首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rapid redistribution of synaptic PSD-95 in the neocortex in vivo   总被引:1,自引:0,他引:1       下载免费PDF全文
Most excitatory synapses terminate on dendritic spines. Spines vary in size, and their volumes are proportional to the area of the postsynaptic density (PSD) and synaptic strength. PSD-95 is an abundant multi-domain postsynaptic scaffolding protein that clusters glutamate receptors and organizes the associated signaling complexes. PSD-95 is thought to determine the size and strength of synapses. Although spines and their synapses can persist for months in vivo, PSD-95 and other PSD proteins have shorter half-lives in vitro, on the order of hours. To probe the mechanisms underlying synapse stability, we measured the dynamics of synaptic PSD-95 clusters in vivo. Using two-photon microscopy, we imaged PSD-95 tagged with GFP in layer 2/3 dendrites in the developing (postnatal day 10–21) barrel cortex. A subset of PSD-95 clusters was stable for days. Using two-photon photoactivation of PSD-95 tagged with photoactivatable GFP (paGFP), we measured the time over which PSD-95 molecules were retained in individual spines. Synaptic PSD-95 turned over rapidly (median retention times τr ~ 22–63 min from P10–P21) and exchanged with PSD-95 in neighboring spines by diffusion. PSDs therefore share a dynamic pool of PSD-95. Large PSDs in large spines captured more diffusing PSD-95 and also retained PSD-95 longer than small PSDs. Changes in the sizes of individual PSDs over days were associated with concomitant changes in PSD-95 retention times. Furthermore, retention times increased with developmental age (τr ~ 100 min at postnatal day 70) and decreased dramatically following sensory deprivation. Our data suggest that individual PSDs compete for PSD-95 and that the kinetic interactions between PSD molecules and PSDs are tuned to regulate PSD size.  相似文献   

2.
3.
Changes of pyramidal tract (PT) response after short tetanization, similar to natural stimulation conditions, were analysed in unanaesthetized and nonimmobilized rabbits. PT response recording revealed a long-term (1 h and more) potentiation of monosynaptic neocortical reactions. Predominant better expressed and more preserved increase of synaptic (N) component provides evidence to the conjecture that the basic mechanism of the long-term potentiation consists in the rise of efficiency of excitatory synaptic connections. Less protracted and differently directed changes of D-component permit to consider that excitability change of neurones may be only an additional mechanism of the long-term potentiation. Such features of neocortical long-term potentiation were revealed as its low-frequency depression (at test stimuli repetition) and its spontaneous restoration after depression.  相似文献   

4.
Pyramidal neurons are the principal neurons of the neocortex and their excitatory impact on other pyramidal neurons and interneurons is central to neocortical dynamics. A fundamental principal that has emerged which governs pyramidal neuron excitation of other neurons in the local circuitry of neocortical columns is differential anatomical and physiological properties of the synaptic innervation via the same axon depending on the type of neuron targeted. In this study we derive anatomical principles for divergent innervation of pyramidal neurons of the same type within the local microcircuit. We also review data providing circumstantial and direct evidence for differential synaptic transmission via the same axon from neocortical pyramidal neurons and derive some principles for differential synaptic innervation of pyramidal neurons of the same type, of pyramidal neurons and interneurons and of different types of interneurons. We conclude that differential anatomical and physiological differentiation is a fundamental property of glutamatergic axons of pyramidal neurons in the neocortex.  相似文献   

5.
The quantitative ultrastructural study of changes in neocortical synaptic junctions were performed in undernourished adult and developing mice. The results obtained indicate that sectional area of the terminals occupied by synaptic vesicles; synaptic cleft width and postsynaptic membrane thickness significantly decrease in undernourished animals. Sectional area of the terminals significantly decreases in young undernourished mice and increases in adult ones. At the same time, the degree of spine apparatus destruction increases and the number of cisterns decreases in both groups of undernourished animals.  相似文献   

6.
Discovery of long-term potentiation (LTP) in the dentate gyrus of the rabbit hippocampus by Bliss and L?mo opened up a whole new field to study activity-dependent long-term synaptic modifications in the brain. Since then hippocampal synapses have been a key model system to study the mechanisms of different forms of synaptic plasticity. At least for the postsynaptic forms of LTP and long-term depression (LTD), regulation of AMPA receptors (AMPARs) has emerged as a key mechanism. While many of the synaptic plasticity mechanisms uncovered in at the hippocampal synapses apply to synapses across diverse brain regions, there are differences in the mechanisms that often reveal the specific functional requirements of the brain area under study. Here we will review AMPAR regulation underlying synaptic plasticity in hippocampus and neocortex. The main focus of this review will be placed on postsynaptic forms of synaptic plasticity that impinge on the regulation of AMPARs using hippocampal CA1 and primary sensory cortices as examples. And through the comparison, we will highlight the key similarities and functional differences between the two synapses.  相似文献   

7.
Quantal analysis is useful for assessing the pre- and/or post-synaptic locus of the expression of long-term tetanic potentiation with the condition, however, that the studied synaptic potentials have been evoked by single cell stimulations, as is the case with paired recordings of identified neurons. The application of this methodology, primarily with indirect criteria, has produced conclusions which dance back and forth across the synaptic cleft.  相似文献   

8.
In this study we characterized the responses of neocortical neurons to iontophoretically applied gamma-aminobutyric acid (GABA) and examined how these GABA responses as well as the inhibitory postsynaptic potentials (IPSPs) were affected by the presence of penicillin or pentobarbital. Intracellular recordings were obtained from slices of rat neocortex maintained in vitro; injection of the dye Lucifer yellow indicated that recordings were primarily from pyramidal neurons. Orthodromically evoked responses were always depolarizing at the cell's resting membrane potential. Such depolarizing responses could easily be reversed in polarity by depolarizing the cell 10-15 mV, suggesting that the response consisted partly of an IPSP. In some cases, depolarization unmasked a small, short-latency excitatory postsynaptic potential (EPSP). Responses to iontophoretically applied GABA were also depolarizing at rest. Biphasic hyperpolarizing-depolarizing responses were occasionally observed upon depolarization of the neuron. Bath application of penicillin (1.7-3.4 mM) decreased the amplitude of the IPSPs and increased their time to peak, an effect associated with the development of epileptiform activity. Penicillin also reduced the maximum response to iontophoretically applied GABA without affecting the dose required to obtain a half-maximal response, suggesting a noncompetitive antagonism. Pentobarbital (100-200 microM) prolonged the time course and increased the amplitude of the IPSPs while producing a leftward shift in the GABA charge-response relation. These results suggest that the convulsant penicillin and the anticonvulsant pentobarbital have opposing actions on GABAergic inhibition in the neocortex.  相似文献   

9.
10.
11.
The quantitative ultrastructural study of neocortical synaptic junctions has been performed during rehabilitation after protein-caloric deficiency. It has been shown that simple food rehabilitation does not lead to absolute restoration of synaptic junctions. However, food rehabilitation with carnitine restores the ultrastructure of synaptic junctions, with the length of the active zones and the number of spine apparatus cisterns exceeding the control values. Nevertheless, synaptic cleft width and postsynaptic density remain lower than in the control group, both after simple food rehabilitation and food rehabilitation with carnitine.  相似文献   

12.
In acute experiment on 5-20 days kittens, the reactions were studied of neurones in the cortical somatosensory zone to stimulation of the dorsal raphe nucleus (DRN) and application of serotonin, ethanolamine-O-sulphate and bicucullin. The identity is established of the effect of DRN stimulation and serotonin application eliciting inhibition of the background activity and appearance of inhibitory phases in response to sensory stimulation, beginning from the 10-12th day after birth. A suggestion is made about serotoninergic regulation of GABA-ergic interneurones' in young animals. The dynamics of GABA-ergic brain system formation has been studied. Specific sensitivity of neocortical neurones to GABA increased to the end of the second week of life--the period when modulating serotoninergic influences appear.  相似文献   

13.
14.
15.
16.
In experiments with noncurarized and unanaesthetized rabbits was recorded pyramidal tract response in the course of conditioning of direct stimulations of the two points of the cortical surface. The data obtained point to temporary specificity in manifestation of the membrane and synaptic plasticity, to participation of these mechanisms in the processes proceeding in both cortical representations of paired stimuli, and to predominantly undirected changes of a degree of their involvement in both cortical areas. At the early stage of conditioning were demonstrated all the characteristics of the dominant state developing at this stage, and at the late one those of differential conditioning. A conclusion is drown that the reinforcement through the membrane plasticity leads to initial dominant increase of cellular excitability. On the background of the latter by means of summation mechanism the conditions are created for excitation transmission from the sensory link of a new bond to its motor output. Underlined by the mechanisms of synaptic plasticity gradual reorganization of the excitatory and inhibitory connections to the output elements of conditioned response determines and consolidates specialized character of the elaborated reaction.  相似文献   

17.
18.
Communication between neuronal and glial cells is thought to be very important for many brain functions. Acting via release of gliotransmitters, astrocytes can modulate synaptic strength. The mechanisms underlying ATP release from astrocytes remain uncertain with exocytosis being the most intriguing and debated pathway. We have demonstrated that ATP and d-serine can be released from cortical astrocytes in situ by a SNARE-complex-dependent mechanism. Exocytosis of ATP from astrocytes can activate post-synaptic P2X receptors in the adjacent neurons, causing a downregulation of synaptic and extrasynaptic GABA receptors in cortical pyramidal neurons. We showed that release of gliotransmitters is important for the NMDA receptor-dependent synaptic plasticity in the neocortex. Firstly, induction of long-term potentiation (LTP) by five episodes of theta-burst stimulation (TBS) was impaired in the neocortex of dominant-negative (dn)-SNARE mice. The LTP was rescued in the dn-SNARE mice by application of exogenous non-hydrolysable ATP analogues. Secondly, we observed that weak sub-threshold stimulation (two TBS episodes) became able to induce LTP when astrocytes were additionally activated via CB-1 receptors. This facilitation was dependent on activity of ATP receptors and was abolished in the dn-SNARE mice. Our results strongly support the physiological relevance of glial exocytosis for glia–neuron communications and brain function.  相似文献   

19.
An analysis has been made of the spontaneous firing of neurons from the posterior motor cortex of the rabbit. Extracellular recordings were made by means of glass capillary micro-electrodes. The recorded neural activity was processed with a general purpose computer and an adapted data processing system. The impulse interval series were analysed by means of a statistical time series analysis. In the first part of the paper, the first order properties of the neutral activity are examined. Using a mathematical model for data reduction, an overall picture of the first order properties of the activity of the set of recorded neurons are obtained. In the second part of the paper, the second order properties of this activity are examined. Using another simple mathematical model completing the first one, the principal aspect of the second order properties are summarized.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号