首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have previously developed procedures for the efficient production of sweet orange (Citrus sinensis L. Osbeck) and Carrizo citrange (C. sinensis L. Osbeck×Poncirus trifoliata L. Raf.) transgenic plants using an Agrobacterium tumefaciens-mediated transformation and shoot tip grafting in vitro regeneration system. We now report on the optimization of the cocultivation, regeneration and selection conditions for efficient and reliable production of transgenic lime (C. aurantifolia Swing.) plants. Improved transformation frequencies were obtained by cocultivating the explants with Agrobacterium on feeder plates. Optimum regeneration of transgenic shoots was obtained by exposing the explants to darkness for 2 weeks and by using kanamycin at 100 mg/l as selective agent. Attempts to use geneticin as selection antibiotic were not successful. Shoot tip grafting of regenerated shoots on Troyer citrange seedlings resulted in 100% successful production of transgenic plants. The presence and expression of the transferred genes in the regenerated plants was verified by β-glucuronidase histochemical and fluorimetric assays, neomycin phosphotransferase ELISA assays, PCR and Southern analyses. Received: 10 December 1996 / Revision received: 10 February 1997 / Accepted: 25 February 1997  相似文献   

2.
Epicotyl explants of sweet orange and citrange were infected with Agrobacterium strain EHA101 harboring binary vector pGA482GG, and factors affecting the plant regeneration and transformation efficiency were evaluated. Increasing the wounded area of explants by cutting longitudinally into two halves, and optimization of inoculation density, dramatically enhanced both regeneration and transformation frequency. Inclusion of 2,4-dichlorophenoxyacetic acid (2,4-D) in the explant pretreatment medium and the co-culture medium improved the transformation efficiency by decreasing the escape frequency. More than 90% rooting frequency of transformed citrange shoots was achieved by two-step culture: first on media supplemented with auxins, and then on media without hormones. Inclusion of 20 mg l–1 kanamycin in rooting medium efficiently discriminated transformed shoots from non-transgenic escaped shoots. Shoot grafting in vitro was used to regenerate transformed plants, due to the slow growth of most sweet orange shoots.  相似文献   

3.
We have achieved high-frequency shoot regeneration in radish(Raphanus sativus). Cotyledon explants from four-day-old seedlings were suitable for the effective induction of shoots on Murashige and Skoog’s (MS) medium containing 3.0 mg/L kinetin. We also determined that it was essential to include 1- to 2-ram petiole segments with the cotyledons for efficient induction. When the regenerated shoots were transferred to an MS liquid medium containing 0.1 mg/L NAA, roots formed within four weeks, and normal plant development ensued. We established a transformation protocol using anAgrobacterium binary vector that carries the GUS reporter gene. Preculturing the explants for I d in an MS medium containing 3.0 mg/L kinetin also increased efficiency. Five days of cocultivation proved best for delivering T-DNA into radish. Transformation frequencies of up to 52% were obtained in shoot induction media that contained 3.0 mg/L kinetin.  相似文献   

4.
Almond (Prunus dulcis Mill.) leaves were transformed with the marker genes gusA (β-glucuronidase) and nptII (neomycin phosphotransferase II) via Agrobacterium-mediated transformation. Bacterial strains and preculture of explants affected efficiency of gene transfer evaluated by transient expression assays. Following transformation, shoots were induced from primary explants on medium without kanamycin and exposed to selection 20 days after cocultivation. From 1419 original leaves, four shoots (A, B, C and D) were obtained that showed amplification of the predicted DNA fragments by polymerase chain reaction (PCR). After micropropagation of these shoots, only those cloned from shoot D gave consistently positive results in histochemical GUS detection and PCR amplification. Southern blot hybridisation confirmed stable transgene integration in clone D, which was also negative in PCR amplification of an Agrobacterium gene. Additional molecular analysis suggested that the remaining three shoots (A, B and C) were chimeric. Received: 28 March 1998 / Revision received: 18 April 1998 / Accepted: 12 May 1998  相似文献   

5.
For the development of anAgrobacterium-mediated transformation procedure of carnation (Dianthus caryophyllus L.), an intron-containing -glucuronidase (gus) gene was used to monitor the frequency of transformation events soon after infection of leaf explants. The efficiency of gene transfer was dependent on the carnation genotype, explant age and cocultivation time. Leaf explants from the youngest leaves showed the highest number of GUS-positive spots. After selection on a kanamycin-containing medium, transgenic shoots were generated among a relatively high number of untransformed shoots. The selection procedure was modified in such a way that the contact between explant and medium was more intense. This improved the selection and decreased the number of escapes. Kanamycin-resistant and GUS-positive plants were obtained from five cultivars after infection of leaf explants with the supervirulentAgrobacterium strain AGLO. A higher transformation frequency was observed with the binary vector pCGN7001 than with the p35SGUSint vector. Integration of the genes into the carnation genome was demonstrated by Southern blot hybridization. The number of incorporated T-DNA insertions varied between independent transformants from one to eight. Transformants were morphologically identical to untransformed plants. Segregation of the genes occurred in a Mendelian way.  相似文献   

6.
Transgenic groundnut (Arachis hypogaea L.) plants were produced efficiently by inoculating different explants withAgrobacterium tumefaciens strain LBA4404 harbouring a binary vector pBM21 containinguidA (GUS) andnptll (neomycin phosphotransferase) genes. Genetic transformation frequency was found to be high with cotyledonary node explants followed by 4 d cocultivation. This method required 3 days of precultivation period before cocultivation withAgrobacterium. A concentration of 75 mg/l kanamycin sulfate was added to regeneration medium in order to select transformed shoots. Shoot regeneration occurred within 4 weeks; excised shoots were rooted on MS medium containing 50 mg/I kanamycin sulfate before transferring to soil. The expression of GUS gene (uidA gene) in the regenerated plants was verified by histochemical and fluorimetric assays. The presence ofuidA andnptll genes in the putative transgenic lines was confirmed by PCR analysis. Insertion of thenptll gene in the nuclear genome of transgenic plants was verified by genomic Southern hybridization analysis. Factors affecting transformation efficiency are discussed.  相似文献   

7.
Efficiency of plants' transformation depends on many factors. The genotype, applied techniques and conditions of plant's modification and modified plant regeneration are the most important among them. In our studies regeneration and transformation conditions for two strawberry cultivars were determined and compared. Plants were transformed by Agrobacterium tumefaciens LBA4404 strain containing plasmid pBIN19 with nptII and gus-reporter genes. Experiment was carried out on more than 1300 leaf explants from each cultivar. Generally, `Induka' plants characterized with higher regeneration potential than `Elista'. The highest number of regenerated shoots was obtained on MS medium with 0.4 mg l –1 IBA and 1.8 mg l–1 BA (3.5 and 1.8 shoots/explant for `Induka' and `Elista', respectively). After plant transformation number of regenerated, transgenic shoots was higher for `Elista' (on the average: 8.3 shoots/100 explants). The number of transgenic `Induka' shoots, obtained at the same conditions, was twice lower (4.2). Simultaneously `Induka' plants needed higher kanamycin concentration for transgenic explants selection than `Elista' (25 mg l–1). Preliminary incubation of A. tumefaciens in LB or MS medium with acetosyringone and IAA resulted in increasing transgenic shoots number (per 100 explants: `Induka' 4.5, `Elista' 8.0–9.5 shoots). After using untreated bacteria for plants' transformation, number of transgenic plants varied (dependently on cultivar) from 3.8 to 7.0/100 explants. Applying LB or MS as basic medium as well as adding tobacco plant extract to these media did not significantly influence transformation efficiency.  相似文献   

8.
 Substantial improvement in peppermint (Mentha x piperita L. var. Black Mitcham) genetic transformation has been achieved so that the frequency of transgenic plants regenerated (percent of leaf explants that produced transformed plants) was 20-fold greater than with the original protocol. Essential modifications were made to conditions for Agrobacterium tumefaciens co-cultivation that enhanced infection, and for selection of transformed cells and propagules during regeneration. A systematic evaluation of co-cultivation parameters established that deletion of coconut water from the co-cultivation medium resulted in substantially increased transient β-Glucuronidase (GUS) activity, in both the frequency of explants expressing gusA and the number of GUS foci per explant (>700 explants). Co-cultivation on a tobacco cell feeder layer also enhanced A. tumefaciens infection. Enhanced transformation efficiencies were further facilitated by increased selection pressure mediated by higher concentrations of kanamycin in the medium during shoot induction, regeneration, and rooting: from 20 to 50 mg/l in shoot induction/regeneration medium and from 15 to 30 mg/l in rooting medium. Raising the concentration of kanamycin in media substantially lowered the number of "escapes" without significant reduction in plant regeneration. These modifications to the protocol yielded an average transformation frequency of about 20% (>2000 explants) based on expression of GUS activity or the tobacco antifungal protein, osmotin, in transgenic plants. Genetic transformation of peppermint has been enhanced to the extent that biotechnology is a viable alternative to plant breeding and clonal selection for improvement of this crop. Received: 7 December 1998 / Revision received: 27 April 1999 / Accepted: 14 May 1999  相似文献   

9.
An efficient transformation and regeneration system was established for the production of transgenic spinach (Spinacia oleracea L.) plants. Cotyledon explants were infected with Agrobacterium tumefaciens strain LBA4404 carrying the selectable marker gene, neomycin phosphotransferase II (nptII), and the reporter gene smgfp, encoding soluble-modified green-fluorescent protein, driven by the cauliflower mosaic virus 35S promoter. The infected explants were cultured on Murashige and Skoog medium, containing 1 mg/l benzyladenine and 0.4 mg/l naphthaleneacetic acid. Shoots were regenerated on selection medium containing 50 mg/l kanamycin. Regenerated kanamycin-resistant shoots were rooted on medium containing 1 mg/l indolebutyric acid and subsequently grown in soil in the greenhouse. Southern blot analysis indicated that the smgfp gene had been integrated into the spinach genome. Northern and Western blots showed that the smgfp gene was expressed in progeny plants. Received: 31 March 1998 / Revision received: 27 September 1998 / Accepted: 10 Ocotber 1998  相似文献   

10.
Transformation of the recalcitrant melon (Cucumis melo L.) cultivars Kιrka?aç 637 and Noi Yarok was accomplished by wounding cotyledon explants by vortexing with carborundum prior to inoculation with Agrobacterium tumefaciens. The addition of silver nitrate to the regeneration‐selection medium reduced the transformation efficiency, as the percentage of the explants forming putative transgenic calli and bud‐like protuberances was decreased and no transgenic shoots were produced. Chimeric transgenic plants were obtained after the regeneration of putatively transformed callus, bud‐like protuberances, buds and shoots on selective medium with kanamycin. The treatments producing the most buds or shoots from explants after 30–40 days of cultivation were the most successful for the production of transgenic plants. Only treatments where explants were vortexed with carborundum produced transgenic melon shoots of either cultivar. Subculture every 18–20 days on fresh regeneration‐selection medium containing 50 mg/L kanamycin after either a relatively high (100 mg/L) or low level (50 mg/L) of kanamycin in the first regeneration‐selection medium was necessary for the successful transformation of cultivar Kιrka?aç 637. These techniques are now being used in breeding programs for the production of melon lines bearing resistances to zucchini yellow mosaic virus and cucumber mosaic virus, important viruses limiting agricultural production.  相似文献   

11.
Internodal explants from etiolated `Royal Gala' apple shoots were compared with those from non-etiolated shoots for frequency of shoot organogenesis and for efficiency of β-glucuronidase (GUS) expression after cocultivation of explants with Agrobacterium tumefaciens strain EHA105 (p35SGUSint). First (youngest) internodal explants from etiolated shoots produced 2-, 8- and 73-fold numbers of shoots compared to second, third, and fourth internodal explants, respectively. Moreover, these explants produced sevenfold the number of shoots as similar explants from non-etiolated shoots. All first internodes from etiolated shoots exhibited GUS-expressing zones and yielded fourfold as many GUS-expressing zones as commonly used leaf explants from non-etiolated shoots, which exhibited GUS-expressing zones in only 63% of the explants. An average of 9.8 GUS expressing calli per explant were observed on first internodes from etiolated shoots 2 weeks after cocultivation with A. tumefaciens. Received: 17 February 1998 / Revision received: 5 May 1998 / Accepted: 15 May 1998  相似文献   

12.
Highly efficient Agrobacterium-mediated transformation of carnation (Dianthus caryophyllus L.) was obtained by first wounding stem explants via microprojectile bombardment. When this was followed by cocultivation with disarmed Agrobacterium in the dark, the transformation frequency-based on transient GUS expression-increased to over 10-fold that of explants wounded by other means and cocultivated under constant light. Two cycles of regeneration/selection on kanamycin were employed to generate stably transformed carnation plants and eliminate chimeras: first, plantlets were regenerated from inoculated stem explants and then leaves from these plantlets were used to generate transgenes in a second selection cycle of adventitious shoot regeneration. Agrobacterium strain AGLO, carrying the binary vector pCGN7001 containing uidA and nptII genes, was used in the stable transformation experiments. The combination of wounding via bombardment, cocultivation in the dark and two cycles of kanamycin selection yielded an overall transformation efficiency of 1–2 transgenes per 10 stem explants for the three carnation varieties analyzed. Histochemical and molecular analyses of marker genes in T0 and T1 generations confirmed the transgenic nature of the selected plants.  相似文献   

13.

Genetic transformation of tomato was first accomplished around 30 years ago. However, variability in transformation efficiency of distinct cultivars exists and to some extent remains a bottleneck for transgenic research. This study reports strategies to improve transformation efficiency in tomato and investigates regeneration capacity of transgenic plants under different selection regimes and hormonal applications. Tomato cv. Rio Grande was used as plant material and hygromycin and phosphinothricin (PPT) were used as selection agents. We found that cv. Rio Grande inherently produced a significant number of abnormal (“blind”) shoots lacking an apical meristem. Replacing cytokinin zeatin riboside with 6-benzylaminopurine (BAP) reduced the number of blind shoots although it slightly prolonged regeneration time. Survival rate of calli and shoots was very low using PPT as selection, whereas regeneration was achieved using hygromycin. Delayed application of hygromycin selection following co-cultivation with Agrobacterium tumefaciens improved the overall callus and shoot production. In vivo GFP fluorescence was detected to investigate the development of transgenic tissues using different hygromycin selection regimes. Higher transformation frequency was achieved when explants were continuously exposed to selection agents immediately following the pre-selection stage. Reducing the selection period followed by a non-selection stage increased the number of shoots, but these shoots were mostly non-transgenic. Thus, although less stringent selection, as expected, encouraged regeneration of shoots from calli, it did not improve transformation efficiency. Omitting selection altogether greatly reduced the efficiency of transformation. It was concluded that BAP is more suitable for normal shoot development, and that delayed selection followed by continuous selection results in higher transformation frequency.

  相似文献   

14.
We have developed a new Agrobacterium-mediated transformation method for the low-frequency-regenerating pear (Pyrus communis L.) cvs. Silver bell and La France. Leaf sections derived from in vitro shoots were initially used for the transformation procedure. Under optimum transformation conditions, which included culture and selection on 30 mg/l kanamycin (Km) combined with 500 mg/l sulbenicillin, a 3.2% transformation efficiency was obtained for cv. Silver bell, but no transformants of La France were obtained because of the very low regeneration frequency. Axillary shoot meristems were then examined as potential explants for La France. Selection in 5 mg/l Km and 375 mg/l carbenicillin resulted in transformed shoots being produced at an efficiency of 4.8%, and the apparent white Km-sensitive shoots were not formed during a 2-year subculture on micropropagation medium containing 50 mg/l Km. Therefore, transformations using axillary shoot meristems may be an alternative method for pear cultivars recalcitrant to regeneration from leaf sections.  相似文献   

15.
Highly efficient Agrobacterium-mediated transformation of trifoliate orange (Poncirus trifoliata (L.) Raf.) was achieved via indirect shoot organogenesis. Stable transformants were obtained from epicotyl segments infected with Agrobacterium strain EHA 105 harboring the binary vector pBI121, which contained the neomycin phosphotransferase gene (NPTII) as a selectable marker and the β-glucuronidase (GUS) gene as a reporter. The effects of regeneration and selection conditions on the transformation efficiency of P. trifoliata (L.) Raf. have been investigated. A 7-d cocultivation on a medium with 8.86 μM 6-benzylaminopurine (BA)+1.43 μM indole-3-acetic acid (IAA) was used to improve callus formation from epicotyl segments after transformation. A two-step selection strategy was developed to select kanamycin-resistant calluses and to improve rooting of transgenic shoots. Transgenic shoots were multiplied on shoot induction medium with 1.11 μM BA + 5.71 μM IAA. Using the optimized transformation procedure, transformation efficiency and rooting frequency reached 417% and 96%, respectively. Furthermore, the number of regenerated escape shoots was dramatically reduced. Stable integration of the transgenes into the genome of transgenic citrus plants was confirmed by GUS histochemical assay, PCR, and Southern blot analysis.  相似文献   

16.
Summary An efficient regeneration and transformation system was developed for two elite aspen hybrid clones (Populus canescens × P. grandidentada and P. tremuloides × P. davidiana). Callus was induced from in vitro leaf explants on modified Murashige and Skoog medium (MSA) and woody plant medium (WPM) containing four different combinations of cytokinins and auxins. Callus tissues regenerated into shoots on WPM medium supplemented with 2.0 mgl−1 (9.12 μM) zeatin or 0.01 mgl−1 (0.045 μM) thidiazuron. P. canescens × P. grandidentata exhibited the higher callus and shoot production. In vitro leaf explants from the two hybrid clones were cocultivated with Agrobacterium tumefaciens strain EHA105 harboring the binary Ti plasmid pBI121 carrying the uidA gene encoding for β-glucuronidase (GUS) and the npt II gene encoding for neomycin phosphotransferase II. Transformation was confirmed by GUS assays, polymerase chain reaction, and Southern blot analyses. Agrobacterium concentration, acetosyringone, and pH of the cocultivation medium were evaluated for enhancing transformation efficiency with the clone P. canescens × P. grandidentata.  相似文献   

17.
Summary The efficiency of Agrobacterium-mediated transformation of Arabidopsis thaliana was compared with different organs, Arabidopsis ecotypes, and Agrobacterium strains. Efficiency of shoot regeneration was examined using hypocotyl, cotyledon and root explants prepared from young seedlings. Hypocotyl expiants had the highest regeneration efficiency in all of the four Arabidopsis ecotypes tested, when based on a tissue culture system of callus-inducing medium (CIM: Valvekens et al. 1988) and shoot-inducing medium (SIM: Feldmann and Marks 1986). Histochemical analysis using the ß-glucuronidase (GUS) reporter gene showed that the gusA gene expression increased as the period of preincubation on CIM was extended, suggesting that dividing cells are susceptible to Agrobacterium infection. In order to obtain transgenic shoots, hypocotyl explants preincubated for 7 or 8 days on CIM were infected with Agrobacterium containing a binary vector which carries two drug-resistant genes as selection markers, and transferred to SIM for selection of transformed shoots. Of four Arabidopsis ecotypes and of three Agrobacterium strains examined, Wassilewskija ecotype and EHA101 strain showed the highest efficiency of regeneration of transformed shoots. By combining the most efficient factors of preincubation period, Arabidopsis ecotype, tissue, and bacterial strain, we obtained a transformation efficiency of about 80–90%. Southern analysis of 124 transgenic plants showed that 44% had one copy of inserted T-DNA while the others had more than one copy.Abbreviations AIM Agrobacterium infection medium - CIM callus-inducing medium - CTAB cetyltrimethylammonium bromide - 2,4-D 2,4-dichlorophenoxy-acetic acid - GUS ß-glucuronidase - hph hygromycin phosphotransferase - IAA indole-3-acetic acid - IBA indole-3-butyric acid - 2ip N -(2-isopentenyl) adenine - NPTII neomycin phosphotransferase II - RIM root-inducing medium - 35S cauliflower mosaic virus 35S promoter - SIM shoot-inducing medium  相似文献   

18.
 The green fluorescent protein (GFP) from Aequorea victoria has been introduced into three different citrus genotypes [Citrus aurantium L., C. aurantifolia (Christm.) Swing. and C. sinensis L. Osbeck×Poncirus trifoliata (L.) Raf.] which are considered recalcitrant to transformation, mainly due to low transformation frequencies and to the regeneration of escape shoots at high frequencies from the Agrobacterium-inoculated explants. High-level GFP expression was detected in transgenic cells, tissues and plants. Using GFP as a vital marker has allowed us to localize the sites of transgene expression in specific cells, always occurring in callus tissue formed from the cambium of the cut ends of explants. Whereas green fluorescent shoots regenerated in all cases from this callus, most escapes regenerated directly from explants with almost no callus formation. Thus, development of callus from cambium is a prerequisite for citrus transformation. Furthermore, in vivo monitoring of GFP expression permitted a rapid and easy discrimination of transgenic and escape shoots. The selection of transgenic shoots could be easily favored by eliminating the escapes and/or by performing shoot-tip grafting of the transgenic buds soon after their origin. GFP-expressing shoots have also been observed in citrus explants co-cultivated with Agrobacterium but cultured in a medium without the selective agent kanamycin. This opens the possibility to rescue the transgenic sectors and to regenerate transgenic plants without using selectable marker genes conferring antibiotic or herbicide resistance, which is currently a topic of much discussion for the commercialization of transgenic plants. Received: 28 October 1998 / Accepted: 28 November 1998  相似文献   

19.
根癌农杆菌对巴戟天遗传转化的影响因素   总被引:2,自引:0,他引:2  
贺红  林小桦  张桂芳  徐鸿华 《广西植物》2004,24(5):411-413,395,i006
以巴戟天带节茎为材料,研究了根癌农杆菌对巴戟天遗传转化的影响因素。结果表明:外植体感染前先进行2 d预培养,对转化有一定促进作用;外植体与农杆菌共培养时间以3 d为宜;乙酰丁香酮能提高转化效率,抗性芽分化率可达18.0%;外植体与农杆菌共培养后延迟4 d选择,抗性芽分化率有所提高;硝酸银能抑制外植体表面农杆菌的生长,提高GUS阳性芽的比例,硝酸银浓度2 mg/L时,GUS阳性芽比例最高(42.9%)。  相似文献   

20.
The effect, on adventitious regeneration from apricot leaf explants and transformation of leaf tissues, of auxins pulses with NAA and 2, 4-D was tested. Addition of the polyamines putrescine and spermidine to the regeneration medium, alone or in combination with the ethylene inhibitors silver thiosulphate and aminoethoxyvinylglycine, were also tested to design a procedure that improved transformation efficiency. Spermidine at 2 mM in combination with 0.5 M aminoethoxyvinylglycine and four-day pulses with two different concentrations of 2, 4-D increased significantly shoot regeneration. Spermidine at the same concentration but in combination with 60 M silver thiosulphate and four-day pulses with 9 M 2, 4-D also increased stable transformation events and GFP-expressing calluses probably by inducing a larger amount of dividing cells where Agrobacterium transferred its T-DNA. Since regeneration from apricot leaves occurs mostly from developing calluses, it is important to obtain many GFP-expressing calluses and, given that transformation efficiencies (number of transformed shoots per total number of explants) in woody plants are generally very low, approaches that allow the optimization of T-DNA transfer and total number of transformed cells obtained, will improve probabilities of obtaining transformed shoots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号