首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The appearance of chloroquine-resistant genotypes o f Plasmodium falciparum has thwarted the goal of global eradication of malaria. Although much effort has been put into understanding the molecular mechanisms of chloroquine resistance, many questions about its distribution remain open: Why, some 30 years after the emergence o f chloroquine resistance, have resistant genotypes not taken over the population? Why have many parasites remained sensitive? Why, after its first appearance in Africa, has chloroquine resistance spread so rapidly through sub-Saharan Africa? In this paper Jacob Koella reviews epidemiological data that suggest that an answer to these questions may involve an association between chloroquine resistance and immunological properties o f malaria parasites.  相似文献   

2.
Chemotherapy remains the only practicable tool to control falciparum malaria in sub-Saharan Africa, where >90% of the world's burden of malaria mortality and morbidity occurs. Resistance is rapidly eroding the efficacy of chloroquine, and the combination pyrimethamine-sulfadoxine is the most commonly chosen alternative. Resistant populations of Plasmodium falciparum were selected extremely rapidly in Southeast Asia and South America. If this happens in sub-Saharan Africa, it will be a public health disaster because no inexpensive alternative is currently available. This article reviews the molecular mechanisms of this resistance and discusses how to extend the therapeutic life of antifolate drugs.  相似文献   

3.
Chemotherapy remains the only practicable tool to control falciparum malaria in sub-Saharan Africa, where >90% of the world's burden of malaria mortality and morbidity occurs. Resistance is rapidly eroding the efficacy of chloroquine, and the combination pyrimethamine–sulfadoxine is the most commonly chosen alternative. Resistant populations of Plasmodium falciparum were selected extremely rapidly in Southeast Asia and South America. If this happens in sub-Saharan Africa, it will be a public health disaster because no inexpensive alternative is currently available. This article reviews the molecular mechanisms of this resistance and discusses how to extend the therapeutic life of antifolate drugs.  相似文献   

4.
The spread of antimalarial drug resistance has major consequences for malaria control in tropical Africa. Here, the impact of chloroquine resistance on the burden of malaria is analyzed and its implications for the Roll Back Malaria initiative are examined. Malaria mortality has increased at least twofold during the past two decades. Combination therapy should be available for home treatment of young children. The potential toxicity of most antimalarials will require special surveillance programs. The main contribution to malaria control using methods to reduce the entomological inoculation rate is expected in areas with low or unstable transmission. Classic vector-control methods could potentially eliminate malaria in most urban areas and such programs deserve high priority.  相似文献   

5.
Despite more than 100 years since Laveran described plasmodium species and Ross confirmed that they were transmitted by female anopheline mosquitoes, malaria remains a leading cause of morbidity and mortality worldwide. Although the areas where transmission takes place have reduced, and they are by now confined to the inter tropical areas, the number of people living at risk has grown to about 3 billion, and is expected to go on increasing. Not only does malaria cause around 500 million cases every year, and between 1 and 3 million deaths, but it also carries a huge burden that impairs the economic and social development of large parts of the planet. The failed attempt to eradicate malaria gave way to the control policy that was followed by a huge resurgence of malaria during the late 70s and 80s. Together with the emergence and spread of resistance to chloroquine and the weak health infrastructure in many of the endemic countries, particularly in Africa, the malaria situation worsened worldwide. The last decade of the 20th century was witness to the international community becoming increasingly aware of the unacceptable situation that the burden of malaria represented to large parts of the world. Renewed efforts to describe the problem, design and evaluate new control strategies, design and develop new drugs, better understand the biology of the parasite and the immunity it induces in the human host, develop candidate vaccines, together with new financial support constitute renewed hope that may lead to new trends in global health.  相似文献   

6.
Malaria morbidity and mortality have decreased gradually in the Greater Mekong Subregion (GMS). Presently, WHO sets a goal to eliminate malaria by 2030 in the GMS. However, drug-resistant malaria has been reported from several endemic areas. To achieve the goal of elimination, the status of the emergence and spread of drug resistance should be monitored. In this study, the genotype of the Plasmodium falciparum chloroquine (CQ) resistance transporter gene (pfcrt) and 6 microsatellite DNA loci flanking the gene were examined. P. falciparum isolates (n?=?136) was collected from malaria patients in Thailand (n?=?50, 2002–2005), Vietnam (n?=?39, 2004), Laos (n?=?15, 2007) and Cambodia (n?=?32, 2009). Amino acid sequences at codons 72–76 on the gene were determined. All of the isolates from Thailand were CQ-resistant (CVIET), as were all of the isolates from Cambodia (CVIET, CVIDT). Thirteen of the 15 isolates (87%) from Laos were CQ-resistant (CVIET, CVIDT), whereas the other 2 (13%) were CQ-susceptible (CVMNK). In contrast, 27 of the 39 isolates (69%) from Vietnam were CQ-susceptible (CVMNK), whereas the other 12 (31%) were CQ-resistant (CVIET, CVIDT, CVMDT) or mixed (CVMNK/CVIDT). The mean of expected heterozygosity of the microsatellite loci was 0.444 in the Thai population, 0.482 in the Cambodian population, and 0.734 in the Vietnamese population. Genetic diversity in the Thai population was significantly lower than that in the Vietnamese population. These results suggested that chloroquine selective pressure on P. falciparum populations is heterogeneous in the GMS. Therefore, further examination to understand the mechanisms behind the emergence and spread of drug-resistant malaria are needed.  相似文献   

7.
In Brazil, malaria still remains a clinically important febrile syndrome for local populations and travelers, occurring mostly in the Amazon Basin. This review aims to report the main efforts employed to control this disease since the 1940s and the emergence of Plasmodium falciparum and Plasmodium vivax chemoresistance to chloroquine and sulphadoxine-pyrimethamine among other drugs. Additionally, in vivo, in vitro and molecular studies as well as malaria chemoresistance consequences on disease morbidity and policy treatment guidelines were commented.  相似文献   

8.
Control of falciparum malaria infections has been increasingly hampered by the emergence of parasites resistant to chloroquine, pyrimethomine and other standard anti-malarials. Chloroquine-resistant strains of Plasmodium falciparum, for example, which originally appeared in South-East Asia and South America are now found in East Asia and sub-Saharan Africa(1). Attempts to combat this alarming development have to date taken two main forms: (1) the judicious use of existing ontimalarials, preferably in combinations, in an attempt to delay the emergence of resistance; and (2) on aggressive research effort aimed at identifying a new generation of antimalarial drugs. But what i f it became possible to administer an antimalarial drug together with a second drug capable of overcoming resistance to the first? A recent report from Samuel Martin and co-workers at The Walter Reed Army Institute of Research in Washington DC raises just such an intriguing possibility.  相似文献   

9.
Artemisinin-based combination therapy is exerting novel selective pressure upon populations of Plasmodium falciparum across Africa. Levels of resistance to non-artemisinin partner drugs differ among parasite populations, and so the artemisinins are not uniformly protected from developing resistance, already present in South East Asia. Here, we consider strategies for prolonging the period of high level efficacy of combination therapy for two particular endemicities common in Africa. Under high intensity transmission, two alternating first-line combinations, ideally with antagonistic selective effects on the parasite genome, are advocated for paediatric malaria cases. This leaves second-line and other therapies for adult cases, and for intermittent preventive therapy. The drug portfolio would be selected to protect the 'premier' combination regimen from selection for resistance, while maximising impact on severe disease and mortality in children. In endemic areas subject to low, seasonal transmission of Plasmodium falciparum, such a strategy may deliver little benefit, as children represent a minority of cases. Nevertheless, the deployment of other drug-based interventions in low transmission and highly seasonal areas, such as mass drug administration aimed to interrupt malaria transmission, or intermittent preventive therapy, does provide an opportunity to diversify drug pressure. We thus propose an integrated approach to drug deployment, which minimises direct selective pressure on parasite populations from any one drug component. This approach is suitable for qualitatively and quantitatively different burdens of malaria, and should be supported by a programme of routine surveillance for emerging resistance.  相似文献   

10.
The number of malaria parasite clones per infection-multiplicity of parasite clones-is affected by the transmission intensity, multiplicity increases with increasing transmission. This affects the frequency of parasites' sexual recombination and, if several mutations in different genes are involved, can break down drug resistant genotypes. Therefore, the effects of malaria transmission intensity on the spread of drug resistance could vary depending on the number of genes involved. Here we show that, compared to low transmission, intermediate-high transmission is associated with a 20-100-fold lower risk for the mutations linked to chloroquine resistance and a 6-17 times higher risk for those linked to sulphadoxine-pyrimethamine resistance. This is consistent with the hypothesis of a multigenic basis for chloroquine resistance and a monogenic basis for that of sulphadoxine-pyrimethamine. Reducing transmission intensity could slow the spread of resistance. However, a reduction below a critical threshold (e.g. when parasite prevalence in children 2-9 years old is around 60-80%) could, paradoxically, accelerate the spread of resistance to chloroquine and possibly to other drug combinations whose basis is multigenic. Our findings have important implications for malaria control because increasing drug resistance has a substantial impact on mortality.  相似文献   

11.

Background

Drug resistance in the malaria parasite Plasmodium falciparum severely compromises the treatment and control of malaria. A knowledge of the critical mutations conferring resistance to particular drugs is important in understanding modes of drug action and mechanisms of resistances. They are required to design better therapies and limit drug resistance. A mutation in the gene (pfcrt) encoding a membrane transporter has been identified as a principal determinant of chloroquine resistance in P. falciparum, but we lack a full account of higher level chloroquine resistance. Furthermore, the determinants of resistance in the other major human malaria parasite, P. vivax, are not known. To address these questions, we investigated the genetic basis of chloroquine resistance in an isogenic lineage of rodent malaria parasite P. chabaudi in which high level resistance to chloroquine has been progressively selected under laboratory conditions.

Results

Loci containing the critical genes were mapped by Linkage Group Selection, using a genetic cross between the high-level chloroquine-resistant mutant and a genetically distinct sensitive strain. A novel high-resolution quantitative whole-genome re-sequencing approach was used to reveal three regions of selection on chr11, chr03 and chr02 that appear progressively at increasing drug doses on three chromosomes. Whole-genome sequencing of the chloroquine-resistant parent identified just four point mutations in different genes on these chromosomes. Three mutations are located at the foci of the selection valleys and are therefore predicted to confer different levels of chloroquine resistance. The critical mutation conferring the first level of chloroquine resistance is found in aat1, a putative aminoacid transporter.

Conclusions

Quantitative trait loci conferring selectable phenotypes, such as drug resistance, can be mapped directly using progressive genome-wide linkage group selection. Quantitative genome-wide short-read genome resequencing can be used to reveal these signatures of drug selection at high resolution. The identities of three genes (and mutations within them) conferring different levels of chloroquine resistance generate insights regarding the genetic architecture and mechanisms of resistance to chloroquine and other drugs. Importantly, their orthologues may now be evaluated for critical or accessory roles in chloroquine resistance in human malarias P. vivax and P. falciparum.  相似文献   

12.
Carter R 《Parassitologia》1999,41(1-3):415-420
Outside of the temperate regions, malaria transmission continues throughout much of the world in a distribution which is not very different to that of one hundred years ago. However, with the notable exception of Africa sub Sahara, the morbidity and mortality due to malaria has generally been reduced to very low levels by comparison with earlier times. In a broad sense the malaria problem today falls into two distinct compartments, 1) how to deal with the remaining problem of malaria in the affected areas outside of sub Saharan Africa and 2) how to manage the, currently, much greater problem of malaria-related morbidity and mortality in Africa sub Sahara. Malaria control campaigns of the past have always placed great emphasis on reducing malaria inoculation rates in the affected populations. This may seem entirely logical, and is, indeed, an absolute requirement where eradication of malaria from an endemic area is the goal. There can, nevertheless, be dangers as well as benefits associated with reducing malaria inoculation rates in previously endemic populations. I discuss here the epidemiological issues which should be taken into account in this respect. I then examine the role that vaccination to reduce malaria inoculation rates in endemic populations--malaria transmission blocking vaccination--could play in malaria control.  相似文献   

13.
Drug pressure in the field is believed to be responsible for the emergence of drug-resistant Plasmodium falciparum, the parasite that causes malaria. Variants of the P. falciparum chloroquine resistance transporter (pfcrt) gene have been shown to be responsible for conferring resistance to the commonly used drug chloroquine. In particular, an amino acid mutation, K76T, was shown to have a strong positive correlation with the chloroquine-resistant varieties of malaria parasites. Global studies have reported highly reduced genetic diversity surrounding K76T in the pfcrt gene, which indicates that the mutation has been a target of positive Darwinian natural selection. However, two recent studies of P. falciparum in India found high genetic diversity in the pfcrt gene, which, at first sight, do not support the role of natural selection in the evolution of chloroquine resistance in India.  相似文献   

14.
With acknowledged difficulties in achieving satisfactory compliance rates for the large-scale delivery of many antiporositic drugs, the use of medicated salt has often been seen as a useful way to improve the level o f treatment in target populations. Iodinated salt is said to have contributed to a decline in endemic goitre, and salt medicated with chloroquine and/or other antimalorials, or with diethylcarbomazine, has been widely used in public health programmes against malaria and filariosis respectively. In this article, however, David Payne suggests that chloroquinized salt programmes may have been a major factor in promoting chloroquine resistance in Plasmodium falciparum.  相似文献   

15.
BackgroundResistance of malaria parasites to chloroquine (CQ) and sulphadoxine-pyrimethamine (SP) is increasing in prevalence in Africa. Combination therapy can both improve treatment and provide important public health benefits if it curbs the spread of parasites harbouring resistance genes. Thus, drug combinations must be identified which minimise gametocyte emergence in treated cases, and so prevent selective transmission of parasites resistant to any of the partner drugs.ConclusionsCo-artemether is highly effective at preventing post-treatment transmission of P. falciparum. Our results suggest that co-artemether has specific activity against immature sequestered gametocytes, and has the capacity to minimise transmission of drug-resistant parasites.  相似文献   

16.
Nearly one million deaths are attributed to malaria every year. Recent reports of multi-drug treatment failure of falciparum malaria underscore the need to understand the molecular basis of drug resistance. Multiple mutations in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) are involved in chloroquine resistance, but the evolution of complex haplotypes is not yet well understood. Using over 4,500 archival human serum specimens collected from 19 Pacific populations between 1959 and 1979, the period including and just prior to the appearance of chloroquine treatment failure in the Pacific, we PCR-amplified and sequenced a portion of the pfcrt exon 2 from 771 P. falciparum-infected individuals to explore the spatial and temporal variation in falciparum malaria prevalence and the evolution of chloroquine resistance. In the Pacific, the prevalence of P. falciparum varied considerably across ecological zones. On the island of New Guinea, the decreases in prevalence of P. falciparum in coastal, high-transmission areas over time were contrasted by the increase in prevalence during the same period in the highlands, where transmission was intermittent. We found 78 unique pfcrt haplotypes consisting of 34 amino acid substitutions and 28 synonymous mutations. More importantly, two pfcrt mutations (N75D and K76T) implicated in chloroquine resistance were present in parasites from New Hebrides (now Vanuatu) eight years before the first report of treatment failure. Our results also revealed unexpectedly high levels of genetic diversity in pfcrt exon 2 prior to the historical chloroquine resistance selective sweep, particularly in areas where disease burden was relatively low. In the Pacific, parasite genetic isolation, as well as host acquired immune status and genetic resistance to malaria, were important contributors to the evolution of chloroquine resistance in P. falciparum.  相似文献   

17.
BACKGROUND: This study investigated causes of malaria and how cases were managed at household level, in order to improve the ability to identify malaria and ensure correct use of chloroquine. It was conducted in Nakonde District, Northern Province of Zambia, between 2000 and 2001. Nakonde district is in a hyperendemic malaria province, where Plasmodium falciparum is predominant. The district has a total population of 153, 548 people, the majority of whom are peasant farmers. The main aim of the post intervention survey was to establish the proportion of caretakers of children five years and below, who were able to identify simple and severe malaria and treat it correctly using chloroquine in the home. METHODS: A baseline survey was conducted in five wards divided into intervention and control.Intervention and control wards were compared. Village health motivators and vendors were identified and trained in three intervention wards, as a channel through which information on correct chloroquine dose could be transmitted. A total of 575 carers, who were 15 years old and above and had a child who had suffered from malaria 14 days before the survey commenced, were interviewed. The two control wards received no intervention. 345 caretakers were from the intervention wards, while 230 came from the control wards. Identification of malaria and correct use of anti-malarial drugs was assessed in terms of household diagnosis of malaria in children under five years, type and dose of anti-malarial drugs used, self medication and the source of these anti-malarials. RESULTS: The majority of respondents in the study were females (81%). Chloroquine was the most frequently used anti-malarial (48.5%) in both the intervention and control wards. There was no difference between the intervention and control wards at pre-intervention (P = 0.266 and P = 0.956), in the way mothers and other caretakers identified simple and severe malaria. At baseline, knowledge on correct chloroquine dosage in the under five children was comparable between intervention and control wards. Post-intervention revealed that mothers and other caretakers were 32% and 51%, respectively, more likely to identify simple and severe malaria. There was a 60% increase on correct chloroquine dosage in all age groups among carers living in post-intervention wards. CONCLUSION: Compliance with standard therapeutic doses and correct identification of malaria was poorest in control wards, where no motivators and vendors were trained.  相似文献   

18.
As malaria caused by Plasmodium falciparum has become resistant to chloroquine alternative drug regimens need to be developed. The prophylactic efficacy against malaria and the side effects of chloroquine phosphate 500 mg weekly with proguanil hydrochloride 200 mg daily was compared with the efficacy of chloroquine 500 mg weekly with sulfadoxine 500 mg-pyrimethamine 25 mg weekly in a randomised study of Scandinavian travellers to Kenya and Tanzania during 1984-5. A total of 767 subjects (416 male and 351 female; 384 taking chloroquine phosphate with proguanil hydrochloride and 383 taking chloroquine with sulfadoxine-pyrimethamine) completed a diary on the breakthrough of malaria and the side effects of treatment while taking the drugs. They were also asked to make thick blood films when symptoms like those of malaria occurred, which were sent to and analysed in Denmark. Four subjects taking chloroquine with proguanil hydrochloride and three taking chloroquine with sulfadoxine-pyrimethamine developed falciparum malaria, which was verified microscopically. Side effects were reported by 36 subjects taking chloroquine phosphate with proguanil hydrochloride and 55 taking the other regimen (p=0·043). The side effects of both regimens were generally mild, but the combination of chloroquine phosphate with proguanil hydrochloride is recommended because it results in fewer side effects.As breakthroughs of malaria occurred at the earliest after seven weeks self treatment should not be recommended for travellers staying only a short time. Thick blood films are useful for diagnosis of suspected cases of malaria, can be prepared by non-specialists in Africa, and can be analysed successfully after long delays.  相似文献   

19.
Drug resistant strains of the malaria parasite, Plasmodium falciparum, have rendered chloroquine ineffective throughout much of the world. In parts of Africa and Asia, the coordinated shift from chloroquine to other drugs has resulted in the near disappearance of chloroquine-resistant (CQR) parasites from the population. Currently, there is no molecular explanation for this phenomenon. Herein, we employ metabolic quantitative trait locus mapping (mQTL) to analyze progeny from a genetic cross between chloroquine-susceptible (CQS) and CQR parasites. We identify a family of hemoglobin-derived peptides that are elevated in CQR parasites and show that peptide accumulation, drug resistance, and reduced parasite fitness are all linked in vitro to CQR alleles of the P. falciparum chloroquine resistance transporter (pfcrt). These findings suggest that CQR parasites are less fit because mutations in pfcrt interfere with hemoglobin digestion by the parasite. Moreover, our findings may provide a molecular explanation for the reemergence of CQS parasites in wild populations.  相似文献   

20.

Introduction

Malaria is a leading cause of morbidity and mortality in sub-Saharan Africa. Detailed characterization of the risks for malaria, among populations living in areas where the disease is endemic, is an important priority, especially for planning and evaluating future malaria-control tools. A prospective cohort study was implemented in children under ten years living in rural areas with high Plasmodium falciparum transmission in Senegal.

Methods

Malaria incidence was prospectively evaluated over three year follow-up among a cohort of children aged less than 10 years old living in eight villages of the Sokone health district. The parents of 1316 children comprising a passive case detection cohort were encouraged to seek care from the study health centers at any time their child felt sick. In the event of reported history of fever within 24 hours or measured axillary temperature ≥ 37.5°C, a Rapid Diagnostic Test (RDT) was performed.

Results

From November 2010 to October 2013, among the 1468 reported febrile episodes, 264 were confirmed malaria episodes. Over the 3 years, 218 (16.9%) children experienced at least one clinical malaria episode. Cumulative malaria incidence was 7.3 episodes per 100 children-year at risk, with remarkably heterogeneous rates from 2.5 to 10.5 episodes per 100 children-year at risk. Clinical malaria prevalence ranged from 11.5 to 28.4% in the high transmission season versus from 9.6 to 21.2% in the low transmission season.

Conclusion

This longitudinal community-based study shows that occurrence of clinical malaria was not evenly distributed among all the cohort children in the eight villages. It demonstrates the complexity of spatial distribution of malaria incidence at a local level, even in a region of vegetation and altitudinal homogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号