首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
突触长时程增强形成与学习记忆的相关研究   总被引:4,自引:0,他引:4  
突触长时程增强(LTP)的形成与学习记忆有相似特征,将其作为记忆的一种模式加以研究,并深入探索LTP机制产生与静止突触的关系,长时程突触修饰与突触后神经细胞内Ca^2 的作用机制,学习行为后海马内出现的突触效能变化与行为学习之间的关系,以及BDNF对海马突触的LTP调节与长时记忆所涉及关于LTP的相关基因表达。  相似文献   

2.
Camperi and Wang (Comput Neurosci 5:383–405, 1998) presented a network model for working memory that combines intrinsic cellular bistability with the recurrent network architecture of the neocortex. While Fall and Rinzel (Comput Neurosci 20:97–107, 2006) replaced this intrinsic bistability with a biological mechanism-Ca2+ release subsystem. In this study, we aim to further expand the above work. We integrate the traditional firing-rate network with Ca2+ subsystem-induced bistability, amend the synaptic weights and suggest that Ca2+ concentration only increase the efficacy of synaptic input but has nothing to do with the external input for the transient cue. We found that our network model maintained the persistent activity in response to a brief transient stimulus like that of the previous two models and the working memory performance was resistant to noise and distraction stimulus if Ca2+ subsystem was tuned to be bistable.  相似文献   

3.
4.
《Journal of Physiology》1996,90(5-6):339-341
We report two experiments conducted on a radial arm maze in the mouse showing that training could either enhance or reduce the efficacy of the fimbria-lateral septal synapses. It is suggested that the direction of change is determined by the kind of situation the animal is faced with (ie trial-independent or trial-dependent, respectively).  相似文献   

5.
6.
The biochemical basis of long-term memory   总被引:2,自引:0,他引:2  
  相似文献   

7.
8.
9.
Compelling behavioral evidence suggests that humans can make optimal decisions despite the uncertainty inherent in perceptual or motor tasks. A key question in neuroscience is how populations of spiking neurons can implement such probabilistic computations. In this article, we develop a comprehensive framework for optimal, spike-based sensory integration and working memory in a dynamic environment. We propose that probability distributions are inferred spike-per-spike in recurrently connected networks of integrate-and-fire neurons. As a result, these networks can combine sensory cues optimally, track the state of a time-varying stimulus and memorize accumulated evidence over periods much longer than the time constant of single neurons. Importantly, we propose that population responses and persistent working memory states represent entire probability distributions and not only single stimulus values. These memories are reflected by sustained, asynchronous patterns of activity which make relevant information available to downstream neurons within their short time window of integration. Model neurons act as predictive encoders, only firing spikes which account for new information that has not yet been signaled. Thus, spike times signal deterministically a prediction error, contrary to rate codes in which spike times are considered to be random samples of an underlying firing rate. As a consequence of this coding scheme, a multitude of spike patterns can reliably encode the same information. This results in weakly correlated, Poisson-like spike trains that are sensitive to initial conditions but robust to even high levels of external neural noise. This spike train variability reproduces the one observed in cortical sensory spike trains, but cannot be equated to noise. On the contrary, it is a consequence of optimal spike-based inference. In contrast, we show that rate-based models perform poorly when implemented with stochastically spiking neurons.  相似文献   

10.
Spatial working memory in rats: no differences between the sexes   总被引:6,自引:0,他引:6  
In a number of mammalian species, males appear to have superior spatial abilities to females. The favoured explanations for this cognitive difference are hormonal, with higher testosterone levels in males than females leading to better spatial performance, and evolutionary, where sexual selection has favoured males with increased spatial abilities for either better navigational skills in hunting or to enable an increased territory size. However, an alternative explanation for this sex difference focuses on the role of varying levels of oestrogen in females in spatial cognition (the 'fertility and parental care' hypothesis). One possibility is that varying oestrogen levels result in variation in spatial learning and memory so that, when tested across the oestrous cycle, females perform as well as males on days of low oestrogen but more poorly on days of high oestrogen. If day in the oestrous cycle is not taken into account then, across an experiment, any sex differences found would always produce male superiority. We used a spatial working memory task in a Morris water maze to test the spatial learning and memory abilities of male and female rats. The rats were tested across a number of consecutive days during which the females went through four oestrous cycles. We found no overall sex differences in latencies to reach a submerged platform in a Morris water maze but, on the day of oestrus (low oestrogen), females took an extra swim to learn the platform's location (a 100% increase over the other days in the cycle). Female swim speed also varied across the oestrous cycle but females were no less active on the day of oestrus. These results oppose the predictions of the fertility and parental care hypothesis.  相似文献   

11.
Keogh R  Pearson J 《PloS one》2011,6(12):e29221
Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory--but not iconic visual memory--can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage.  相似文献   

12.
13.
Default mode network (DMN) is a functional brain network with a unique neural activity pattern that shows high activity in resting states but low activity in task states. This unique pattern has been proved to relate with higher cognitions such as learning, memory and decision-making. But neural mechanisms of interactions between the default network and the task-related network are still poorly understood. In this paper, a theoretical model of coupling the DMN and working memory network (WMN) is proposed. The WMN and DMN both consist of excitatory and inhibitory neurons connected by AMPA, NMDA, GABA synapses, and are coupled with each other only by excitatory synapses. This model is implemented to demonstrate dynamical processes in a working memory task containing encoding, maintenance and retrieval phases. Simulated results have shown that: (1) AMPA channels could produce significant synchronous oscillations in population neurons, which is beneficial to change oscillation patterns in the WMN and DMN. (2) Different NMDA conductance between the networks could generate multiple neural activity modes in the whole network, which may be an important mechanism to switch states of the networks between three different phases of working memory. (3) The number of sequentially memorized stimuli was related to the energy consumption determined by the network''s internal parameters, and the DMN contributed to a more stable working memory process. (4) Finally, this model demonstrated that, in three phases of working memory, different memory phases corresponded to different functional connections between the DMN and WMN. Coupling strengths that measured these functional connections differed in terms of phase synchronization. Phase synchronization characteristics of the contained energy were consistent with the observations of negative and positive correlations between the WMN and DMN reported in referenced fMRI experiments. The results suggested that the coupled interaction between the WMN and DMN played important roles in working memory.Supplementary InformationThe online version contains supplementary material available at 10.1007/s11571-021-09674-1.  相似文献   

14.
In order to explore the relationship between learning progress and working memory characteristics, the psychoacoustic testing of 42 persons (20-65 years old) of medical staff taught a novel science (informatics) was carried out. The subjects were divided into three age groups: 20-35, 36-50, and 51-65-year-olds. Acoustical test consisted of a set of 12 target words (professional informatics terms) presented through headphones and subsequent presentation of a random succession of 12 target and 12 masking words (all of them being professional informatics terms). Listeners had to recognize the target words. The stepwise linear regression analysis revealed a link between the progress in acquisition of the new material and characteristics of acoustical working memory, whose role in learning progress increased with age. Because the memory efficiency reduction was found in subjects older than 35 years, it was supposed that age-related changes in characteristics of the acoustical working memory were responsible for the decline in ability to learn novel material.  相似文献   

15.
16.
Sustained activity has been recorded in the prefrontal cortex during working memory tasks. First, we compare the anatomical distribution of this activity in humans and monkeys. Then, we show that it reflects many factors, maintenance of the items presented, preparation for the response, transformation of the items during the delay, task rules and task goals. Finally, we point out that sustained activity has also been recorded in other areas, such as the parietal cortex. We suggest that the key to prefrontal cortex lies not in the maintenance of sensory information but in the prospective use of that information for behaviour.  相似文献   

17.
The dense fibro-lamellar skeleton of lophiostromatids (Stromatoporoidea) is closely similar to the trabecular skeleton of protaraeids (Heliolitoidea) and, respectively, the cystose skeleton of labechiids is similar to that of proporids. They can be interpreted as different types of basal exoskeleton of colonial coelenterates. The main difference between these ancient stromatoporoids and heliolitids is in the arrangement of zooids in the colony, that in the heliolitids enabled them to participate in skeleton building, which was not possible in the stromatoporoids. The stratigraphical distribution supports the supposition of their cummon origin. Coelenterata, Stromatoporoidea, Heliolitoidea. skeleton formation, morphology .  相似文献   

18.
19.
20.
The human ability to perform transitive inference (TI) is an area of debate from a neurocognitive standpoint. Some studies emphasize a stimulus driven medial-temporal lobe process [Preston, A.R., Shrager, Y., Dudukovic, N.M., Gabrieli, J.D., 2004. Hippocampal contribution to the novel use of relational information in declarative memory. Hippocampus 14, 148-152; Titone, D., Ditman, T., Holzman, P., Eichenbaum, H., Levy, D., 2004. A transitive inference test of relational memory in schizophrenia. Schizophr. Res. 68, 235-247; Van Elzakker, M., O'Reilley, R., Rudy, J., 2003. Transivity, flexibility, conjenctive representation and the hippocampus: an empirical analysis. Hippocampus 13, 334-340] while others emphasize a higher-level frontal lobe strategy that requires the flexible maintenance of information in working memory [Waltz, J., Knowlton, B., Holyoak, K., Boone, K., Mishkin, F., de Menedezes Santos, M., Thomas, C., Miller, B., 1999. A system for relational reasoning in human prefrontal cortex. Psychol. Sci. 10, 119-125]. In two experiments we investigated when and how adults employ different cognitive strategies during TI by evaluating the interaction between task instructions and individual differences in working memory capacity. Participants engaged in a paired discrimination task involving a 6-unit TI hierarchy and were either prior aware, prior unaware or serendipitously aware of the hierarchical relationship among stimulus items. Both prior aware participants and serendipitously aware participants were more likely to engage in a logic-based strategy compared to unaware participants who relied upon stimulus-driven strategies. Individual differences in working memory were associated with the acquisition of awareness in the serendipitously aware group and with the maintenance of awareness in the prior aware group. These findings suggest that the capacity for TI may be supported by multiple neurocognitive strategies, and that the specific strategy employed is dependent upon both task- and participant-related factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号