首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 778 毫秒
1.
Cell surface receptors of the NOTCH family of proteins are activated by ligand induced intramembrane proteolysis. Unfolding of the extracellular negative regulatory region (NRR), enabling successive proteolysis by the enzymes Adam10 and γ-secretase, is rate-limiting in NOTCH activation. Mutations in the NOTCH1 NRR are associated with ligand-independent activation and frequently found in human T-cell malignancies. In mammals four NOTCH receptors and five Delta/Jagged ligands exist, but mutations in the NRR are only rarely reported for receptors other than NOTCH1. Using biochemical and functional assays, we compared the molecular mechanisms of ligand-independent signaling in NOTCH1 and the highly related NOTCH2 receptor. Both murine Notch1 and Notch2 require the metalloprotease protease Adam17, but not Adam10 during ligand-independent activation. Interestingly, the human NOTCH2 receptor is resistant to ligand-independent activation compared with its human homologs or murine orthologs. Taken together, our data reveal subtle but functionally important differences for the NRR among NOTCH paralogs and homologs.  相似文献   

2.
《PloS one》2010,5(2)

Background

Notch receptors normally play a key role in guiding a variety of cell fate decisions during development and differentiation of metazoan organisms. On the other hand, dysregulation of Notch1 signaling is associated with many different types of cancer as well as tumor angiogenesis, making Notch1 a potential therapeutic target.

Principal Findings

Here we report the in vitro activities of inhibitory Notch1 monoclonal antibodies derived from cell-based and solid-phase screening of a phage display library. Two classes of antibodies were found, one directed against the EGF-repeat region that encompasses the ligand-binding domain (LBD), and the second directed against the activation switch of the receptor, the Notch negative regulatory region (NRR). The antibodies are selective for Notch1, inhibiting Jag2-dependent signaling by Notch1 but not by Notch 2 and 3 in reporter gene assays, with EC50 values as low as 5±3 nM and 0.13±0.09 nM for the LBD and NRR antibodies, respectively, and fail to recognize Notch4. While more potent, NRR antibodies are incomplete antagonists of Notch1 signaling. The antagonistic activity of LBD, but not NRR, antibodies is strongly dependent on the activating ligand. Both LBD and NRR antibodies bind to Notch1 on human tumor cell lines and inhibit the expression of sentinel Notch target genes, including HES1, HES5, and DTX1. NRR antibodies also strongly inhibit ligand-independent signaling in heterologous cells transiently expressing Notch1 receptors with diverse NRR “class I” point mutations, the most common type of mutation found in human T-cell acute lymphoblastic leukemia (T-ALL). In contrast, NRR antibodies failed to antagonize Notch1 receptors bearing rare “class II” or “class III” mutations, in which amino acid insertions generate a duplicated or constitutively sensitive metalloprotease cleavage site. Signaling in T-ALL cell lines bearing class I mutations is partially refractory to inhibitory antibodies as compared to cell-penetrating gamma-secretase inhibitors.

Conclusions/Significance

Antibodies that compete with Notch1 ligand binding or that bind to the negative regulatory region can act as potent inhibitors of Notch1 signaling. These antibodies may have clinical utility for conditions in which inhibition of signaling by wild-type Notch1 is desired, but are likely to be of limited value for treatment of T-ALLs associated with aberrant Notch1 activation.  相似文献   

3.
The Notch genes of Drosophila melanogaster and vertebrates encode transmembrane receptors that help determine cell fate during development. Although ligands for Notch proteins have been identified, the signaling cascade downstream of the receptors remains poorly understood. In human acute lymphoblastic T-cell leukemia, a chromosomal translocation damages the NOTCH1 gene. The damage apparently gives rise to a constitutively activated version of NOTCH protein. Here we show that a truncated version of NOTCH1 protein resembling that found in the leukemic cells can transform rat kidney cells in vitro. The transformation required cooperation with the E1A oncogene of adenovirus. The transforming version of NOTCH protein was located in the nucleus. In contrast, neither wild-type NOTCH protein nor a form of the truncated protein permanently anchored to the plasma membrane produced transformation in vitro. We conclude that constitutive activation of NOTCH similar to that found in human leukemia can contribute to neoplastic transformation. Transformation may require that the NOTCH protein be translocated to the nucleus. These results sustain a current view of how Notch transduces a signal from the surface of the cell to the nucleus.  相似文献   

4.
T cell lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer frequent within pediatric ALL patients. Recent findings suggested that the transmembrane receptor NOTCH1 is the major oncogene for the majority of T-ALL cases. In these cases activating mutations of NOTCH1 are responsible for the transformation of developing T cell progenitors. These observations prompted us to study the mechanisms of Notch1-induced T cell transformation. Using parallel studies in T cell progenitors and established T-ALL lines we have demonstrated that the NF-kB signaling pathway is targeted and induced by Notch1 activation. Our studies suggested that the NF-kB activation by Notch1 can be direct, as Notch1 can bind and activate the promoters of the RELB and NFKB2 factors and indirect, as Notch1 can form a complex with the NF-kB kinase IKK. NF-kB appears to be important for the development of the disease as suppression of the pathway antagonizes T cell transformation both in vitro and in vivo, using animal models of T-ALL. We believe that these findings could be important for the understanding of Notch1 signaling and the therapeutic treatment of T-ALL.  相似文献   

5.
Adenoid cystic carcinoma (ACC) is an aggressive salivary gland malignancy with limited treatment options for recurrent or metastatic disease. Due to chemotherapy resistance and lack of targeted therapeutic approaches, current treatment options for the localized disease are limited to surgery and radiation, which fails to prevent locoregional recurrences and distant metastases in over 50% of patients. Approximately 20% of patients with ACC carry NOTCH-activating mutations that are associated with a distinct phenotype, aggressive disease, and poor prognosis. Given the role of NOTCH signaling in regulating tumor cell behavior, NOTCH inhibitors represent an attractive potential therapeutic strategy for this subset of ACC. AL101 (osugacestat) is a potent γ-secretase inhibitor that prevents activation of all four NOTCH receptors. While this investigational new drug has demonstrated antineoplastic activity in several preclinical cancer models and in patients with advanced solid malignancies, we are the first to study the therapeutic benefit of AL101 in ACC. Here, we describe the antitumor activity of AL101 using ACC cell lines, organoids, and patient-derived xenograft models. Specifically, we find that AL101 has potent antitumor effects in in vitro and in vivo models of ACC with activating NOTCH1 mutations and constitutively upregulated NOTCH signaling pathway, providing a strong rationale for evaluation of AL101 in clinical trials for patients with NOTCH-driven relapsed/refractory ACC.Subject terms: Head and neck cancer, Targeted therapies  相似文献   

6.
Notch receptors transmit signals between adjacent cells. Signaling is initiated when ligand binding induces metalloprotease cleavage of Notch within an extracellular negative regulatory region (NRR). We present here the X-ray structure of the human NOTCH2 NRR, which adopts an autoinhibited conformation. Extensive interdomain interactions within the NRR bury the metalloprotease site, showing that a substantial conformational movement is necessary to expose this site during activation by ligand. Leukemia-associated mutations in NOTCH1 probably release autoinhibition by destabilizing the conserved hydrophobic core of the NRR.  相似文献   

7.
Dysregulated Notch signaling has been implicated in numerous human diseases, including a broad spectrum of cancers. Mutations in Notch1 are prevalent in T-cell acute lymphoblastic leukemia, and abnormal expression of different human Notch receptors contributes to B-cell tumors as well as cancers of the breast, lung, pancreas, skin, prostate, colon, brain and other tissues. Several γ-secretase inhibitors, small chemical compounds that were initially developed to inhibit the activity of the γ-secretase aspartyl protease in Alzheimer's disease, are now being explored for their potential chemotherapeutic applications in Notch-associated cancers. An alternative approach involves the development of antibodies to inhibit specific Notch receptors, their activating ligands, or other components of the Notch pathway in tumors. Here we review recent progress and current challenges in the use of these strategies to modulate Notch signaling for cancer therapy.  相似文献   

8.
9.
Vascular cell interactions mediated through cell surface receptors play a critical role in the assembly and maintenance of blood vessels. These signaling interactions transmit important information that alters cell function through changes in protein dynamics and gene expression. Here, we identify syndecan-2 (SDC2) as a gene whose expression is induced in smooth muscle cells upon physical contact with endothelial cells. Syndecan-2 is a heparan sulfate proteoglycan that is known to be important for developmental processes, including angiogenesis. Our results show that endothelial cells induce mRNA expression of syndecan-2 in smooth muscle cells by activating Notch receptor signaling. Both NOTCH2 and NOTCH3 contribute to the increased expression of syndecan-2 and are themselves sufficient to promote its expression independent of endothelial cells. Syndecan family members serve as coreceptors for signaling molecules, and interestingly, our data show that syndecan-2 regulates Notch signaling and physically interacts with NOTCH3. Notch activity is attenuated in smooth muscle cells made deficient in syndecan-2, and this specifically prevents expression of the differentiation marker smooth muscle α-actin. These results show a novel mechanism in which Notch receptors control their own activity by inducing the expression of syndecan-2, which then acts to propagate Notch signaling by direct receptor interaction.  相似文献   

10.
The Notch1 receptor plays a critical role in cell fate decisions during development. Activation of Notch signaling has been implicated in several types of cancer, particularly T-cell acute lymphoblastic leukemia (T-ALL). Consequently, several transgenic mouse strains have been made to study the role of Notch1 in T-ALL. However, the existing Notch1 transgenic lines mimic a translocation event found in only ~1% of T-ALL cases. Here we describe three novel NOTCH1 transgenic mouse strains that have Cre-inducible expression of the entire human NOTCH1 locus, each possessing a common mutation found in T-ALL. Unlike existing Notch1 transgenic strains, these NOTCH1 transgenic strains express full-length receptors from an endogenous human promoter that should be susceptible to a number of Notch antagonists that have recently been developed. These strains will allow researchers to modulate Notch signaling to study both normal development and cancer biology.  相似文献   

11.
12.
The Delta-Notch pathway is an evolutionarily conserved signaling pathway which controls a broad range of developmental processes including cell fate determination, terminal differentiation and proliferation. In mammals, four Notch receptors (NOTCH1-4) and five activating canonical ligands (JAGGED1, JAGGED2, DLL1, DLL3 and DLL4) have been described. The precise function of noncanonical Notch ligands remains unclear. Delta-like 1 homolog (DLK1), the best studied noncanonical Notch ligand, has been shown to act as an inhibitor of Notch signaling in vitro, but its function in vivo is poorly understood. In this review we summarize Notch signaling during development and highlight recent studies in DLK1expression that reveal new insights into its function.  相似文献   

13.
Notch signaling is a key regulator of vascular smooth muscle cell (VSMC) phenotypes, including differentiation, proliferation, and cell survival. However, the exact contribution of the individual Notch receptors has not been thoroughly delineated. In this study, we identify unique roles for NOTCH2 and NOTCH3 in regulating proliferation and cell survival in cultured VSMCs. Our results indicate that NOTCH2 inhibits PDGF-B-dependent proliferation and its expression is decreased by PDGF-B. In contrast, NOTCH3 promotes proliferation and receptor expression is increased by PDGF-B. Additionally, data show that NOTCH3, but not NOTCH2 protects VSMCs from apoptosis and apoptosis mediators degrade NOTCH3 protein. We identified three pro-survival genes specifically regulated by NOTCH3 in cultured VSMCs and in mouse aortas. This regulation is mediated through MAP kinase signaling, which we demonstrate can be activated by NOTCH3, but not NOTCH2. Overall, this study highlights discrete roles for NOTCH2 and NOTCH3 in VSMCs and connects these roles to specific upstream regulators that control their expression.  相似文献   

14.
15.
Barrett's esophagus (BE) is defined as an incomplete intestinal metaplasia characterized generally by the presence of columnar and goblet cells in the formerly stratified squamous epithelium of the esophagus. BE is known as a precursor for esophageal adenocarcinoma. Currently, the cell of origin for human BE has yet to be clearly identified. Therefore, we investigated the role of Notch signaling in the initiation of BE metaplasia. Affymetrix gene expression microarray revealed that BE samples express decreased levels of Notch receptors (NOTCH2 and NOTCH3) and one of the the ligands (JAG1). Furthermore, BE tissue microarray showed decreased expression of NOTCH1 and its downstream target HES1. Therefore, Notch signaling was inhibited in human esophageal epithelial cells by expression of dominant-negative-Mastermind-like (dnMAML), in concert with MYC and CDX1 overexpression. Cell transdifferentiation was then assessed by 3D organotypic culture and evaluation of BE-lineage specific gene expression. Notch inhibition promoted transdifferentiation of esophageal epithelial cells toward columnar-like cells as demonstrated by increased expression of columnar keratins (K8, K18, K19, K20) and glandular mucins (MUC2, MUC3B, MUC5B, MUC17) and decreased expression of squamous keratins (K5, K13, K14). In 3D culture, elongated cells were observed in the basal layer of the epithelium with Notch inhibition. Furthermore, we observed increased expression of KLF4, a potential driver of the changes observed by Notch inhibition. Interestingly, knockdown of KLF4 reversed the effects of Notch inhibition on BE-like metaplasia. Overall, Notch signaling inhibition promotes transdifferentiation of esophageal cells toward BE-like metaplasia in part via upregulation of KLF4. These results support a novel mechanism through which esophageal epithelial transdifferentiation promotes the evolution of BE.  相似文献   

16.
17.
The NOTCH1 receptor is cleaved within its extracellular domain by furin during its maturation, yielding two subunits that are held together noncovalently by a juxtamembrane heterodimerization (HD) domain. Normal NOTCH1 signaling is initiated by the binding of ligand to the extracellular subunit, which renders the transmembrane subunit susceptible to two successive cleavages within and C terminal to the heterodimerization domain, catalyzed by metalloproteases and gamma-secretase, respectively. Because mutations in the heterodimerization domain of NOTCH1 occur frequently in human T-cell acute lymphoblastic leukemia (T-ALL), we assessed the effect of 16 putative tumor-associated mutations on Notch1 signaling and HD domain stability. We show here that 15 of the 16 mutations activate canonical NOTCH1 signaling. Increases in signaling occur in a ligand-independent fashion, require gamma-secretase activity, and correlate with an increased susceptibility to cleavage by metalloproteases. The activating mutations cause soluble NOTCH1 heterodimers to dissociate more readily, either under native conditions (n = 3) or in the presence of urea (n = 11). One mutation, an insertion of 14 residues immediately N terminal to the metalloprotease cleavage site, increases metalloprotease sensitivity more than all others, despite a negligible effect on heterodimer stability by comparison, suggesting that the insertion may expose the S2 site by repositioning it relative to protective NOTCH1 ectodomain residues. Together, these studies show that leukemia-associated HD domain mutations render NOTCH1 sensitive to ligand-independent proteolytic activation through two distinct mechanisms.  相似文献   

18.
Expression of Notch receptors and ligands on immature and mature T cells   总被引:1,自引:0,他引:1  
Notch plays multiple roles in T cell development in the thymus and T cell differentiation in the periphery. In order to systematically examine the role of Notch in T cell biology, we determined the cell surface expression of all Notch receptors and ligands on various populations of T cells by using a panel of specific monoclonal antibodies we recently established. Notch1 and Notch3 were upregulated at double-negative (DN) 2-DN4 stages of immature thymocytes, then downregulated on mature single-positive thymocytes and peripheral T cells, but were rapidly upregulated again upon activation. Notch2 was consistently expressed on T cells while Notch4 was not. Jagged1 and Jagged2 were expressed at double-positive stage of immature T cells. Jagged2 was also inducible on mature T cells upon activation. In contrast, no Delta-like (Dll) 1 or Dll4 expression was observed on T cells. These comprehensive profiling of the expression of Notch receptors and ligands would be informative to fully understand the role of individual Notch receptors and ligands in T cell development and differentiation.  相似文献   

19.
《PloS one》2013,8(6)
Fixed, paraffin-embedded (FPE) tissues are a potentially rich resource for studying the role of NOTCH1 in cancer and other pathologies, but tests that reliably detect activated NOTCH1 (NICD1) in FPE samples have been lacking. Here, we bridge this gap by developing an immunohistochemical (IHC) stain that detects a neoepitope created by the proteolytic cleavage event that activates NOTCH1. Following validation using xenografted cancers and normal tissues with known patterns of NOTCH1 activation, we applied this test to tumors linked to dysregulated Notch signaling by mutational studies. As expected, frequent NICD1 staining was observed in T lymphoblastic leukemia/lymphoma, a tumor in which activating NOTCH1 mutations are common. However, when IHC was used to gauge NOTCH1 activation in other human cancers, several unexpected findings emerged. Among B cell tumors, NICD1 staining was much more frequent in chronic lymphocytic leukemia than would be predicted based on the frequency of NOTCH1 mutations, while mantle cell lymphoma and diffuse large B cell lymphoma showed no evidence of NOTCH1 activation. NICD1 was also detected in 38% of peripheral T cell lymphomas. Of interest, NICD1 staining in chronic lymphocytic leukemia cells and in angioimmunoblastic lymphoma was consistently more pronounced in lymph nodes than in surrounding soft tissues, implicating factors in the nodal microenvironment in NOTCH1 activation in these diseases. Among carcinomas, diffuse strong NICD1 staining was observed in 3.8% of cases of triple negative breast cancer (3 of 78 tumors), but was absent from 151 non-small cell lung carcinomas and 147 ovarian carcinomas. Frequent staining of normal endothelium was also observed; in line with this observation, strong NICD1 staining was also seen in 77% of angiosarcomas. These findings complement insights from genomic sequencing studies and suggest that IHC staining is a valuable experimental tool that may be useful in selection of patients for clinical trials.  相似文献   

20.
Airway basal cells (BC) function as stem/progenitor cells capable of differentiating into the luminal ciliated and secretory cells to replenish the airway epithelium during physiological turnover and repair. The objective of this study was to define the role of Notch signaling in regulating human airway BC differentiation into a pseudostratified mucociliated epithelium. Notch inhibition with γ-secretase inhibitors demonstrated Notch activation is essential for BC differentiation into secretory and ciliated cells, but more so for the secretory lineage. Sustained cell autonomous ligand independent Notch activation via lentivirus expression of the intracellular domain of each Notch receptor (NICD1-4) demonstrated that the NOTCH2 and 4 pathways have little effect on BC differentiation into secretory and ciliated cells, while activation of the NOTCH1 or 3 pathways has a major influence, with persistent expression of NICD1 or 3 resulting in a skewing toward secretory cell differentiation with a parallel decrease in ciliated cell differentiation. These observations provide insights into the control of the balance of BC differentiation into the secretory vs ciliated cell lineage, a balance that is critical for maintaining the normal function of the airway epithelium in barrier defense against the inhaled environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号