首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A water relations analysis of seed germination rates   总被引:11,自引:7,他引:4       下载免费PDF全文
Seed germination culminates in the initiation of embryo growth and the resumption of water uptake after imbibition. Previous applications of cell growth models to describe seed germination have focused on the inhibition of radicle growth rates at reduced water potential (Ψ). An alternative approach is presented, based upon the timing of radicle emergence, to characterize the relationship of seed germination rates to Ψ. Using only three parameters, a `hydrotime constant' and the mean and standard deviation in minimum or base Ψ among seeds in the population, germination time courses can be predicted at any Ψ, or normalized to a common time scale equal to that of seeds germinating in water. The rate of germination of lettuce (Lactuca sativa L. cv Empire) seeds, either intact or with the endosperm envelope cut, increased linearly with embryo turgor. The endosperm presented little physical resistance to radicle growth at the time of radicle emergence, but its presence markedly delayed germination. The length of the lag period after imbibition before radicle emergence is related to the time required for weakening of the endosperm, and not to the generation of additional turgor in the embryo. The rate of endosperm weakening is sensitive to Ψ or turgor.  相似文献   

3.
Proteomic analysis of arabidopsis seed germination and priming   总被引:33,自引:0,他引:33       下载免费PDF全文
To better understand seed germination, a complex developmental process, we developed a proteome analysis of the model plant Arabidopsis for which complete genome sequence is now available. Among about 1,300 total seed proteins resolved in two-dimensional gels, changes in the abundance (up- and down-regulation) of 74 proteins were observed during germination sensu stricto (i.e. prior to radicle emergence) and the radicle protrusion step. This approach was also used to analyze protein changes occurring during industrial seed pretreatments such as priming that accelerate seed germination and improve seedling uniformity. Several proteins were identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry. Some of them had previously been shown to play a role during germination and/or priming in several plant species, a finding that underlines the usefulness of using Arabidopsis as a model system for molecular analysis of seed quality. Furthermore, the present study, carried out at the protein level, validates previous results obtained at the level of gene expression (e.g. from quantitation of differentially expressed mRNAs or analyses of promoter/reporter constructs). Finally, this approach revealed new proteins associated with the different phases of seed germination and priming. Some of them are involved either in the imbibition process of the seeds (such as an actin isoform or a WD-40 repeat protein) or in the seed dehydration process (e.g. cytosolic glyceraldehyde-3-phosphate dehydrogenase). These facts highlight the power of proteomics to unravel specific features of complex developmental processes such as germination and to detect protein markers that can be used to characterize seed vigor of commercial seed lots and to develop and monitor priming treatments.  相似文献   

4.
Seed priming is a technique of controlled hydration and drying that results in more rapid gemination when the seeds are reimbibed. Advancement of radicle meristem cells into the S and G2 phases of the cell cycle, increasing the percentage of nuclei having a 4C DNA content, has been reported to occur during priming. It has been suggested that the efficiency of priming is related to the accumulation of 4C nuclei in the radicle meristem, but the extent of cell cycle activity varied among different treatments and seed lots. A wide range of priming treatments across temperatures, water potentials and durations can be compared on a common basis using the hydrothermal priming time model. Flow cytometry was used to monitor cell cycle activity in a number of tomato (Lycopersicon esculentum Mill.) seed lots during priming in relation to the accumulation of hydrothermal priming time and the subsequent germination rate response. In some seed lots, the percentage of 4C nuclei in the radicle meristems prior to emergence increased in proportion to accumulated hydrothermal priming time, while in other lots, no increase in nuclear DNA content was detected. All lots, however, demonstrated rapid radicle emergence following priming. Thus, replicative DNA synthesis in radicle meristem nuclei often occurred during seed priming, but an increase in the percentage of 4C nuclei was not essential for germination advancement.  相似文献   

5.
The germination of viable seeds is the basis for new plant growth and development. Seeds lose viability during storage, but the biochemical mechanisms of seed death are not fully understood. This study aimed to investigate degradation patterns of nucleic acids during seed ageing and subsequent water uptake. Seeds of Pisum sativum L. were artificially aged at 50°C and 12% seed water content (WC). Nucleic acids degradation was studied during ageing and during imbibition of four seed lots with differential viability from highly viable to dead. As seeds lost viability during ageing, DNA was gradually degraded into internucleosomal fragments, resulting in ‘DNA laddering’, in conjunction with disintegration of 18S and 28S rRNA bands. During imbibition, non-aged controls had high levels of DNA and RNA integrity through to radicle protrusion. In an aged seed lot with 85% total germination (TG) DNA fragmentation decreased upon imbibition probably due to nucleosome degradation, while rRNA integrity did not improve. In an aged seed lot with 44% TG, neither DNA nor rRNA integrity improved upon imbibition. Dead seeds showed DNA degradation as laddering throughout imbibition along with extensive degradation of rRNA. We present a model in which interlinked programmed and non-programmed events contribute to seed ageing, and suggest that protection of nucleic acids during ageing is key to seed longevity.  相似文献   

6.
Proteomics of Arabidopsis seeds revealed the differential accumulation during germination of two housekeeping enzymes. The first corresponded to methionine synthase that catalyses the last step in the plant methionine biosynthetic pathway. This protein was present at low level in dry mature seeds, and its level was increased strongly at 1-day imbibition, prior to radicle emergence. Its level was not increased further at 2-day imbibition, coincident with radicle emergence. However, its level in 1-day imbibed seeds strongly decreased upon subsequent drying of the imbibed seeds back to the original water content of the dry mature seeds. The second enzyme corresponded to S -adenosylmethionine synthetase that catalyses the synthesis of S -adenosylmethionine from methionine and ATP. In this case, this enzyme was detected in the form of two isozymes with different p I and M r. Both proteins were absent in dry mature seeds and in 1-day imbibed seeds, but specifically accumulated at the moment of radicle protrusion. Arabidopsis seed germination was strongly delayed in the presence of dl -propargylglycine, a specific inhibitor of methionine synthesis. Furthermore, this compound totally inhibited seedling growth. These phenotypic effects were largely alleviated upon methionine supplementation in the germination medium. The results indicated that methionine synthase and S -adenosylmethionine synthetase are fundamental components controlling metabolism in the transition from a quiescent to a highly active state during seed germination. Moreover, the observed temporal patterns of accumulation of these proteins are consistent with an essential role of endogenous ethylene in Arabidopsis only after radicle protrusion.  相似文献   

7.
To study broccoli and radish seed germination under different temperature regimes the germination test has been used to assess final germination percentage, start and rate. This method has been integrated with a computer‐aided image analysis test which is more accurate in monitoring the extent of imbibition phases through the assessment of seed area increase and timing of radicle emergence detected on single seeds. In addition, seed area increase has been used also to establish a close relationship with radicle elongation rate in the time range when ‘visible germination’ is scored by a classical germination test. The results suggest that this image analysis parameter may be considered as a reliable seed imbibition marker to integrate the germination parameters obtained by a germination test.  相似文献   

8.
We report a new kind of seed dormancy and identify the storage behavior category for an important understory rainforest tree that also is used as an ornamental. While studying seed dormancy of Fabaceae species in Sri Lanka, we observed a considerable delay in emergence of the plumule following radicle emergence in Humboldtia laurifolia. Because epicotyl dormancy has not been reported in Fabaceae, we undertook a detailed morphological study of seed germination in this species. Our aims were to document desiccation tolerance/intolerance and epicotyl dormancy in seeds of H. laurifolia. Drying and low temperature storage were used to evaluate storage behavior of the seeds and imbibition, germination, and seed coat anatomy to categorize seed dormancy in two seed collections. Plumule development before its emergence and effects of light and temperature on plumule emergence were monitored. All seeds that were dried to 15% moisture content or stored at -1°C lost viability. Plumules began to grow 20 ± 5 d from radicle emergence and emerged after 40 ± 3 d. Dark and high illuminance further delayed plumule emergence. Seeds are recalcitrant and have a hitherto unreported kind of epicotyl dormancy, for which we propose the formula .  相似文献   

9.
The endosperm tissue enclosing the radicle tip (endosperm cap) governs radicle emergence in tomato (Lycopersicon esculentum Mill.) seeds. Weakening of the endosperm cap has been attributed to hydrolysis of its mannan-rich cell walls by endo-[beta]-D-mannanase. To test this hypothesis, we measured mannanase activity in tomato endosperm caps from seeds allowed to imbibe under conditions of varying germination rates. Over a range of suboptimal temperatures, mannanase activity prior to radicle emergence increased in accordance with accumulated thermal time. Reduced water potential delayed or prevented radicle emergence but enhanced mannanase activity in the endosperm caps. Abscisic acid did not prevent the initial increase in mannanase activity, although radicle emergence was markedly delayed. Sugar composition and percent mannose (Man) content of endosperm cap cell walls did not change prior to radicle emergence under any condition. Man, glucose, and other sugars were released into the incubation solution by endosperm caps isolated from intact seeds during imbibition. Pregerminative release of Man was suppressed and the release of glucose was enhanced when seeds were incubated in osmoticum or abscisic acid; the opposite occurred in the presence of gibberellin. Thus, whereas sugar release patterns were sensitive to environmental and hormonal factors affecting germination, neither assayable endo-[beta]-D-mannanase activity nor changes in cell wall sugar composition of endosperm caps correlated well with tomato seed germination rates under all conditions.  相似文献   

10.
11.
Determination of seed vigor was attempted by comparing ATP-levels of deteriorating seed to germination percentage and production of dry matter. Immediately after imbibition of any seed lot investigated, a production of ATP took place. This ATP-accumulation invariably reached a plateau after 6 h of imbibition. Two well germinating seed lots of rape, one of cauliflower and one of sugar beet, were artificially aged by means of elevated storage temperature and humidity. Every second week through 16 weeks of deterioration the levels of ATP, ADP and AMP after 7 h of imbibition were compared with the germination percentage. While ADP- and AMP-contents of germinating seed displayed no change (when imbibed 7 h) during the period of artificial aging, seed deterioration was reflected in the ATP-levels long before loss of viability could be detected by the conventional germination test.
When ATP-levels per seed were related to germination percentage throughout the aging, all four seed lots displayed similar patterns although the absolute figures differed. In contrast to the conventional "per seed' basis, however, ATP per gram seed not only displayed similar deterioration patterns, but the absolute values were also of the same magnitude.  相似文献   

12.
A lot of pepper seeds having 87 % germination were subjected to X-ray inspection using a non lethal dose of radiation. Seeds with less than 2.7 % (on the basis of total seed area) of free space area, i.e. the spaces between embryo and endosperm, were classified as highly viable seeds (97–100 % germination) with the lowest level of abnormal seedlings. Seeds X-ray classified as good were subjected to a computerised image analysis to study seed imbibition and radicle elongation. The patterns of seed area increase, chosen as the most accurate indicator of seed swelling, resembled the triphasic curve of water uptake. The first phase was completed at 9 h followed by a second phase that varied widely in time until completion of germination between 52 and 96 h. The proportion of seeds with radicle protrusion between 52–56 h and 64–72 h assessed with the image analysis was significantly higher than that recorded using a conventional germination test. In addition, the rate of increase of seed area during the third phase of imbibition, mostly due to protrusion of the radicle tip and its growth, was highly correlated with the corresponding radicle elongation rate.  相似文献   

13.
The effects of ultradry storage on the starch mobilization in maize (Zea mays L.) seed after aging were investigated. The results indicated that there were no significant differences in the content of ATP,starch, and soluble sugar, as well as the activity of amylase, between ultradried seeds and seeds stored at -20 ℃ during germination. These results were consistent with the higher level of vigor of the ultradried seed. Sieve tube introduction of a fluorescence dye (carboxyl fluoresceindiacetate) and laser confocal microscopy were used to study the development of plasmodesmata in the ultradried seeds. The results indicated that plasmodesmata developed well in ultradried seeds. Fluorescence analysis also showed that the fluorescence intensity in the radicle of ultradried seeds was stronger than that in seeds with a higher moisture content. This suggests that ultradry treatment has no adverse effects on the seeds. After seed imbibition, cell orgaelles could be resumed. It is concluded that ultradry seed storage is beneficial for maintaining seed vigor and that starchy mobilization proceeds regularly during germination.  相似文献   

14.
郑晓鹰  李秀清   《广西植物》2007,27(3):503-507,456
利用单粒种子凝胶扩散法研究了β-半乳甘露聚糖酶在西瓜种子萌发过程中的分布以及与西瓜种子萌发速率的关系。结果发现,在胚根尖突破种皮前吸胀的西瓜种子中,内源β-半乳甘露聚糖酶主要分布于种子的胚膜套中,并起到减弱外种皮和胚膜套细胞壁对胚根伸出的机械阻力的作用。对具有不同萌发速率的品种以及引发处理和未处理的西瓜种子中酶活性的检测证明,β-半乳甘露聚糖酶活性与西瓜种子萌发速度相关。固体基质引发三倍体西瓜种子过程中β-半乳甘露聚糖酶的活化和种皮阻力的减弱,是引发种子提高了萌发速度和萌发能力的原因之一。  相似文献   

15.
The laboratory germination (criterion radicle emergence) of seven seed lots of winter wheat cv. Slejpner was similar. However, they differed in vigour as demonstrated by differences in germination after controlled deterioration carried out at a range of seed moisture contents, at two temperatures and for different times. A vigour assessment for each lot was quantified by calculating a value for the seed lot constant Ki, of the viability equation. Germination in lower water potentials reduced the uptake of water, radicle and coleoptile emergence and radicle and coleoptile extension. There was no difference in the water uptake of seed lots differing in vigour. However, seed lots of lower vigour showed less radicle emergence, less coleoptile emergence and shorter radicles than higher vigour seed lots in low water potentials. Similarly, controlled deterioration resulted in reduced radicle and coleoptile emergence and growth compared to unaged seed, and also to a greater sensitivity to low water potentials. The implications for field establishment are discussed.  相似文献   

16.
Lettuce seeds cvs Hilde, Feltham King and Avoncrisp were subjected, at different phases during imbibition at 22°C, to a high temperature (33°C) inhibitory for germination, for periods ranging from 4 to 144 h, before returning them to 22°C. The results showed, that the first 4h of imbibition and also the phase between the commencement of mitosis and the onset of radicle emergence were more sensitive to the effects of high temperature than other phases in the germination process. Short exposures (8–24 h) to 33°C commencing at the latter phase delayed germination by up to 4 days, and at the earlier by up to 8 days. Percentage germination was unaffectd except after prolonged exposures (> 48 h) from the beginning of imbibition, which reduced it. Seedling emergence from moist sieved soil was both delayed and reduced when imbibing seeds were exposed for a short period from the beginning of imbibition to 33°C compared with seeds imbibing continuously at 19°C. Germination was delayed and not reduced when seed was exposed to 33°C at the phase between commencement of mitosis and the onset of radicle emergence.  相似文献   

17.
The germination and emergence characteristics, and early seedling growth, of carrot seeds cv. Chantenay red-cored from different sources with a range of germination from 54–94%, was compared. Seeds from protected crops (mean temperature of growth 21°C, r.h. 45–70%) gave higher percentage germination than those from crops grown outdoors (mean temperature 15°C, 70–100% r.h.). Germination was also higher from mature (seed moisture content at harvest 20% or lower) than immature seed (seed moisture content at harvest between 20 and 60%). High percentage germination (>90%) was associated with low mean germination times and low spreads of germination times whilst the reverse was true for low percentage germination. Similar relationships were found for seedling emergence characters in the field although a lower proportion of the viable seeds produced seedlings from slowly than rapidly germinating seed lots. In general, seed lots having a low percentage germination gave greater variability in plant weight than those of higher percentage germination. There was no effect of seed source on radicle or shoot relative growth rates or on post-emergence seedling growth rates.  相似文献   

18.
The main goal of the study was to assess germination requirements in a threatened daffodil to elaborate a detailed protocol for plant production from seeds, a key tool for conservation. Experiments were carried out both in the laboratory and outdoor conditions. In Pseudonarcissi section, endemic Iberian species of Narcissus studied heretofore have different levels of morphophysiological dormancy (MPD). Embryo length, radicle emergence, and shoot emergence were analyzed to determine the level of MPD. Both interpopulational variability and seed storage duration were also studied. Mean embryo length in fresh seeds was 1.32 mm and the embryo had to grow until it reached at least 2.00 mm to germinate. Embryo growth occurs during warm stratification, after which the radicle emerges when temperatures go down. Seed dormancy was broken in the laboratory at 28/14°C in darkness followed by 15/4°C, but the germination percentage varies depending on the population. In outdoor conditions, seed dispersal occurs in June, the embryo grows during the summer and then the radicle emerges in autumn. The radicle system continues to grow during the winter months, but the shoot does not emerge until the beginning of the spring because it is physiologically dormant and requires a cold period to break dormancy. Early cold temperatures interrupt embryo growth and induce dormancy in seeds with an advanced embryo development. Seeds of N. eugeniae have deep simple epicotyl MPD. In addition, we found that embryo growth and germination were improved by seed storage duration.  相似文献   

19.
The effects of ultradry storage on the starch mobilization in maize (Zea mays L.) seed after aging were investigated. The results indicated that there were no significant differences in the content of ATP, starch, and soluble sugar, as well as the activity of amylase, between ultradried seeds and seeds stored at -20℃ during germination. These results were consistent with the higher level of vigor of the ultradried seed. Sieve tube introduction of a fluorescence dye (carboxyl fluoresceindiacetate) and laser confocal microscopy were used to study the development of plasmodesmata in the ultradried seeds. The results indicated that plasmodesmata developed well in ultradried seeds. Fluorescence analysis also showed that the fluorescence intensity in the radicle of ultradried seeds was stronger than that in seeds with a higher moisture content. This suggests that ultradry treatment has no adverse effects on the seeds. After seed imbibition, cell orgaelles could be resumed. It is concluded that ultradry seed storage is beneficial for maintaining seed vigor and that starchy mobilization proceeds regularly during germination.  相似文献   

20.
During seed maturation and germination, major changes in physiological status, gene expression, and metabolic events take place. Using chlorophyll sorting, osmopriming, and different drying regimes, Brassica oleracea seed lots of different maturity, stress tolerance, and germination behavior were created. Through careful physiological analysis of these seed lots combined with gene expression analysis using a dedicated cDNA microarray, gene expression could be correlated to physiological processes that occurred within the seeds. In addition, gene expression was studied during early stages of seed germination, prior to radicle emergence, since very little detailed information of gene expression during this process is available. During seed maturation expression of many known seed maturation genes, such as late-embryogenesis abundant or storage-compound genes, was high. Notably, a small but distinct subgroup of the maturation genes was found to correlate to seed stress tolerance in osmoprimed and dried seeds. Expression of these genes rapidly declined during priming and/or germination in water. The majority of the genes on the microarray were up-regulated during osmopriming and during germination on water, confirming the hypothesis that during osmopriming, germination-related processes are initiated. Finally, a large group of genes was up-regulated during germination on water, but not during osmopriming. These represent genes that are specific to germination in water. Germination-related gene expression was found to be partially reversible by physiological treatments such as slow drying of osmoprimed seeds. This correlated to the ability of seeds to withstand stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号