首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane glycoconjugates on the Leishmania parasites, notably leishmanolysin and lipophosphoglycan, have been implicated in attachment and invasion of host macrophages. However, the function of parasite surface Ag 2 (PSA-2) and membrane proteophosphoglycan (PPG) has not been elucidated. In this study we demonstrate that native and recombinant Leishmania infantum PSA-2, which consists predominantly of 15 leucine-rich repeats (LRR) and a recombinant LRR domain derived from L. major PPG, bind to macrophages. The interaction is restricted to macrophages and appears to be calcium independent. We have investigated the PSA-2-macrophage interaction to identify the host receptor involved in binding and we show that binding of PSA-2 to macrophages can be blocked by Abs to the complement receptor 3 (CR3, Mac-1). Data derived from mouse macrophage studies were further confirmed using cell lines expressing human CR3, and showed that PSA-2 also binds to the human receptor. This is the first demonstration of a functional role for PSA-2. Our data indicate that in addition to leishmanolysin and lipophosphoglycan, parasite attachment and invasion of macrophages involve a third ligand comprising the LRRs shared by PSA-2 and PPG and that these interactions occur via the CR3.  相似文献   

2.
The human leishmaniasis are persistent infections of macrophages caused by protozoa of the genus Leishmania. The chronic nature of these infections is in part related to induction of macrophage deactivation, linked to activation of the Src homology 2 domain containing tyrosine phosphatase-1 (SHP-1) in infected cells. To investigate the mechanism of SHP-1 activation, lysates of Leishmania donovani promastigotes were subjected to SHP-1 affinity chromatography and proteins bound to the matrix were sequenced by mass spectrometry. This resulted in the identification of Leishmania elongation factor-1alpha (EF-1alpha) as a SHP-1-binding protein. Purified Leishmania EF-1alpha, but not host cell EF-1alpha, bound directly to SHP-1 in vitro leading to its activation. Three independent lines of evidence indicated that Leishmania EF-1alpha may be exported from the phagosome thereby enabling targeting of host SHP-1. First, cytosolic fractions prepared from macrophages infected with [(35)S]methionine-labeled organisms contained Leishmania EF-1alpha. Second, confocal, fluorescence microscopy using Leishmania-specific antisera detected Leishmania EF-1alpha in the cytosol of infected cells. Third, co-immunoprecipitation showed that Leishmania EF-1alpha was associated with SHP-1 in vivo in infected cells. Finally, introduction of purified Leishmania EF-1alpha, but not the corresponding host protein into macrophages activated SHP-1 and blocked the induction of inducible nitric-oxide synthase expression in response to interferon-gamma. Thus, Leishmania EF-1alpha is identified as a novel SHP-1-binding and activating protein that recapitulates the deactivated phenotype of infected macrophages.  相似文献   

3.
TLRs, which form an interface between mammalian host and microbe, play a key role in pathogen recognition and initiation of proinflammatory response thus stimulating antimicrobial activity and host survival. However, certain intracellular pathogens such as Leishmania can successfully manipulate the TLR signaling, thus hijacking the defensive strategies of the host. Despite the presence of lipophosphoglycan, a TLR2 ligand capable of eliciting host-defensive cytokine response, on the surface of Leishmania, the strategies adopted by the parasite to silence the TLR2-mediated proinflammatory response is not understood. In this study, we showed that Leishmania donovani modulates the TLR2-mediated pathway in macrophages through inhibition of the IKK-NF-κB cascade and suppression of IL-12 and TNF-α production. This may be due to impairment of the association of TRAF6 with the TAK-TAB complex, thus inhibiting the recruitment of TRAF6 in TLR2 signaling. L. donovani infection drastically reduced Lys 63-linked ubiquitination of TRAF6, and the deubiquitinating enzyme A20 was found to be significantly upregulated in infected macrophages. Small interfering RNA-mediated silencing of A20 restored the Lys 63-linked ubiquitination of TRAF6 as well as IL-12 and TNF-α levels with a concomitant decrease in IL-10 and TGF-β synthesis in infected macrophages. Knockdown of A20 led to lower parasite survival within macrophages. Moreover, in vivo silencing of A20 by short hairpin RNA in BALB/c mice led to increased NF-κB DNA binding and host-protective proinflammatory cytokine response resulting in effective parasite clearance. These results suggest that L. donovani might exploit host A20 to inhibit the TLR2-mediated proinflammatory gene expression, thus escaping the immune responses of the host.  相似文献   

4.
To determine the role of IL-10 in cutaneous leishmaniasis, we examined lesion development following Leishmania major infection of genetically susceptible BALB/c mice lacking IL-10. Whereas normal BALB/c mice developed progressive nonhealing lesions with numerous parasites within them, IL-10(-/-) BALB/c mice controlled disease progression, and had relatively small lesions with 1000-fold fewer parasites within them by the fifth week of infection. We also examined a mechanism whereby Leishmania induced the production of IL-10 from macrophages. We show that surface IgG on Leishmania amastigotes allows them to ligate Fc gamma receptors on inflammatory macrophages to preferentially induce the production of high amounts of IL-10. The IL-10 produced by infected macrophages prevented macrophage activation and diminished their production of IL-12 and TNF-alpha. In vitro survival assays confirmed the importance of IL-10 in preventing parasite killing by activated macrophages. Pretreatment of monolayers with either rIL-10 or supernatants from amastigote-infected macrophages resulted in a dramatic enhancement in parasite intracellular survival. These studies indicate that amastigotes of Leishmania use an unusual and unexpected virulence factor, host IgG. This IgG allows amastigotes to exploit the antiinflammatory effects of Fc gamma R ligation to induce the production of IL-10, which renders macrophages refractory to the activating effects of IFN-gamma.  相似文献   

5.
Cathelicidin-type antimicrobial peptides (CAMP) are important mediators of innate immunity against microbial pathogens acting through direct interaction with and disruption of microbial membranes and indirectly through modulation of host cell migration and activation. Using a mouse knock-out model in CAMP we studied the role of this host peptide in control of dissemination of cutaneous infection by the parasitic protozoan Leishmania. The presence of pronounced host inflammatory infiltration in lesions and lymph nodes of infected animals was CAMP-dependent. Lack of CAMP expression was associated with higher levels of IL-10 receptor expression in bone marrow, splenic and lymph node macrophages as well as higher anti-inflammatory IL-10 production by bone marrow macrophages and spleen cells but reduced production of the pro-inflammatory cytokines IL-12 and IFN-γ by lymph nodes. Unlike wild-type mice, local lesions were exacerbated and parasites were found largely disseminated in CAMP knockouts. Infection of CAMP knockouts with parasite mutants lacking the surface metalloprotease virulence determinant resulted in more robust disseminated infection than in control animals suggesting that CAMP activity is negatively regulated by parasite surface proteolytic activity. This correlated with the ability of the protease to degrade CAMP in vitro and co-localization of CAMP with parasites within macrophages. Our results highlight the interplay of antimicrobial peptides and Leishmania that influence the host immune response and the outcome of infection.  相似文献   

6.
7.
8.
Leishmania are obligate intracellular protozoa in mammalian hosts. They infect and replicate within macrophages. Antileishmanial host defense is largely cell mediated. We conducted studies in vitro to investigate the ability of lymphocytes to activate macrophages for antileishmanial effects. Draining lymph node lymphocytes from C57BL/6 mice with cutaneous Leishmania tropica major infection were co-cultured in suspension with syngeneic, starch-elicited peritoneal macrophages infected in vitro with homologous parasites. In the presence of these effector lymphocytes, parasite replication was inhibited, and in some cases intracellular parasites were destroyed. In contrast, control lymphocytes from complete Freund's adjuvant-treated or Listeria-infected mice exerted no antileishmanial effects. Antileishmanial effects were greatest when Leishmania-sensitized lymphocytes were in direct contact with parasitized macrophages. Effector lymphocytes did not cause detectable damage to infected macrophages. Lymphocytes that induced the most profound antileishmanial effects in vitro were those obtained from mice entering a phase of spontaneous clinical resolution of their infections. We conclude that macrophages can be activated for microbicidal effects by direct contact with appropriately sensitized lymphocytes. This antigen-specific, contact-mediated lymphocyte effector mechanism may be important in host defense against certain intracellular microorganisms such as Leishmania.  相似文献   

9.
Leishmania are obligate intracellular parasites that invade and survive within host macrophages and can result in visceral leishmaniasis, a major public health problem worldwide. The entry of intracellular parasites, in general, involves interaction with the plasma membrane of host cells. Cholesterol in host cell membranes was recently shown to be necessary for binding and internalization of Leishmania and for the efficient presentation of leishmanial antigens in infected macrophages. This article describes the need to explore cyclodextrin-based compounds, which modulate host membrane cholesterol levels, as a possible therapeutic strategy against leishmaniasis in addition to other intracellular parasites.  相似文献   

10.
Macrophages are host cells for the pathogenic parasite Leishmania major. Neutrophils die and are ingested by macrophages in the tissues. We investigated the role of macrophage interactions with inflammatory neutrophils in control of L. major infection. Coculture of dead exudate neutrophils exacerbated parasite growth in infected macrophages from susceptible BALB, but killed intracellular L. major in resistant B6 mice. Coinjection of dead neutrophils amplified L. major replication in vivo in BALB, but prevented parasite growth in B6 mice. Neutrophil depletion reduced parasite load in infected BALB, but exacerbated infection in B6 mice. Exacerbated growth of L. major required PGE(2) and TGF-beta production by macrophages, while parasite killing depended on neutrophil elastase and TNF-alpha production. These results indicate that macrophage interactions with dead neutrophils play a previously unrecognized role in host responses to L. major infection.  相似文献   

11.
Nucleotides are released into the extracellular milieu from infected cells and cells at inflammatory sites. The extracellular nucleotides bind to specific purinergic (P2) receptors and thereby induce a variety of cellular responses including anti-parasitic effects. Here we investigated whether extracellular nucleotides affect leishmanial infection in macrophages, and found that UTP reduces strongly the parasite load in peritoneal macrophages. Ultrastructural analysis of infected cells revealed that UTP induced morphological damage in the intracellular parasites. Uridine nucleotides also induced dose-dependent apoptosis of macrophages and production of ROI and RNI only in infected macrophages. The intracellular calcium measurements of infected cells showed that the response to UTP, but not UDP, increased the sensitivity and amplitude of cytosolic Ca(2+) changes. Infection of macrophages with Leishmania upregulated the expression of P2Y(2) and P2Y(4) receptor mRNA. The data suggest indirectly that Leishmania amazonensis infection induces modulation and heteromerization of P2Y receptors on macrophages. Thus UTP modulates the host response against L. amazonensis infection. UTP and UTP homologues should therefore be considered as novel components of therapeutic strategies against cutaneous leishmaniasis.  相似文献   

12.
Several species of protozoa belonging to the genus Leishmania are pathogenic for humans, causing visceral and cutaneous diseases. They are transmitted by phlebotomine sandflies as flagellated promastigotes to mammals hosts, where they live as aflagellated amastigotes mainly within macrophages. Studies performed on mice infected with Leishmania major demonstrated that host defence against this infection depends on the interleukin-12-driven expansion of the T helper 1 cell subset, with production of cytokines such as interferon-gamma, which activate macrophages for parasite killing through the release of nitric oxide. The parasitocidal role of this radical is now emerging also in the human and canine model. Healing or progression of the infection is related to the genetic and immune status of the host, and to the virulence of different species and strains of Leishmania. The parasite survival ultimately depends on the ability to evade the host immune response by several mechanisms. Among them, inhibition of the signal transduction pathway of the host cells is particularly important. In fact, promastigotes inhibit protein kinase C activation, cause Ca++ influx into the host cell and decrease the levels of myristoylated alanine-rich C kinase substrate-related proteins, which are substrates for PKC. In addition, Leishmania infection blocks IFN-gamma-induced tyrosine kinase phosphorylation, with consequent impairment of signalling for IL-12 and nitric oxide production. Finally, Leishmania activates protein phosphotyrosine phosphatases, which down-regulate mitogen-activated protein kinase signalling and c-fos and nitric oxide synthase expression. New pharmacological applications, including protein tyrosine phosphatase and protein farnesyltransferase inhibitors, are being evaluated against leishmaniosis in vitro and in vivo in the murine model.  相似文献   

13.
Protozoan parasites belonging to the genus Leishmania exhibit a pronounced tropism for macrophages although they have the capacity to infect a variety of other phagocytic and non-phagocytic mammalian cells. Unlike most other intramacrophage pathogens, the major proliferative stage of Leishmania resides in the mature phagolysosomes of these host cells. In this review we highlight some of the strategies utilized by the intracellular amastigote stage of Leishmania to survive in this compartment. Remarkably, and in contrast to many other intracellular pathogens, Leishmania amastigotes have a minimalist surface glycocalyx which may facilitate uptake of essential lipids and promote exposure of phospholipids required for phagocytosis via macrophage apoptotic cell receptors. Leishmania amastigotes also differ from many other intracellular pathogens in having complex nutritional requirements which must be scavenged from the host cell. Amino acids and polyamines appear to be important carbon sources and growth-limiting nutrients, respectively, and their availability to intracellular amastigotes may be regulated by the activation state of host macrophages. Metabolic processes in both the parasite and host cell may thus be crucial determinants of disease outcome.  相似文献   

14.
Superoxide dismutase (SOD), a metal containing enzyme is present in parasiteLeishmania donovani as well as in host macrophages both resident and activated in a detectable amount, although the level is much higher in the latter case. It is observed that at any particular protein concentration, the SOD activity is highest in the case of parasite infected macrophages and lowest in the case of normal resident macrophages; the SOD activity of thioglycolate activated macrophages lies in between the two. It is also noticed that formalin-killedLeishmania donovani neither attach to macrophages nor do they increase the SOD activity of the host. Thus, the processes, e.g. attachment of the parasite to the host membrane, subsequent membrane perturbation and thus activation of membrane bound enzyme NADPH oxidase leading to respiratory burst, may be responsible for an enormous increase in the SOD level in macrophages during infection. Moreover, the chemical nature of the SOD found in infected macrophages has been investigated by using an inhibitor, e.g. NaCN, which specifically inhibits Cu–Zn SOD but not Fe–SOD. A considerable inhibition of SOD activity by NaCN in infected macrophages confirms the chemical nature of the increased SOD to be of Cu–Zn type, usually found in host. Presumably, Cu–Zn SOD or host SOD plays a protective role at the time of parasite infection although the role of parasitic SOD or some other mechanisms for the survival of the parasite within the toxic phagolysosome environment, of the macrophage cannot be ruled out.  相似文献   

15.
Leishmania promastigotes are introduced into the skin by blood-sucking phlebotomine sand flies. In the vertebrate host, promastigotes invade macrophages, transform into amastigotes and multiply intracellularly. Sand fly saliva was shown to enhance the development of cutaneous leishmaniasis lesions by inhibiting some immune functions of the host macrophages. This study demonstrates that sand fly saliva promotes parasite survival and proliferation. First, macrophages gravitated towards increasing concentrations of sand fly saliva in vitro. Secondly, saliva increased the percentage of macrophages that became infected with Leishmania promastigotes and exacerbated the parasite load in these cells. Thus, during natural transmission, saliva probably reduces the exposure of promastigotes to the immune system by attracting macrophages to the parasite inoculation site and by accelerating the entry of promastigotes into macrophages. Saliva may also enhance lesion development by shortening the generation time of dividing intracellular amastigotes.  相似文献   

16.
The immune mechanisms that underlie resistance and susceptibility to leishmaniasis are not completely understood for all species of Leishmania. It is becoming clear that the immune response, the parasite elimination by the host and, as a result, the outcome of the disease depend both on the host and on the species of the infecting Leishmania. Here, we analyzed the outcome of the infection of BALB/c mice with L. guyanensis in vivo and in vitro. We showed that BALB/c mice, which are a prototype of susceptible host for most species of Leishmania, dying from these infections, develop insignificant or no cutaneous lesions and eliminate the parasite when infected with promastigotes of L. guyanensis. In vitro, we found that thioglycollate-elicited BALB/c peritoneal macrophages, which are unable to eliminate L. amazonensis without previous activation with cytokines or lipopolysaccharide, can kill L. guyanensis amastigotes. This is the first report showing that infection of peritoneal macrophages with stationary phase promastigotes efficiently triggers innate microbicidal mechanisms that are effective in eliminating the amastigotes, without exogenous activation. We demonstrated that L. guyanensis amastigotes die inside the macrophages through an apoptotic process that is independent of nitric oxide and is mediated by reactive oxygen intermediates generated in the host cell during infection. This innate killing mechanism of macrophages may account for the resistance of BALB/c mice to infection by L. guyanensis.  相似文献   

17.
The cellular localization and activity of the lysosomal enzymes acid phosphatase, trimetaphosphatase, and arylsulfatase were studied in rat bone marrow-derived macrophages infected with Leishmania mexicana amazonensis amastigotes. The specific activity of acid phosphatase normalized for protein content was similar in normal macrophages and in isolated amastigotes, whereas the latter were markedly deficient in trimetaphosphatase and arylsulfatase activities. It is thus likely that trimetaphosphatase and arylsulfatase activities detected in infected macrophages were of host cell origin. The activities of the three enzymes, assayed biochemically, varied independently in the infected macrophages. While arylsulfatase activity was unchanged after infection, the activity of acid phosphatase increased by 19, 40, and 94% at 6, 24, and 48 hr, respectively. Trimetaphosphatase activity rose only slightly during the first 24 hr after infection but increased by 74% at 48 hr. The rise in acid phosphatase activity could be accounted for only partially by multiplication of the amastigotes. Thus, as for trimetaphosphatase, these results suggest enhanced macrophage synthesis of acid phosphatase and/or reduced enzyme degradation by the infected macrophages. The reduction in host cell lysosomes previously described (Ryter et al. 1983; Barbieri et al. 1985) was confirmed but appearance of lysosomal enzyme activity in the parasitophorous vacuole is documented in the present report. Thus, Leishmania do not seem to reduce the amount and the activity of host lysosomal enzymes.  相似文献   

18.
A protective immune response against Leishmania donovani infection is mediated by T-helper type 1 (Th1) cells. Th1 induced cell-mediated immunity (CMI), as assessed by anti-leishmanial DTH response, is lost in a susceptible host such as BALB/c mice. Although the impaired Th1 function eventuates in unhindered parasite growth and in manifestation of the susceptible phenotype, the mechanism of down-regulation of the Th1 function is yet to be elucidated. Here, we provide evidence that the parasite downregulates the expression of a Th1-specific costimulatory molecule, M150, on the surface of infected BALB/c mice-derived macrophages. Th cells are rendered unresponsive to anti-CD3 Ab-mediated stimulation after interaction with infected macrophages. The anergized T cells produce much less IL-2, IL-4 and IFN-γ compared to those T cells which were costimulated using normal macrophages. The defect in proliferation, anti-CD3 Ab induced unresponsiveness and IFN-γ but not IL-4 production can be restored by providing bystander costimulation through M150. These results not only unfold a novel immune evasion strategy used by the parasite but also clarify the mechanism of Th1 cell debilitation during the disease. Recovery of Th1 cytokine production by bystander costimulation through M150 may help in formulating a new strategy for the elimination of intracellular parasites.  相似文献   

19.
Previous studies have demonstrated that Leishmania donovani attenuates STAT1-mediated signaling in macrophages; however it is not clear whether other species of Leishmania, which cause cutaneous disease, also interfere with macrophage IFN-gamma signaling. Therefore, we determined the effect of Leishmania major and Leishmania mexicana infection on STAT1-mediated IFN-gamma signaling pathway in J774A.1 and RAW264.7 macrophages. We found that both L. major and L. mexicana suppressed IFNgammaRalpha (alpha subunit of interferon gamma receptor) and IFN-gammaRbeta (beta subunit of interferon gamma receptor) expression, reduced levels of total Jak1 and Jak2, and down-regulated IFN-gamma-induced Jak1, Jak2 and STAT1 activation. The effect of L. mexicana infection on Jak1, Jak2 and STAT1 activation was more profound when compared with L. major. Although tyrosine phosphorylation of STAT1alpha was decreased in IFN-gamma stimulated macrophages infected with L. major or L. mexicana, those infected with L. mexicana showed a significant increase in phosphorylation of the dominant negative STAT1beta. These findings indicate that L. major and L. mexicana attenuate STAT1-mediated IFN-gamma signaling in macrophages. Furthermore, they also demonstrate that L. mexicana preferentially enhances tyrosine phosphorylation of dominant negative STAT1beta, which may be one of the several survival mechanisms used by this parasite to evade the host defense mechanisms.  相似文献   

20.
Leishmania parasites are able to delay the onset of cell-mediated immunity by selectively impairing the ability of infected macrophages to produce interleukin (IL)-12. Leishmania infection arrests the JAK/STAT-mediated signal transduction involved in activation of the IL-12 p40 promoter; the phosphorylation defects may be initiated by ligation of the phagocyte receptors used by these organisms to gain entry into the host cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号