首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Tumor cells exhibit two interconvertible modes of cell motility referred to as mesenchymal and amoeboid migration. Mesenchymal mode is characterized by elongated morphology that requires high GTPase Rac activation, whereas amoeboid mode is dependent on actomyosin contractility induced by Rho/Rho-associated protein kinase (ROCK) signaling. While elongated morphology is driven by Rac-induced protrusion at the leading edge, how Rho/ROCK signaling controls amoeboid movement is not well understood. We identified FilGAP, a Rac GTPase-activating protein (GAP), as a mediator of Rho/ROCK-dependent amoeboid movement of carcinoma cells. We show that depletion of endogenous FilGAP in carcinoma cells induced highly elongated mesenchymal morphology. Conversely, forced expression of FilGAP induced a round/amoeboid morphology that requires Rho/ROCK-dependent phosphorylation of FilGAP. Moreover, depletion of FilGAP impaired breast cancer cell invasion through extracellular matrices and reduced tumor cell extravasation in vivo. Thus phosphorylation of FilGAP by ROCK appears to promote amoeboid morphology of carcinoma cells, and FilGAP contributes to tumor invasion.  相似文献   

2.
Recently genetics and epigenetics alterations have been found to be characteristic of malignancy and hence can be used as targets for detection of neoplasia. RAS association domain family protein 1A (RASSF1A) gene hypermethylation has been a subject of interest in recent researches on cancer breast patients. The aim of the present study was to evaluate whether RASSF1A methylation status and RASSF1A protein expression are associated with the major clinico-pathological parameters. One hundred and twenty breast cancer Egyptian patients and 100-control subjects diagnosed with benign lesions of the breast were enrolled in this study. We evaluated RASSF1A methylation status in tissue and serum samples using Methyl specific PCR together with RASSF1A protein expression in tissues by immunohistochemistry. Results were studied in relation to known prognostic clinicopathological features in breast cancer. Frequency of RASSF1A methylation in tissues and serum were 70 and 63.3 % respectively and RASSF1A protein expression showed frequency of 46.7 %. There was an association between RASSF1A methylation in tissues, serum and loss of protein expression in tissues with invasive carcinoma, advanced stage breast cancer, L.N. metastasis, ER/PR and HER2 negativity. RASSF1A methylation in serum showed high degree of concordance with methylation in tissues (Kappa = 0.851, P < 0.001). RASSF1A hypermethylation in tissues and serum and its protein expression may be a valid, reliable and sensitive tool for detection and follow up of breast cancer patients.  相似文献   

3.
Our recent study showing association of hyperhomocysteinemia and hypomethioninemia in breast cancer and other studies indicating association of hyperhomocysteinemia with metastasis and development of drug resistance in breast cancer cells treated with homocysteine lead us to hypothesize that homocysteine might modulate the expression of certain tumor suppressors, i.e., RASSF1, RARβ1, CNND1, BRCA1, and p21, and might influence prognostic markers such as BNIP3 by inducing epigenetic alteration. To demonstrate this hypothesis, we have treated MCF-7 and MDA-MB-231 cells with different doses of homocysteine and observed dose-dependent inhibition of BRCA1 and RASSF1, respectively. In breast cancer tissues, we observed the following expression pattern: BNIP3 > BRCA1 > RARβ1 > CCND1 > p21 > RASSF1. Hyperhomocysteinemia was positively associated with BRAC1 hypermethylation both in breast cancer tissue and corresponding peripheral blood. Peripheral blood CpG island methylation of BRCA1 in all types of breast cancer and methylation of RASSF1 in ER/PR-negative breast cancers showed positive correlation with total plasma homocysteine. The methylation of RASSF1 and BRCA1 was associated with breast cancer initiation as well as progression, while BRCA1 methylation was associated with DNA damage. Vitamin B12 showed inverse association with the methylation at both the loci. RFC1 G80A and cSHMT C1420T variants showed positive association with methylation at both the loci. Genetic variants influencing remethylation step were associated positively with BRCA1 methylation and inversely with RASSF1 methylation. GCPII C1561T variant showed inverse association with BRCA1 methylation. We found good correlation of BRAC1 (r = 0.90) and RASSF1 (0.92) methylation pattern between the breast cancer tissue and the corresponding peripheral blood. To conclude, elevated homocysteine influences methionine dependency phenotype of breast cancer cells and is associated with breast cancer progression by epigenetic modulation of RASSF1 and BRCA1 .  相似文献   

4.
5.
6.
Tumor cell invasion is the most critical step of metastasis. Determination of the mode of invasion within the particular tumor is critical for effective cancer treatment. Protease-independent amoeboid mode of invasion has been described in carcinoma cells and more recently in sarcoma cells on treatment with protease inhibitors. To analyze invasive behavior, we compared highly metastatic sarcoma cells with parental nonmetastatic cells. The metastatic cells exhibited a functional up-regulation of Rho/ROCK signaling and, similarly to carcinoma cells, an amoeboid mode of invasion. Using confocal and traction force microscopy, we showed that an up-regulation of Rho/ROCK signaling leads to increased cytoskeletal dynamics, myosin light chain localization, and increased tractions at the leading edge of the cells and that all of these contributed to increased cell invasiveness in a three-dimensional collagen matrix. We conclude that cells of mesenchymal origin can use the amoeboid nonmesenchymal mode of invasion as their primary invading mechanism and show the dependence of ROCK-mediated amoeboid mode of invasion on the increased capacity of cells to generate force.  相似文献   

7.
Brain metastasis is a major contributor to cancer mortality, yet, the genetic changes underlying the development of this capacity remain poorly understood. RASSF proteins are a family of tumor suppressors that often suffer epigenetic inactivation during tumorigenesis. However, their epigenetic status in brain metastases has not been well characterized. We have examined the promoter methylation of the classical RASSF members (RASSF1A-RASSF6) in a panel of metastatic brain tumor samples. RASSF1A and RASSF2 have been shown to undergo promoter methylation at high frequency in primary lung and breast tumors and in brain metastases. Other members exhibited little or no methylation in these tumors. In examining melanoma metastases, however, we found that RASSF6 exhibits the highest frequency of inactivation in melanoma and in melanoma brain metastases. Most melanomas are driven by an activating mutation in B-Raf. Introduction of RASSF6 into a B-RafV600E-containing metastatic melanoma cell line inhibited its ability to invade through collagen and suppressed MAPK pathway activation and AKT. RASSF6 also appears to increase the association of mutant B-Raf and MST1, providing a potential mechanism by which RASSF6 is able to suppress MAPK activation. Thus, we have identified a novel potential role for RASSF6 in melanoma development. Promoter methylation leading to reduced expression of RASSF6 may play an important role in melanoma development and may contribute to brain metastases.  相似文献   

8.
Wong CC  Wong CM  Ko FC  Chan LK  Ching YP  Yam JW  Ng IO 《PloS one》2008,3(7):e2779

Aims

Deleted in liver cancer 1 (DLC1), a member of RhoGTPase activating protein (GAP) family, is known to have suppressive activities in tumorigenicity and cancer metastasis. However, the underlying molecular mechanisms of how DLC1 suppresses cell motility have not been fully elucidated. Rho-kinase (ROCK) is an immediate down-stream effector of RhoA in mediating cellular cytoskeletal events and cell motility. In the present study, we aimed to investigate the effects of DLC1 on Rho/ROCK signaling pathway in hepatocellular carcinoma (HCC).

Methodology/Principal Findings

We demonstrated that DLC1 negatively regulated ROCK-dependent actomyosin contractility. From immumofluorescence study, we found that ectopic expression of DLC1 abrogated Rho/ROCK-mediated cytoskeletal reorganization including formation of stress fibers and focal adhesions. It also downregulated cortical phosphorylation of myosin light chain 2 (MLC2). These inhibitory events by DLC1 were RhoGAP-dependent, as RhoGAP-deficient mutant of DLC1 (DLC1 K714E) abolished these inhibitory events. In addition, from western study, DLC1 inhibited ROCK-related myosin light chain phosphatase targeting unit 1 (MYPT1) phosphorylation at Threonine 853. By examining cell morphology under microscope, we found that ectopic expression of dominant-active ROCK released cells from DLC1-induced cytoskeletal collapse and cell shrinkage.

Conclusion

Our data suggest that DLC1 negatively regulates Rho/ROCK/MLC2. This implicates a ROCK-mediated pathway of DLC1 in suppressing metastasis of HCC cells and enriches our understanding in the molecular mechanisms involved in the progression of hepatocellular carcinoma.  相似文献   

9.
Rac activation and inactivation control plasticity of tumor cell movement   总被引:1,自引:0,他引:1  
Tumor cells exhibit two different modes of individual cell movement. Mesenchymal-type movement is characterized by an elongated cellular morphology and requires extracellular proteolysis. In amoeboid movement, cells have a rounded morphology, are less dependent on proteases, and require high Rho-kinase signaling to drive elevated levels of actomyosin contractility. These two modes of cell movement are interconvertible. We show that mesenchymal-type movement in melanoma cells is driven by activation of the GTPase Rac through a complex containing NEDD9, a recently identified melanoma metastasis gene, and DOCK3, a Rac guanine nucleotide exchange factor. Rac signals through WAVE2 to direct mesenchymal movement and suppress amoeboid movement through decreasing actomyosin contractility. Conversely, in amoeboid movement, Rho-kinase signaling activates a Rac GAP, ARHGAP22, that suppresses mesenchymal movement by inactivating Rac. We demonstrate tight interplay between Rho and Rac in determining different modes of tumor cell movement, revealing how tumor cells switch between different modes of movement.  相似文献   

10.
Promoter hypermethylation of genes is implicated in the pathogenesis of many cancers, including breast cancer. Herein, we analyzed the promoter methylation status of a panel of critical growth regulatory genes, RASSF1A, RARbeta2, BRCA1 and HOXA5, in 54 breast cancers and 5 distant normal breast tissues of Indian patients. The methylation data were correlated with clinicopathological characteristics and hormone receptor status to determine the impact of methylation in breast carcinogenesis. Promoter hypermethylation of RASSF1A was observed in 39/54 (72%), HOXA5 in 36/54 (67%), BRCA1 in 15/54 (28%) and RARbeta2 in 8/54 (15%) breast cancers. Our most significant findings were the association of RASSF1A methylation with nodal metastasis (p=0.05); and RARbeta2 methylation with age (all tumors in patients in the older age group were methylated, p=0.04). Further, the interactions between DNA methylation and hormone receptor biology in breast cancer cells are beginning to be clearly understood. In this context the association of HOXA5 methylation with loss of ERalpha (p=0.009) is noteworthy.  相似文献   

11.
In epithelia, cells are arranged in an orderly pattern with a defined orientation and shape. Cadherin containing apical adherens junctions (AJs) and the associated actomyosin cytoskeleton likely contribute to epithelial cell shape by providing apical tension. The Rho guanosine triphosphatases are well known regulators of cell junction formation, maintenance, and function. Specifically, Rho promotes actomyosin activity and cell contractility; however, what controls and localizes this Rho activity as epithelia remodel is unresolved. Using mosaic clonal analysis in the Drosophila melanogaster pupal eye, we find that Cdc42 is critical for limiting apical cell tension by antagonizing Rho activity at AJs. Cdc42 localizes Par6–atypical protein kinase C (aPKC) to AJs, where this complex limits Rho1 activity and thus actomyosin contractility, independent of its effects on Wiskott-Aldrich syndrome protein and p21-activated kinase. Thus, in addition to its role in the establishment and maintenance of apical–basal polarity in forming epithelia, the Cdc42–Par6–aPKC polarity complex is required to limit Rho activity at AJs and thus modulate apical tension so as to shape the final epithelium.  相似文献   

12.
13.

Background

The RAS association domain family protein 1a gene (RASSF1A) is one of the tumor suppressor genes (TSG). Inactivation of RASSF1A is critical to the pathogenesis of cancer. Aberrant TSG methylation was considered an important epigenetic silencing mechanism in the progression of ovarian cancer. A number of studies have discussed association between RASSF1A promoter methylation and ovarian cancer. However, they were mostly based on a small number of samples and showed inconsist results, Therefore, we conducted a meta-analysis to better identify the association.

Methods

Eligible studies were identified by searching the PubMed, EMBASE, Web of Science, and CNKI databases using a systematic searching strategy. We pooled the odds ratio (ORs) from individual studies using a fixed-effects model. We performed heterogeneity and publication bias analysis simultaneously.

Results

Thirteen studies, with 763 ovarian cancer patients and 438 controls were included in the meta-analysis. The frequencies of RASSF1A promoter methylation ranged from 30% to 58% (median is 48%) in the cancer group and 0 to 21% (median is 0) in the control group. The frequencies of RASSF1A promoter methylation in the cancer group were significantly higher than those in the control group. The pooled odds ratio was 11.17 (95% CI = 7.51–16.61) in the cancer group versus the corresponding control group under the fixed-effects model.

Conclusion

The results suggested that RASSF1A promoter methylation had a strong association with ovarian cancer.  相似文献   

14.
The Rho‐associated (ROCK) serine/threonine kinases have emerged as central regulators of the actomyosin cytoskeleton, their main purpose being to promote contractile force generation. Aided by the discovery of effective inhibitors such as Y27632, their roles in cancer have been extensively explored with particular attention focused on motility, invasion and metastasis. Recent studies have revealed a surprisingly diverse range of functions of ROCK. These insights could change the way ROCK inhibitors might be used in cancer therapy to include the targeting of stromal rather than tumour cells, the concomitant blocking of ROCK and proteasome activity in K‐Ras‐driven lung cancers and the combination of ROCK with tyrosine kinase inhibitors for treating haematological malignancies such as chronic myeloid leukaemia. Despite initial optimism for therapeutic efficacy of ROCK inhibition for cancer treatment, no compounds have progressed into standard therapy so far. However, by carefully defining the key cancer types and expanding the appreciation of ROCK's role in cancer beyond being a cell‐autonomous promoter of tumour cell invasion and metastasis, the early promise of ROCK inhibitors for cancer therapy might still be realized.  相似文献   

15.
The aim of this study was to investigate the relationship between the promoter methylation in five cancer-associated genes and clinicopathologic features for identification of molecular markers of tumor metastatic potential and hormone therapy response efficiency in breast cancer. The methylation levels in paraffin-embedded tumor tissues, plasma, and blood cells from 151 sporadic breast cancer patients and blood samples of 50 controls were evaluated by quantitative multiplex methylation-specific polymerase chain reaction. DNA methylation of RAS-association domain family member 1 (RASSF1A), estrogen receptor 1 (ESR1), cadherin 1, type 1, E-cadherin (CDH1), TIMP metallopeptidase inhibitor 3 (TIMP3) and spleen tyrosine kinase (SYK) genes was detected in the tumors of 124, 19, 15, 15, and 6 patients with mean levels of 48.45%, 3.81%, 2.36%, 27.55%, and 10.81%, respectively. Plasma samples exhibited methylation in the same genes in 25, 10, 15, 17, and 3 patients with levels of 22.54%, 17.20%, 22.87%, 31.93%, and 27.42%, respectively. Cumulative methylation results confirmed different spectra in tumor and plasma samples. Simultaneous methylation in tumors and plasma were shown in less than 17% of patients. RASSF1A methylation levels in tumor samples statistically differ according to tumor size (P = .029), estrogen receptor (ER) and progesterone receptor (PR) status (P = .000 and P = .004), and immunohistochemical subtype (P = .000). Moreover, the positive correlation was found between RASSF1A methylation levels and percentage of cancer cells expressing ER and PR. The direct relationship between RASSF1A promoter methylation and expression of ER could aid the prognosis of hormonal therapy response.  相似文献   

16.
Identifying key mediators of cancer cell invasion and metastasis is critical to the development of more effective cancer therapies. We previously identified Filamin A interacting protein 1-like (FILIP1L) as an important inhibitor of cell migration and invasion in ovarian cancer. FILIP1L expression was inversely correlated with the invasive potential of ovarian cancer cell lines and ovarian cancer specimens. We also demonstrated that DNA methylation in the FILIP1L promoter was a mechanism by which FILIP1L was down-regulated in ovarian cancer. In our present study, we tested this observation in other cancer histologies: breast, colon, lung and pancreatic cancers. Both mRNA and protein expression of FILIP1L were down-regulated in these cancer cells compared with their normal epithelial cells. As in ovarian cancer, DNA methylation is a mechanism by which FILIP1L is down-regulated in these cancer histologies. Methylation status of the FILIP1L promoter was inversely correlated with FILIP1L expression. Reduced methylation in the FILIP1L promoter following treatment with a DNA demethylating agent was associated with restoration of FILIP1L expression in these cancer cells. Further, FILIP1L expression was inversely correlated with the invasive potential of these cancer cells. Re-expression of FILIP1L in FILIP1L-low expressing, highly-invasive cancer cell lines resulted in inhibition of cell invasion. Correspondingly, knockdown of FILIP1L in FILIP1L-high expressing, low-invasive cancer cell lines resulted in increase of cell invasion. Overall, these findings suggest that down-regulation of FILIP1L associated with DNA methylation is related with the invasive phenotype in various cancers. Thus, modulation of FILIP1L expression has the potential to be a target for cancer therapy.  相似文献   

17.
p160ROCK, a kinase effector of Rho GTPase mediating RhoA-induced assembly of focal adhesions and stress fibers, plays an important role in the invasive process of various tumor cells. The purpose of this study was to investigate the role of p160ROCK in the invasive behaviors of human ovarian cancer cells and their metastasis. Transfection with a dominant-active form of p160ROCK mutant (p160ROCKΔ 3) enhanced cell migration and invasion of ovarian cancer cells, while antisense oligodeoxynucleotide (ASODN) against p160ROCK inhibited the motile and invasive properties of the cells. Our data suggested that p160ROCK was involved in ovarian cancer cell invasion and metastasis by facilitating cancer cell migration, and that p160ROCK might be a potential new effective target for preventing metastasis of ovarian cancer.  相似文献   

18.
19.
Blood methylated cell-free DNA (cfDNA) as a minimally invasive cancer biomarker has great importance in cancer management. Guanylate binding protein 2 (GBP2) has been considered as a possible controlling factor in tumor development. GBP2 gene expression and its promoter methylation status in both plasma cfDNA and tumor tissues of ductal carcinoma breast cancer patients were analyzed using SYBR green comparative Real-Time RT-PCR and, Methyl-specific PCR techniques, respectively in order to find a possible cancer-related marker. The results revealed that GBP2 gene expression and promoter methylation were inversely associated. GBP2 was down-regulated in tumors with emphasis on triple negative status, nodal involvement and higher cancer stages (p<0.0001). GBP2 promoter methylation on both cfDNA and tumor tissues were positively correlated and was detected in about 88% of breast cancer patients mostly in (Lymph node positive) LN+ and higher stages. Data provided shreds of evidence that GBP2 promoter methylation in circulating DNA may be considered as a possible effective non-invasive molecular marker in poor prognostic breast cancer patients with the evidence of its relation to disease stage and lymph node metastasis. However further studies need to evaluate the involvement of GBP2 promoter methylation in progression-free survival or overall survival of the patients.  相似文献   

20.
p160ROCK, a kinase effector of Rho GTPase mediating RhoA-induced assembly of focal adhesions and stress fibers, plays an important role in the invasive process of various tumor cells. The purpose of this study was to investigate the role of p160ROCK in the invasive behaviors of human ovarian cancer cells and their metastasis. Transfection with a dominant-active form of p160ROCK mutant (p160ROCKDelta 3) enhanced cell migration and invasion of ovarian cancer cells, while antisense oligodeoxynucleotide (ASODN) against p160ROCK inhibited the motile and invasive properties of the cells. Our data suggested that p160ROCK was involved in ovarian cancer cell invasion and metastasis by facilitating cancer cell migration, and that p160ROCK might be a potential new effective target for preventing metastasis of ovarian cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号