhPI9 had the typical PI-motif. It also formed a subclade with other monocot PI-type genes in phylogenetic analysis. Southern analysis showed that PhPI9 was present in the Phalaenopsis orchid genome as a single copy. Furthermore, it was expressed only in the lip of the Phalaenopsis flower and no expression was detected in vegetative organs. Thus, as a B-function MADS-box gene, PhPI9 specifies floral organ identity in orchids. __________ Translated from Journal of Fudan University (Natural Science), 2006, 45(3): 277–282 [译自: 复旦学报(自然科学版)]  相似文献   

13.
Calmodulin (CaM), belonging to the tropinin C (TnC) superfamily, is one of the calcium-binding proteins that are highly conserved in their protein and gene structure. Based on the structure comparison among published vertebrate and invertebrate CaM, it is proposed that the ancestral form of eumetazoan CaM genes should have five exons and four introns (four-intron hypothesis). In this study, we determined the gene structure of CaM in the coral Acropora muricata, an anthozoan cnidarian representing the basal position in animal evolution. A CaM clone was isolated from a cDNA library constructed from the spawned eggs of A. muricata. This clone was composed of 908 nucleotides, including 162 base pairs (bp) of 5′-untranslated region (UTR), 296 bp of 3′-UTR, and an open reading frame 450 bp in length. The deduced amino acid indicated that the Acropora CaM protein is identical to that of the actiniarian, Metridinium senile, and has four putative calcium-binding domains highly similar to those of other vertebrate or invertebrate CaMs. Southern blot analysis revealed that Acropora CaM is a putative single-copy gene in the nuclear genome. Genomic sequencing showed that Acropora CaM was composed of five exons and four introns, with intron II not corresponding to any region in the actiniarian CaM gene, which possesses only four exons and three introns. Our results highlight that the coral CaM gene isolated from A. muricata has four introns at the predicted positions of the early metazoan CaM gene organization, providing the first evidence from the basal eumetazoan phylum to support the four-intron hypothesis.  相似文献   

14.
The chloroplast ATP synthase (ATPase) utilizes the energy of a transmembrane electrochemical proton gradient to drive the synthesis of ATP from ADP and phosphate. The chloroplast ATPase α and β subunits are the essential components of multisubunit protein complex. In this paper, the full-length cDNA and genomic DNA of ATPase α (designated as GbatpA) and β (designated as GbatpB) subunit genes were isolated from Ginkgo biloba. The GbatpA and GbatpB genes were both intronless. The coding regions of GbatpA and GbatpB were 1530 bp and 1497 bp long, respectively, and their deduced amino acid sequences showed high degrees of identity to those of other plant ATPase α and β proteins, respectively. The expression analysis by RT-PCR revealed that GbatpA and GbatpB both expressed in tissue-specific manners in G. biloba and might involve in leaf development. The recombinant GbATPB protein was successfully expressed in E. coli strain using pET28a vector with ATPase activity as three times high as the control, and the results showed that the molecular weight of the recombinant protein was about 54 kDa, a size that was in agreement with that predicted by bioinformatics analysis. This study provides useful information for further studying on overall structure, function and regulation of the chloroplast ATPase in G. biloba, the so-called “living fossil” plant as one of the oldest gymnosperm species. These authors contributed equally to this work  相似文献   

15.
Li M  Ou X  Yang X  Guo D  Qian X  Xing L  Li M 《Biotechnology letters》2011,33(9):1823-1830
A novel gene (IgASE2) encoding a C18-Δ9 polyunsaturated fatty acids specific (C18-Δ9-PUFAs-specific) elongase was isolated and characterized from DHA-rich microalga, Isochrysis galbana H29. The IgASE2 gene was 1,653 bp in length, contained a 786 bp ORF encoding a protein of 261 amino acids that shared 87% identity with Δ9 elongase, IgASE1, and possessed a 44 bp 5′-untranslated region (5′-UTR) and a 823 bp 3′-untranslated region (3′-UTR). IgASE2, by its heterologous expression in Saccharomyces cerevisiae, elongated linoleic acid (LA, 18:2n−6) and α-linolenic (ALA, 18:3n−3) to eicosadienoic acid (EDA, 20:2n−6) and eicosatrienoic acid (ETrA, 20:3n−3), respectively. The conversions of LA to EDA and ALA to ETrA were 57.6 and 56.1%, respectively. Co-expression of this elongase with Δ8 desaturase required for the synthesis of C20-polyunsaturated fatty acids resulted in the accumulation of dihomo-γ-linolenic acid (20:3n−6) from LA and eicosatetraenoic acid (20:4n−6) from ALA. These results demonstrated that IgASE2 exhibited C18-Δ9-PUFAs-specific elongase activity and the alternative Δ8 pathway was reconstituted.  相似文献   

16.
The full sequence of the nitrate reductase gene was obtained from a type isolate of Verticillium fungicola var. fungicola and used for phylogenetic analysis against other ascomycete fungi. Sequencing obtained 2749 bp of coding region, 668 bp of 5′ flanking sequence and 731 bp of 3′ flanking sequence. In silico analysis indicated that the coding region contains a single intron and translates into an 893 amino acid protein, with BLAST analysis identifying five conserved nitrate reductase domains within the protein. The 5′ flanking sequence contains numerous conserved sites putatively involved in binding nitrogen regulatory proteins, indicating that the regulation of the gene is likely to be subject to the same regulation as that of model fungi such as Aspergillus nidulans. The central portion of this gene was amplified and sequenced from a number of V. fungicola isolates and related fungi and the resulting phylogenies compared to those obtained from analysis of the rDNA internal transcribed spacer regions for these fungi. Both nitrate reductase and ITS analyses provide additional evidence that reinforces previous findings that suggest the mushroom pathogenic Verticillium species are more related to other chitinolytic fungi such as the insect pathogens Verticillium lecanii and Beauveria bassiana than to the plant pathogenic Verticillia.  相似文献   

17.
18.
The complete mitochondrial genome (mtDNA) of snow leopard Panthera uncia was obtained by using the polymerase chain reaction (PCR) technique based on the PCR fragments of 30 primers we designed. The entire mtDNA sequence was 16 773 base pairs (bp) in length, and the base composition was: A—5,357 bp (31.9%); C—4,444 bp (26.5%); G—2,428 bp (14.5%); T—4,544 bp (27.1%). The structural characteristics [0] of the P. uncia mitochondrial genome were highly similar to these of Felis catus, Acinonyx jubatus, Neofelis nebulosa and other mammals. However, we found several distinctive features of the mitochondrial genome of Panthera unica. First, the termination codon of COIII was TAA, which differed from those of F. catus, A. jubatus and N. nebulosa. Second, tRNASer (AGY), which lacked the ‘‘DHU’’ arm, could not be folded into the typical cloverleaf-shaped structure. Third, in the control region, a long repetitive sequence in RS-2 (32 bp) region was found with 2 repeats while one short repetitive segment (9 bp) was found with 15 repeats in the RS-3 region. We performed phylogenetic analysis based on a 3 816 bp concatenated sequence of 12S rRNA, 16S rRNA, ND2, ND4, ND5, Cyt b and ATP8 for P. uncia and other related species, the result indicated that P. uncia and P. leo were the sister species, which was different from the previous findings.  相似文献   

19.
采用cDNA-AFLP和RACE技术从小白菜中克隆得到泛素结合酶E2基因(ubiquitin conjugating enzyme E2),命名为BcUBCE2。序列分析表明,BcUBCE2基因cDNA全长830bp,包含1个456bp的开放阅读框,编码152个氨基酸。结构分析发现,该序列包含一个泛素结合酶E2活性位点和一个高度保守的半胱氨酸。进化分析显示,小白菜BcUBCE2蛋白同拟南芥E2蛋白的亲缘关系最近。qRT-PCR分析表明,BcUBCE2基因在小白菜根、茎、叶中均有表达,铜处理10d时BcUBCE2基因的表达量最高。研究认为,BcUBCE2基因可能在铜胁迫响应中发挥重要作用。  相似文献   

20.
Summary The mutant allele rad9-192 renders Schizosaccharomyces pombe cells sensitive to ionizing radiation and UV light. We have isolated from a S. pombe genomic DNA library a unique recombinant plasmid that is capable of restoring wild-type levels of radioresistance to a rad9 192-containing cell population. Plasmid integration studies using the cloned DNA, coupled with mating and tetrad analyses, indicate that this isolated DNA contains the wild-type rad9 gene. We inactivated the repair function of the cloned fragment by a single insertion of the S. pombe ura4 gene. This nonfunctional fragment was used to create a viable disruption mutant, thus demonstrating that the rad9 gene does not encode an essential cellular function. In addition, the rad9-192 mutant population is as radiosensitive as the disruption mutant, indicating that rad9 gene function is severely if not totally inhibited by the molecular defect responsible for the rad9-192 phenotype. DNA sequence analysis of rad9 reveals an open reading frame of 1,278 bp, interrupted by three introns 53 bp, 57 bp, and 56 by long, respectively, and ending in the termination codon TAG. This gene is capable of encoding a protein of 426 amino acids, with a corresponding calculated molecular weight of 47,464 daltons. No significant homology was detected between the rad9 gene or its deduced protein sequence and sequences previously entered into DNA and protein sequence data banks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号