首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Isolation of cleavage-stage blastomeres and the study of their developmental potential has been used extensively for analyzing the mechanisms of embryogenesis in vertebrates, including amphibians and echinoderms. We devised a method to isolate 8-cell stage blastomeres in the teleost, shiro-uo, by utilizing its unique cleavage pattern of the horizontal 3rd cleavage plane. Removal of all the upper blastomeres at the 8-cell stage allowed almost normal embryogenesis from the remaining lower blastomeres and yolk cell mass. Isolated upper or lower blastomeres formed vesicles and spherical bodies, which later showed morphological changes during cultivation. Mesoderm formation was detected not only in the cultivated lower blastomeres or whole blastomeres but also in the upper blastomeres isolated from the yolk cell mass at the 8-cell stage, although at a lower frequency than the lower blastomeres. These results indicated the presence of very early signaling for mesoderm induction, which is independent from the currently postulated signals from the yolk syncytial layer at later stages. This also indicated non-equivalence or differentiation of the blastomeres from the very early cleavage stage in teleost embryos.  相似文献   

2.
Dissociated animal cap blastomeres of Xenopus laevis blastulae were cultured at a low Ca level (1 microM) from 9th to 18th cell cycle at 22 +/- 1 degrees C and observed by a time-lapse video recorder. Blastomeres cleaved unequally to increase variability in cell size as cell cycles progressed, but synchronously at a constant cell cycle time of about 30 min up to the 12th cleavage in diploid cells, and up to the 13th cleavage in haploid cells, regardless of their cell sizes. Thereafter, blastomeres cleaved asynchronously at varying cell cycle times in proportion to the inverse square of their radii. The transition from the cell size-independent to -dependent cell cycles occurred at the critical cell radius, 37.5 microm for the diploid and 27.9 microm for the haploid. While the protein synthesis inhibitor, cycloheximide (CHX) lengthened cell cycle times two- to six-fold, epidermal growth factor (EGF) had no significant effect on the cell cycle. CHX-treated blastomeres synchronously cleaved at a constant cell cycle time of 60 min up to the 12th cleavage. Thereafter, cell cycle times became variable in proportion to the inverse square of radii in the presence of CHX at 0.10-0.14 microg/ml, but to the inverse cube of radii at 0.18 microg/ml. The critical cell size of CHX-treated blastomeres for the transition from cell size-independent to -dependent cell cycles remained the same as that of untreated blastomeres. Frequency distributions of cell cycle times of synchronous cell cycles were monomodal with the peak at 30 min, except for CHX-treated blastomeres with the peak at 60 min. In contrast, frequency distributions of asynchronous cell cycles were polymodal with peaks at multiples of a unit time of 30-35 min. To explain these results, we propose that blastomere cytoplasm has 30-min cycles that repeatedly produce mitosis promoting factor (MPF) in a quantity proportional to the cell surface area. MPF is neutralized when it titrates a nuclear inhibitor present in a quantity proportional to the genome size, and sequestered in the nucleus. When the total amount of MPF produced exceeds the threshold required to titrate all of the inhibitor, mitosis is initiated.  相似文献   

3.
In order to study the characteristics of neoteny in teleosts, development of the thyroid system and digestive tract of a neotenic goby (ice goby, Leucopsarion petersii) and a non-neotenic goby (ukigori, Gymnogobius urotaenia) were compared. In juvenile ukigori, the intestine was found to be convoluted once in the antero-midpart, and gastric glands were present. In the ice goby, the alimentary canal was straight, and no gastric gland was observed even in adult, suggesting that the ice goby retains larval features, not only in appearance but also in internal organs. A marked difference was also found in the thyroid system. In ukigori, activity of the thyroid gland and thyroid stimulating hormone (TSH) cells increased between flexion and postflexion larval phases. However, in the ice goby, thyroid glands remained inactive, and no TSH cells were observed. A delayed development of the thyroid system was suggested as a major factor contributing to neoteny in the ice goby.  相似文献   

4.
5.
Mouse 2-, 4-, 8-, and 16-cell embryos were exposed to nocodazole in M16 culture medium. The effect of different concentrations and exposure times on the efficiency of cell cycle synchronization and the development of the treated embyros after release from the drug was determined. The minimum effective concentration (95% of arrested nuclei) for 4-, 8-, and 16-cell embryos was 5μM nocodazole. The effect upon subsequent development of mouse embryos depended upon both the stage of development of the embryo at treatment (P < 0.001) and the length of exposure to nocodazole (P < 0.001). Exposure to any concentration of nocodazole within the range 2.5–10 μM for 12 hr caused a reduction in the proportion of embryos that formed blastocysts. As the period of exposure to 5μM nocodazole increased from 12 to 24 hr, the proportion of embryos developing to the blastocyst stage decreased. The lower proportion of embyros developing to the blastocyst stage and to term (P < 0.01) suggests that the more advanced stages were more susceptible to damage as a result of exposure to nocodazole. The rate of development of 4-cell embryos to blastocysts was not affected when an exposure time of 9 hr was used. Together these results show that it is possible to use nocodazole to arrest mouse embryonic cells in mitosis but that it is not appropriate to culture the embryos in the presence of this drug for prolonged periods. Individual blastomeres completed mitosis at 60–90 min and started DNA synthesis at 120–150 min after release from nocodazole. Nuclei from blastomeres thus synchronized were used to conduct studies on the effect of the cell cycle on nuclear transfer. A signficant effect was found. When nuclei from 8-cell embryos in G1 or S-phase were used as nuclei donors, development to blastocyst was respectively 27% and none. ©Wiley-Liss, Inc.  相似文献   

6.
BACKGROUND INFORMATION: The MAPK (mitogen-activated protein kinase) superfamily of proteins consists of four separate signalling cascades: the c-Jun N-terminal kinase or stress-activated protein kinases (JNK/SAPK); the ERKs (extracellular-signal-regulated kinases); the ERK5 or big MAPK1; and the p38 MAPK group of protein kinases, all of which are highly conserved. To date, our studies have focused on defining the role of the p38 MAPK pathway during preimplantation development. p38 MAPK regulates actin filament formation through the downstream kinases MAPKAPK2/3 (MAPK-activated protein kinase 2/3) or MAPKAPK5 [PRAK (p38 regulated/activated kinase)] and subsequently through HSP25/27 (heat-shock protein 25/27). We recently reported that 2-cell-stage murine embryos treated with cytokine-suppressive anti-inflammatory drugs (CSAIDtrade mark; SB203580 and SB220025) display a reversible blockade of development at the 8-16-cell stage, indicating that p38 (MAPK) activity is required to complete murine preimplantation development. In the present study, we have investigated the stage-specific action and role of p38 MAPK in regulating filamentous actin during murine preimplantation development. RESULTS: Treatment of 8-cell-stage embryos with SB203580 and SB220025 (CSAIDtrade mark) resulted in a blockade of preimplantation development, loss of rhodamine phalloidin fluorescence, MK-p (phosphorylated MAPKAPK2/3), HSP-p (phosphorylated HSP25/27) and a redistribution of alpha-catenin immunofluorescence by 12 h of treatment. In contrast, treatment of 2- and 4-cell-stage embryos with CSAIDtrade mark drugs resulted in a loss of MK-p and HSP-p, but did not result in a loss of rhodamine phalloidin fluorescence. All these effects of p38 MAPK inhibition were reversed upon removal of the inhibitor, and development resumed in a delayed but normal manner to the blastocyst stage. Treatment of 8-cell embryos with PD098059 (ERK pathway inhibitor) did not affect development or fluorescence of MK-p, HSP-p or rhodamine phalloidin. CONCLUSION: Murine preimplantation development becomes dependent on p38 MAPK at the 8-16-cell stage, which corresponds to the stage when p38 MAPK first regulates filamentous actin during early development.  相似文献   

7.
In order to clarify the mechanisms of neoteny in the ice goby (Leucopsarion petersii), we examined effects of thyroid hormone and thiourea (TU) treatments on their neotenic characteristics and the pituitary-thyroid axis. Adult ice goby were exposed to 3, 5, 3'-triiodothyronine (T3, 0.1 ppm), TU (inhibitor of thyroid hormone synthesis, 30 ppm), or the combination of the two for 2 weeks. Observations of whole body T3 levels, thyroid follicles and TSH immunoreactive cells in the pituitary suggests the presence of a functioning thyroidal system. However, all of the neotenic features did not disappear in T3-treated fish, suggesting the absence of T3 responsiveness in peripheral tissues. These results indicate the similarity between neoteny of the ice goby and obligatory-type neoteny of urodeles.  相似文献   

8.
Lee JH  Park JH  Lee SH  Park CS  Jin DI 《Theriogenology》2004,62(8):1452-1458
Fluorescence in situ hybridization (FISH) is a sensitive technique for molecular diagnosis of chromosomes on single cells and can be applied to sex determination of embryos. The objective has been to develop an accurate and reliable bovine Y chromosome-specific DNA probe in order to sex biopsed blastomeres derived from IVF bovine embryos by FISH. Bovine Y chromosome-specific PCR product derived from BtY2 sequences was labeled with biotin-16-dUTP (BtY2-L1 probe), and FISH was performed on karyoplasts of biopsed blastomeres and matched demi-embryos. Our FISH signal was clearly detected in nuclei of blastomeres of male embryos. FISH analysis of bovine embryos gave high reliability (96%) between biopsied blastomeres and matched demi-embryos. These results indicated that the BtY2-L1 bovine Y chromosome-specific FISH probe was an effective probe for bovine embryo sexing, and the FISH technique of probe detection could improve the efficiency and reliability.  相似文献   

9.
In many organisms, like Caenorhabditis elegans and Drosophila melanogaster, establishment of spatial patterns and definition of cell fate are driven by the segregation of determinants in response to spatial cues, as early as oogenesis or fertilization. In these organisms, a family of conserved proteins, the PAR proteins, is involved in the asymmetric distribution of cytoplasmic determinants and in the control of asymmetric divisions. In the mouse embryo, it is only at the 8-cell stage during compaction that asymmetries, leading to cellular diversification and blastocyst morphogenesis, are first observed. However, it has been suggested that developmentally relevant asymmetries could be established already in the oocyte and during fertilization. This led us to study the PAR proteins during the early stages of mouse development. We observed that the homologues of the different members of the PAR/aPKC complex and PAR1 are expressed in the preimplantation mouse embryo. During the first embryonic cleavages, before compaction, PARD6b and EMK1 are observed on the spindle. The localization of these two proteins becomes asymmetric during compaction, when blastomeres flatten upon each other and polarize. PARD6b is targeted to the apical pole, whereas EMK1 is distributed along the baso-lateral domain. The targeting of EMK1 is dependent upon cell-cell interactions while the apical localization of PARD6b is independent of cell contacts. At the 16-cell stage, aPKCzeta colocalizes with PARD6b and a colocalization of the three proteins (PARD6b/PARD3/aPKCzeta can occur in blastocysts, only at tight junctions. This choreography suggests that proteins of the PAR family are involved in the setting up of blastomere polarity and blastocyst morphogenesis in the early mammalian embryo although the interactions between the different players differ from previously studied systems. Finally, they reinforce the idea that the first developmentally relevant asymmetries are set up during compaction.  相似文献   

10.
The otx genes belong to the orthodenticle gene family and play important roles in anterior brain development in vertebrates. We isolated two cDNA sequences, one homologous to human and zebrafish otxl and another homologous to zebrafish otx3, from the teleost Leucopsarion petersii (shiro-uo), which belongs to the family of gobies in the Perciformes. During embryogenesis of shiro-uo, otx1 and otx3 were expressed in the fore- and mid-brain throughout development in a manner similar to that observed in other vertebrates so far studied. However, otx-1 mRNA was also present at earlier stages and we obtained unique results using in situ hybridization and RT-PCR analysis demonstrating that otx-1 signals showed a distinct increase in the upper blastomeres, but not in the lower blastomeres, at the 8-cell stage. These stronger signals were maintained in the animal pole blastomeres during the 16-cell to 64-cell stages, followed by a gradual decrease during blastula stages. Such unexpected unequal distribution of otx1 mRNA revealed that blastomeres at early cleavage stages already showed non-equivalence in the embryogenesis of shiro-uo.  相似文献   

11.
Cow oocytes and preimplantation embryos were cultured in medium containing radiolabelled methionine and the proteins synthesized were analysed by one-dimensional electrophoresis and fluorography. Marked changes in the pattern of synthesis were observed at the 8-16-cell stage of development. Quantitatively, a gradual decrease in the rate of protein synthesis occurred between the zygote and 8-cell stage and then the rate increased progressively to the blastocyst stage. Incorporation of radiolabelled uridine into RNA was first detected at the 16-cell stage. Taken together, these results suggest that protein synthesis is programmed by maternal mRNA up to the 8-cell stage but switches to mRNA derived from the zygote genome between the 8- and 16-cell stage.  相似文献   

12.
13.
Environmental Biology of Fishes - The Northwest Pacific, including Korea, is an interesting area for population genetic studies because of the dramatic Pleistocene sea-level change. The ice goby...  相似文献   

14.
Chromosomal normality and sex were diagnosed in each blastomere of bovine embryos derived from in vitro fertilization (IVF). Bovine embryos developing to the 5- to 10-cell stage were separated into individual blastomeres with 0.5% protease. After treatment with 100 ng/mL vinblastine sulfate for 8 to 10 h, they were prepared for chromosome samples. In total, 33 bovine embryos and 185 blastomeres were examined. Chromosomal normality was analyzed in 43.8% (81/185) of the blastomeres and 60.6% (20/33) of the embryos; while chromosomal anomalies were found in 16 (80%, 16/20) of the embryos, 5 haploid embryos and 11 mosaic (n/2n) embryos. Mosaicism characteristic of the opposite sex in X-and Y-chromosomes was found in 2 haploid embryos, and that of a Y-chromosome and of XX chromosomes in 1 n/2n embryo. Various sex-chromosome compositions were also observed in the other 10 chromosomal mosaic n/2n embryos.  相似文献   

15.
M cells are a kind of intestinal epithelial cell in the follicle-associated epithelium of Peyer's patches. These cells can transport antigens and microorganisms into underlying lymphoid tissues. Despite the important role of M cells in mucosal immune responses, the origin and mechanisms of differentiation as well as cell death of M cells remain unclear. To clarify the mechanism of M cell differentiation, we established a novel murine intestinal epithelial cell line (MIE) from the C57BL/6 mouse. MIE cells grow rapidly and have a cobblestone morphology, which is a typical feature of intestinal epithelial cells. Additionally, they express cytokeratin, villin, cell-cell junctional proteins, and alkaline phosphatase activity and can form microvilli. Their expression of Musashi-1 antigen indicates that they may be close to intestinal stem cells or transit-amplifying cells. MIE cells are able to differentiate into the M cell lineage following coculture with intestinal lymphocytes, but not with Peyer's patch lymphocytes (PPL). However, PPL costimulated with anti-CD3/CD28 MAbs caused MIE cells to display typical features of M cells, such as transcytosis activity, the disorganization of microvilli, and the expression of M cell markers. This transcytosis activity of MIE cells was not induced by T cells isolated from PPL costimulated with the same MAbs and was reduced by the depletion of the T cell population from PPL. A mixture of T cells treated with MAbs and B cells both from PPL led MIE cells to differentiate into M cells. We report here that MIE cells have the potential ability to differentiate into M cells and that this differentiation required activated T cells and B cells.  相似文献   

16.
Germ cell cluster in the panoistic ovary of Thysanoptera (Insecta)   总被引:1,自引:1,他引:0  
M. Pritsch  J. Büning 《Zoomorphology》1989,108(5):309-313
Summary Germ cell clusters are found in the germarial region of ovarioles of Parthenothrips dracenae. Cluster mitoses are synchronized, at least initially. The intercellular bridges are filled with fusomal material, which can fuse to form polyfusomal aggregates which in turn form small rosettes. All cells develop into oocytes. Oocytes become isolated by a secondary detachment process. Intercellular bridges, together with fusomal material and cell membranes, survive for some time as isolated bodies. Phylogenetic consequences are discussed. The data provide strong evidence for a secondary panoistic ovary in thysanopterans, since cluster formation in ovaries of primary panoists has not been shown.  相似文献   

17.
Blastomeres isolated from 16-cell mouse embryos consist of larger cells and smaller cells. In the intact embryo, the larger cells tend to differentiate to the trophectoderm, while the smaller cells give rise to the inner cell mass. The mode of phenotypic alteration of isolated blastomeres from early 16-cell embryos was examined by culturing them as single cells in vitro. The smaller blastomeres showed an increased tendency to be engulfed, as revealed by aggregation experiments during a 15 h culture period just prior to division into the 32-cell stage, while the larger cells remained showing high engulfing activity during this period. The present result demonstrates that the smaller blastomere continues to adopt a selected differentiation program for a certain period, even after its environment is changed.  相似文献   

18.
We have investigated the contribution of an individual nucleus to intracellular and surface membranes in multinucleated muscle fibers. Using a retroviral vector, we introduced the gene encoding the human T-lymphocyte antigen CD8 into C2 mouse muscle cells to form a stable line expressing the human protein on its surface. The intracellular and surface distributions of the protein were then investigated by immunocytochemistry in hybrid myotubes containing a single nucleus expressing CD8. We show that the intracellular distribution of CD8 is limited to a local area surrounding the nucleus encoding it and several neighboring nuclei. On the cell surface, however, the protein is distributed over the entire myotube. Widespread distribution of a surface membrane protein in multinucleated myotubes can thus result from localized synthesis and processing.  相似文献   

19.
Male and female gamete nuclei are required to ensure the full-term development of the mouse embryo. Differential expression of the two genomes has been proposed as the basis for this requirement. In order to investigate whether some interactions between the paternal and the maternal genomes are essential before or at the time of the activation of the embryonic genome, we have constructed diploid embryos from haploid parthenotes and androgenotes at the late 2-cell stage. These embryos developed to term into normal offsprings. This shows that the male and the female genomes can be activated separately and are still able to ensure complete development when put together in cytoplasm synchronized with the nuclei. These experiments also show that the egg cytoplasm does not need any male contribution before the late 2-cell stage.  相似文献   

20.
We show that a single myogenic progenitor cell in vitro generates two types of myoblasts committed to two distinct myogenic cell lineages. Using fast and slow myosin heavy chain isoform content to define myotube type, we found that myogenic cells from fetal quail (day 10 in ovo) formed two types of myotubes in vitro: fast and mixed fast/slow. Clonal analysis showed that these two types of myotubes were formed from two types of myoblasts committed to distinct fast and fast/slow lineages. Serial subcloning demonstrated that the initial myoblast progeny of an individual myogenic progenitor cell were in the fast lineage, whereas later progeny were in the fast/slow lineage. Fast and slow myosin expression within particular myotubes reflects the genetic processes underlying myoblast commitment to diverse myogenic lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号