首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transport of horseradish peroxidase (HRP) out of the injection site in the dorsal ventricular ridge was studied in turtles Emys orbicularis. Labeled cells in the forebrain were observed in the paleostriatum among fibers of the lateral forebrain bundle. In the thalamus most of cells containing the granular HRP reaction product were located in the n. rotundus, n. reuniens and perirotundal nuclei (n. dorso-medialis anterior, n. magnocellularis thalami, n (centralis) lateralis, n. dorso-medialis). Fewer labeled cells were revealed in the n. anterior and n. ventralis. The density of labeled cells in the majority of all thalamic nuclei increased if the HRP was extended from the dorsal ventricular ridge into the neostriatum and the pallial thickening with adjacent general cortex. HRP positive cells in the pretectal area, nuclei of the posterior commissura and mesencephalic ventro-lateral tegmentum were observed only in cases when the enzyme was diffused from the injection site into the neostriatum, while the HRP retrograde transport to n. geniculatus lateralis, pars dorsalis was revealed only when HRP was extended into the pallial thickening and adjacent general cortex. Ascending connections of the paleostriatum, thalamic nuclei and mesencephalic tegmentum with telencephalic structures, mainly with the dorsal ventricular ridge, were discussed.  相似文献   

2.
Retinal projections were studied experimentally in the Northern water snake using modifications of the Nauta silver impregnation technique. Contralaterally, the retina projects to nucleus geniculatus lateralis pars dorsalis and pars ventralis, nucleus lentiformis mesencephali and nucleus geniculatus pretectalis. A sparse projection was also observed to nucleus ovalis. An additional afferent thalamic projection to nucleus ventrolateralis was found in two cases. The retina projects ipsilaterally to the dorsolateral portion of nucleus geniculatus lateralis pars dorsalis, and sparsely to nucleus lentiformis mesencephali and nucleus geniculatus pretectalis. Nucleus posterodorsalis receives dense bilateral retinal projections. Contralaterally, the retina also projects to the superficial layers of the tectum (layers 8–13 of Ramón) and to nucleus opticus tegmenti. Armstrong's findings that the retinal projections in Natrix are qualittatively similar to those in lizards were confirmed. However there are marked quantitative differences among the various pathways and their corresponding nuclei. These differences are particularly striking in comparing the visual projections to the dorsal thalamus, the retino-tecto-rotundal and the retino-geniculate systems. The first is reduced in volume and the second is markedly increased in volume in comparison with lizards. These data lend support to the theories of Walls that snakes evolved from fossorial lizards and of Underwood that the eyes of these lizards underwent reduction but not complete degeneration. Qualitatively the retinal projections are conservative among lizards and snakes, but a history of reduction of these pathways in ancestral snakes with a selective increase in the retino-geniculate system as a surface niche was reattained is reflected in the anatomy of this ophidian visual system.  相似文献   

3.
It was shown by the method of retrograde axonal transport of horseradish peroxidase that the posterolateral thalamic nucleus (NPL) in rats receives considerable ascending projections from the superior colliculus (SC), the dorsal part of the lateral geniculate body (LGB), and the pretectal region (PT) and smaller projections from n. ventralis posterior (VP) and n. ventralis lateralis (VL) of the thalamus, the ventral part of LGB, the zona incerta, and anterior hypothalamus. The most marked descending projections run into NPL from area 18A of the cortex and the dentate fascia of the hippocampus, whereas inputs from cortical areas 18, 20, 7, 29c, 17, and 36 are less marked. In electrophysiological experiments with peripheral stimulation of visual, auditory, and somatosensory systems, polysensory convergence and interaction between signals from these systems were studied during isolated and simultaneous presentation of heterosensory stimuli. Of 229 neurons tested, 134 (58.5%) responded to at least one of the stimuli mentioned. Among monomodal neurons (53 of 134) there were some cells which responded to visual (77.4%) and somatic (22.6%) stimulation; neurons which responded only to acoustic stimulation were not found in the nucleus. As far as polymodal neurons (81 of 134) responding to two or three sensory stimuli are concerned, the most effective inputs of these units were visual and somatosensory. Interaction between stimuli acting on polymodal neurons was expressed as mutual inhibition or facilitation of responses; opposite effects could be observed on the various components of these responses.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 16, No. 2, pp. 168–176, March–April, 1984.  相似文献   

4.
Although nearly half of the synaptic input to neurons in the dorsal thalamus comes from the cerebral cortex, the role of corticothalamic projections in sensory processing remains elusive. Although sensory afferents certainly establish the basic receptive field properties of thalamic neurons, increasing evidence indicates that feedback from the cortex plays a crucial role in shaping thalamic responses. Here, we review recent work on the corticothalamic pathways associated with the visual, auditory, and somatosensory systems. Collectively, these studies demonstrate that sensory responses of thalamic neurons result from dynamic interactions between feedforward and feedback pathways.  相似文献   

5.
The cortical sensory projections of somatic, auditory, and visual origin have been mapped in the chloralosed potto. The pathways of the contralateral side of the body project in a classical somatotopic fashion to a large area SI, behind the motor cortex and the central sulcus. The latter constitutes the posterior boundary of the motor cortex only in its ventral part. In its middle zone the motor cortex extends to its posterior lip. Above the sulcus the motor zone is immediately adjacent to the preparietal area. Visual evoked potentials are recorded behind the transverse occipital sulcus with a maximal focus just caudal to an occipital dimple. The auditory area is situated between the sylvian and parallel sulci. No heterosensory potentials (visual or auditory) can be recorded from the somatomotor area, nor from any other part outside their primary projection area. An area of convergent somatic projection devoid of somatotopic organization is found between SI and the auditory zone and another one in front of the central sulcus. In view of the poor cortical heterosensory integration, the sensory projection system of the potto seems to be less developed than in the cat.  相似文献   

6.
Using histochemical determination of activity of the mitochondrial oxidative enzyme cytochrome oxidase (CO) in brain structures, metabolic activity both in turtles and in lizards has been shown to be higher in centers of the tectofugal channel (the tectal stratum griseum centrale, SGC; nucleus pretectalis ventralis, Ptv; thalamic nucleus rotundus, Rot; telencephalic visual area of the anterior dorsal ventricular ridge, Advr) than in the thalamofugal channel centers (the thalamic nucleus geniculatus lateralis pars dorsalis, GLd; cortex dorsolateralis, Cxdl; and pallial thickening, Path) of the visual system. Some interspecies differences in distribution of the CO activity in the tectal, thalamic, and telencephalic visual centers between terrestrial and pond turtles and lizards were revealed. The obtained data confirm the idea on the dominating role of the tectofugal channel over the thalamofugal channel of the visual system in information processing and organization of the day-to-day behavior of reptiles.  相似文献   

7.
Electrical responses to somatic, photic, and acoustic stimulation in the sensomotor, parietal, temporal, and occipital regions of the cortex were studied in the nucleus lateralis posterior and nucleus ventralis lateralis of the thalamus by recording averaged evoked potentials in kittens (aged 3 to 41 days) anesthetized with pentobarbital. A definite order of maturation of afferent inputs into cortical association areas was demonstrated. The parietal cortex was shown to become polysensory before the sensorimotor cortex. It is suggested that the nucleus lateralis posterior is the main thalamic nucleus responsible for conduction of visual information to the cortex in kittens during the first month of life. Incorporation of this nucleus into the system conducting somatic impulsation to the sensorimotor cortex takes place by the age of 3 weeks.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 14, No. 5, pp. 476–482, September–October, 1982.  相似文献   

8.
It turtles, Testudo horsfieldi (Gray) connections of anterior dorsomedial and dorsolateral thalamic nuclei have been investigated by means of horseradish peroxidase, injected ionophoretically. Retrogradely labelled neurons are predominantly revealed ipsilaterally in the cerebral structures belonging to the limbic system: in the forebrain--basal parts of the hemisphere, septum, adjoining nucleus, nuclei of the anterior and hippocampal commissures, hippocampal cortex, preoptic area; in the diencephalon--in the subthalamus (suprapeduncular nucleus), in some hypothalamic structures (para- and periventricular nuclei, posterior nucleus, lateral hypothalamic area, mamillary complex); in the brain stem--ventral tegmental area, superior nucleus of the suture. Less vast connections are with nonlimbic cerebral formations: projections to the striatum, afferents from the laminar nucleus of the acoustic torus, nuclei of the posterior commissure. Similarity and difference of the nuclei investigated in the turtles with the thalamic anterior nuclei in lizards, with the anterior and intralaminar nuclei in Mammalia are discussed. An idea is suggested on functional heterogeneity of the anterior nuclei in reptiles and on their role for ensuring limbic functions at the thalamic level.  相似文献   

9.
Research was carried out into the visual projections of embryos and chickens of Gallus domesticus L. who had undergone early optic vesicle removal and into microphthalmy or monophthalmy with ipsilateral optic fibres resulting from such removal. The architectonics of primary visual centres (nuclei ectomamillaris, geniculatus lateralis, lateralis anterior superficialis synencephali, griseus tectalis and the tectum opticum superficiale) and of the isthmo-opticus nucleus were compared with the architectonics of the same centres in anophthalms. From this research it can be seen that:--1. Optic fibres coming from limited ocular formation in microphthalms can reach the ectomamillaris nucleus in most cases and sustain existence; they may reach the tectum opticum without playing a qualitatively discernable morphogenetic role and act upon the isthmo-opticus nucleus. For these microphthalms, the nuclei lateralis anterior, geniculatus lateralis, superficialis synencephali and griseus tectalis are comparable to those of anophthalms. 2. Ipsilateral optic fibers can develop and show the same specificity and morphogenetic function as the microphthalms' optic fibres. 3. After hatching, some anophthalms shows an isthmo-opticus nucleus with scores of neurons. In general, observations during this research have shown that the specificity of microphthalms' optic fibres and ipsilateral optic fibres remain strictly the same whatever the operation under consideration.  相似文献   

10.
Summary By use of the PAP-immunohistochemical staining technique with serial sections, somatostatin-immunoreactive fiber projections into the brain stem and the spinal cord are described. These projections originate in the periventricular somatostatin-immunoreactive perikarya of the hypothalamus and form three main pathways: (1) along the stria medullaris thalami and the fasciculus retroflexus into the interpeduncular nucleus; (2) along the medial forebrain bundle into the mammillary body; and (3) via the periventricular gray and the bundle of Schütz into the midbrain tegmentum. Densely arranged immunoreactive fibers and/or basket-like fiber terminals are observed within the following afferent systems: somatic afferent systems (nucleus spinalis nervi trigemini, substantia gelatinosa dorsalis of the entire spinal cord), and visceral afferent systems (nucleus solitarius, regio intermediolateralis and substantia gelatinosa of the sacral spinal cord). These projections form terminals around the perikarya of the second afferent neuron. Perikarya of the third afferent neuron are influenced by somatostatin-immunoreactive projections into the auditory system (nucleus dorsalis lemnisci lateralis, nucleus corporis trapezoidei). Furthermore, a somatostatin-immunoreactive fiber projection is found in the ventral part of the medial accessory olivary nucleus, in nuclei of the limbic system (nucleus habenularis medialis, nuclei supramamillaris and mamillaris lateralis) and in the formatio reticularis (nucleus Darkschewitsch, nuclei tegmenti lateralis and centralis, nucleus parabrachialis lateralis, as well as individual perikarya of the reticular formation). Targets of these projections are interneurons within interlocking neuronal chains.Supported by the Deutsche Forschungsgemeinschaft (Grant Nr. Kr 569/3) and Stiftung Volkswagenwerk  相似文献   

11.
Acute electrophysiological experiments on lizards (Ophisaurus apodus) showed that electrical stimulation of the anterior dorsolateral thalamic nucleus and medial forebrain bundle evokes short-latency responses in the hippocampal (mediodorsal) cortex which coincides in distribution and configuration with responses in the same cortical area to sensory stimulation. Extensive destruction of these structures inhibits, or even completely blocks, the conduction of sensory (visual, somatic, audiovibratory) and tactile impulses to the hippocampal cortex. It is concluded that the anterior dorsolateral thalamic nucleus and medial forebrain bundle constitutes, if not the only, at least the principal pathway for transmission of these sensory impulses to the hippocampal cortex in lizards.  相似文献   

12.
1. The distribution of parvalbumin cell bodies and fibers in the thalamus of the rat was studied using a monoclonal antibody and the avidin-biotin-peroxidase method. The densest clusters of immunoreactive perikarya were observed in the nuclei ventralis posterior, reticularis, ventralis anterior and zona incerta, whereas the nuclei habenularis lateralis, lateralis posterior, lateralis, centralis lateralis and ventralis lateralis had the lowest density. In the nucleus geniculatum laterale ventralis, the density of parvalbumin cell bodies was intermediate. In all these thalamic nuclei, small, round or fusiform immunoreactive cells with short immunolabeled dendritic processes were observed. 2. The densest network of immunoreactive fibers was observed in the nuclei geniculatum laterale ventralis, reticularis and zona incerta. The nuclei geniculatum laterale dorsalis, ventralis posterior, medialis ventralis, ventralis anterior, anterior ventralis, anterior dorsalis and rhomboidens contained a moderate number of parvalbumin fibers, whereas the nuclei lateralis posterior, habenularis lateralis, parataenialis, centrum medianum, lateralis, centralis lateralis, ventralis lateralis, medialis dorsalis, anterior medialis, ventralis medialis and lateralis anterior had the lowest density of immunoreactive fibers. In addition, a large number of immunoreactive fibers was found in the lemniscus medialis and a scarce number in the stria medullaris. 3. No immunoreactive structure was observed in the nuclei habenularis medialis, paraventricularis, reuniens and geniculatum mediale. 4. Thus, perikarya and fibers containing parvalbumin are widely distributed throughout the thalamus of the rat, suggesting that parvalbumin might play a role, directly or indirectly, in limbic, visual and somatosensory mechanisms.  相似文献   

13.
On the basis of the results of electrical stimulation of the optic tract and upper layers of the superior colliculus in cats anesthetized with pentobarbital maps were compiled of the distribution of evoked potentials of the posterior thalamic nuclear complex, including the pulvinar and n. lateralis posterior, posterior, suprageniculatus, and lateralis dorsalis. Functional projections of the superior colliculus and optic tract to the posterior thalamus were shown to differ from each other. In response to stimulation of the superior colliculus the distribution of projections was more regular than to stimulation of the tract. Fibers running from the optic tract occupy a smaller territory than fibers from the superior colliculus. It is suggested that the transcollicular afferent channel of the visual system is not reduced in the course of evolution but, on the contrary, it acquires connections with the younger thalamic formations of the brain and assume more complex functions.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 10, No. 4, pp. 355–359, July–August, 1978.  相似文献   

14.
Studies have been made on the connections of rostral neocortex in bats in order to reveal connections with the structures of the auditory sensory system the existence of which is indicated by evident specific responses to ultrasound in the form of synchronization reaction. It was shown that dorsolateral parts of the rostral neocortex receive topically organized projections from the thalamic nuclei VPL and VL. Connections with the auditory cortex and suprageniculate nucleus are not evident. Afferents of the medial wall of the rostral cortex originate from the thalamic nuclei MD and AM. Possible pathways of auditory afferentation to the dorso-lateral part of rostral neocortex are discussed.  相似文献   

15.
Recording the evoked potentials and neuronal activity, electrophysiological studies have been made on tecto-thalamo-cortical tract in rats. The existence of a system of efferent projections in the superficial, visual layers of the superior colliculi was shown which are diffusely present in the nucleus lateralis posterior (n. LP), indicating low level of morpho-functional organization of this region of the dorsal thalamus in rats. In response to electrical stimulation of the n. LP, in laterocaudal parts of the visual system (fields 17 and 18a of the cortex) the evoked potentials of primary-negative polarity were observed which are associated mainly with the superficial (I--IV) cortical layers. Predominant representation of tecto-thalamo-cortical system in the laterocaudal visual area of the cortex indicates the tendency to separate representation (with respect to cortical areas and cortical layers) of retino-geniculate and retino-tecal visual systems in rats.  相似文献   

16.
The structures of limbic system have been found to modulate the auditory, visual and pain afferent signals in the related nuclei of thalamus. One of those structures is anterior cingulate cortex (ACC) that influences nocuous response of the pain-sensitive neurons in the ventropos-tero-lateral nucleus of thalamus. Thus, we inferred that ACC would also modulate tactile information at the thalamic level. To test this assumption, single units were recorded extracellularly from thalamic ventrobasal nucleus (VB). Tactile ON-OFF response and the relationship between different patterns of the responses and the parameters of tactile stimulation were examined. Furthermore, the influence of ACC on the tactile ON-OFF response was studied. ACC stimulation was found to produce a facilitatory effect on the OFF-response of ON-OFF neurons. It lowered the threshold of the off-response of that neuron, and therefore changed the response pattern or enhanced the firing rate of the OFF-response of the neuron. The study on rec  相似文献   

17.
The thalamic relays for the conduction of impulses arising during photic stimulation of the eyes and electrical stimulation of the tectum in the general cortex, hyperstriatum (the dorsal ventricular ridge), and the striatum proper were studied in the turtleEmys orbicularis. Acute experiments on immobilized animals showed that anodal polarization temporarily and destruction of n. rotundus irreversibly suppress the main negative wave of the responses to tectal stimulation and to flashes in the hyperstriatum, whereas the corresponding responses in the general cortex still persist. Polarization and destruction of the lateral thalamic region, including the lateral geniculate body, have the opposite effect: responses in the hyperstriatum to photic and tectal stimulation are virtually unchanged whereas those in the general cortex disappear, except their late components. Preceding single stimulation of the tectum or n. rotundus depresses responses in the hyperstriatum evoked by flashes. However, during stimulation of the lateral thalamic region, combined potentials and single unit responses appear in the hyperstriatum and interact with responses evoked by tectal stimulation. It is concluded that the main pathways in turtles which supply visual information to the general cortex and hyperstriatum differ: the former relay in the lateral thalamic region, the latter in n. rotundus, although some overlapping of their projections in the hyperstriatum and striatum is possible.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Leningrad. Translated from Neirofiziologiya, Vol. 9, No. 5, pp. 486–494, September–October, 1977.  相似文献   

18.
Afferent connections of the retrosplenial area of the rat limbic cortex were investigated by the retrograde horseradish peroxidase axon transport method. After injection of horseradish peroxidase (HRP) into area 29 of the cortex, HRP-labeled cells were found in the dorsal part of the lateral geniculate body and the posterolateral, pretectal, and anterior dorsal thalamic nuclei. Connections were found between cortical area 29 and visual projection areas (areas 17 and 18a) and with area 29 on the contralateral side of the brain. The results are evidence that all the principal visual structures of the thalamus and the visual cortical projection area form direct projections to the retrosplenial cortex.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 14, No. 2, pp. 135–139, March–April, 1982.  相似文献   

19.
The structures of limbic system have been found to modulate the auditory, visual and pain afferent signals in the related nuclei of thalamus. One of those structures is anterior cingulate cortex (ACC) that influences nocuous response of the pain-sensitive neurons in the ventropostero-lateral nucleus of thalamus. Thus, we inferred that ACC would also modulate tactile information at the thalamic level. To test this assumption, single units were recorded extracellularly from thalamic ventrobasal nucleus (VB). Tactile ON-OFF response and the relationship between different patterns of the responses and the parameters of tactile stimulation were examined. Furthermore, the influence of ACC on the tactile ON-OFF response was studied. ACC stimulation was found to produce a facilitatory effect on the OFF-response of ON-OFF neurons. It lowered the threshold of the off-response of that neuron, and therefore changed the response pattern or enhanced the firing rate of the OFF-response of the neuron. The study on receptive fields of ON-OFF neurons showed that the excitation of the ACC could change an ON-response on the verge of a receptive field into an ON-OFF response. The above results suggest that the ACC modulation sharpens the response of a VB neuron to a moving stimulus within its receptive field, indicating that the limbic system can modulate tactile ascending sensory information.  相似文献   

20.
Neuropeptide Y-like immunoreactivity was studied in the thalamus of the cat using an indirect immunoperoxidase method. The densest network of immunoreactive fibers was observed in the nucleus (n.) paraventricularis anterior. In the anterior, intralaminar and midline thalamic nuclei, as well as in the n. geniculatum medialis, n. geniculatum lateralis, n. habenularis lateralis, n. medialis dorsalis, n. lateralis posterior and n. pulvinar a low density of neuropeptide Y-like immunoreactive fibers was observed. Neuropeptide Y-like fibers were totally absent in the n. ventralis lateralis, n. ventralis medialis, n. ventralis postero-medialis and n. ventralis postero-lateralis. In addition, neuropeptide Y-like perikarya were found in the n. parafascicularis, n. suprageniculatus, n. geniculatum lateralis ventralis, n. medialis dorsalis and n. lateralis posterior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号