首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photoinhibition of photosynthesis was investigated on intact attached leaves and isolated thylakoid membranes of Populus deltoides.Our studies demonstrate that in intact leaves photoinhibition takes place under high irradiance which is more pronounced at higher temperatures. No net loss of Dl and other proteins associated with photosystem II (PSII) were observed even after 64 % photoinhibition suggesting that the degradation of polypeptides associated with PSII is not the only key step responsible for photoinhibition as observed by other workers. Electron transport studies in isolated thylakoid membranes suggested water oxidation complex as one of the damaged site during high light exposure. The possible mechanisms of photoinhibition without net loss of D1 protein are discussed.  相似文献   

2.
In the marine unicellular chlorophyte, Dunaliella tertiolecta Butcher, the spectrally averaged m vivo absorption cross section, normalized to chlorophyll a (so-called a* values), vary two-fold in response to changes in growth irradiance. We used a kinetic approach to examine the specific factors which account for these changes in optical properties as cells photoadapt. Using Triton X-100 to solubilize membranes, we were able to differentiate between “package” effects and pigmentation effects. Our analyses suggest that 43–49% of the variability in a* is due to changes in pigmentation, whereas 51–57% is due to the “package” effect. Further analyses revealed that changes in cell sue did not significantly affect packaging, while thylakoid stacking and the transparency of thylakoid membranes were important factors. Our results suggest that thylakoid membrane protein/lipid ratios change during photoadaptation, and these changes influence the effective rate of light harvesting per unit chlorophyll a.  相似文献   

3.
Summary Sudden changes in photoactive radiation (PAR) (wavelength, 400–700 nm) induces rapid surface area changes in chloroplast thylakoid membranes. Although this response may have important photo-acclimative functions for the plant, little is known about the mechanisms by which changes in irradiance are detected or how thylakoid membranes actually increase or decrease surface area. Knowledge of the time required for significant changes in thylakoid area would help eliminate or support several possible mechanisms that may be involved in this aspect of photo-acclimation in plants. Leaf tissues were acclimated to a PAR of 500 mol quanta per m2 per s then exposed to low irradiance (PAR, 50 mol quanta per m2 per s) and sampled at 5, 15, 30, and 60 min post exposure. Tissue and cell structure were quantified and results showed a significant increase in the surface-to-volume ratio and surface area per unit of standard leaf volume for both appressed and nonappressed thylakoids within 5 min of exposure to low irradiance. On the basis of the ratios of appressed to nonappressed thylakoids, the surface area of the nonappressed thylakoids was found to increase faster than that of the appressed thylakoids throughout the sample period. The portion of the appressed thylakoids in contact with the stroma was defined as margin thylakoids. Margin thylakoid surface-to-volume ratio did not change relative to the high-irradiance control during the sample period but did remain significantly lower than the low-irradiance control during the sample period. The ratio of appressed to margin thylakoids indicated a broadening and shortening of the appressed thylakoid stack within the first 5 min of low-irradiance exposure. The rapidity of the shade response indicates that the early events in this response probably do not directly involve gene activation pathways.Abbreviations PAR photosynthetically active radiation - Sv surface to volume density - Vv volume density - UV-B ultraviolet B radiation  相似文献   

4.
Singh  A.K.  Singhal  G.S. 《Photosynthetica》2001,39(1):23-27
Thermal stability of thylakoid membranes isolated from acclimated and non-acclimated wheat (Triticum aestivum L. cv. HD 2329) leaves under irradiation was studied. Damage to the photosynthetic electron transport activity was more pronounced in thylakoid membranes isolated from non-acclimated leaves as compared to thylakoid membrane isolated from acclimated wheat leaves at 35 °C. The loss of D1 protein was faster in non-acclimated thylakoid membrane as compared to acclimated thylakoid membranes at 35 °C. However, the effect of elevated temperature on the 33 kDa protein associated with oxygen evolving complex in these two types of thylakoid membranes was minimal. Trypsin digestion of the 33 kDa protein in the thylakoid membranes isolated from control and acclimated seedlings suggested that re-organisation of 33 kDa protein occurs before its release during high temperature treatment.  相似文献   

5.
Over‐reduction of the photosynthetic electron transport (PET) chain should be avoided, because the accumulation of reducing electron carriers produces reactive oxygen species (ROS) within photosystem I (PSI) in thylakoid membranes and causes oxidative damage to chloroplasts. To prevent production of ROS in thylakoid membranes the H+ gradient (ΔpH) needs to be built up across the thylakoid membranes to suppress the over‐reduction state of the PET chain. In this study, we aimed to identify the critical component that stimulates ΔpH formation under illumination in higher plants. To do this, we screened ethyl methane sulfonate (EMS)‐treated Arabidopsis thaliana, in which the formation of ΔpH is impaired and the PET chain caused over‐reduction under illumination. Subsequently, we isolated an allelic mutant that carries a missense mutation in the γ‐subunit of chloroplastic CF0CF1‐ATP synthase, named hope2. We found that hope2 suppressed the formation of ΔpH during photosynthesis because of the high H+ efflux activity from the lumenal to stromal side of the thylakoid membranes via CF0CF1‐ATP synthase. Furthermore, PSI was in a more reduced state in hope2 than in wild‐type (WT) plants, and hope2 was more vulnerable to PSI photoinhibition than WT under illumination. These results suggested that chloroplastic CF0CF1‐ATP synthase adjusts the redox state of the PET chain, especially for PSI, by modulating H+ efflux activity across the thylakoid membranes. Our findings suggest the importance of the buildup of ΔpH depending on CF0CF1‐ATP synthase to adjust the redox state of the reaction center chlorophyll P700 in PSI and to suppress the production of ROS in PSI during photosynthesis.  相似文献   

6.
Karlický  V.  Podolinská  J.  Nadkanská  L.  Štroch  M.  Čajánek  M.  Špunda  V. 《Photosynthetica》2010,48(3):475-480
The present study was conducted to examine changes in photosynthetic pigment composition and functional state of the thylakoid membranes during the individual steps of preparation of samples that are intended for a separation of pigmentprotein complexes by nondenaturing polyacrylamide gel electrophoresis. The thylakoid membranes were isolated from barley leaves (Hordeum vulgare L.) grown under low irradiance (50 μmol m−2 s−1). Functional state of the thylakoid membrane preparations was evaluated by determination of the maximal photochemical efficiency of photosystem (PS) II (FV/FM) and by analysis of excitation and emission spectra of chlorophyll a (Chl a) fluorescence at 77 K. All measurements were done at three phases of preparation of the samples: (1) in the suspensions of osmotically-shocked broken chloroplasts, (2) thylakoid membranes in extraction buffer containing Tris, glycine, and glycerol and (3) thylakoid membranes solubilized with a detergent decyl-β-D-maltosid. FV/FM was reduced from 0.815 in the first step to 0.723 in the second step and to values close to zero in solubilized membranes. Pigment composition was not pronouncedly changed during preparation of the thylakoid membrane samples. Isolation of thylakoid membranes affected the efficiency of excitation energy transfer within PSII complexes only slightly. Emission and excitation fluorescence spectra of the solubilized membranes resemble spectra of trimers of PSII light-harvesting complexes (LHCII). Despite a disrupted excitation energy transfer from LHCII to PSII antenna core in solubilized membranes, energy transfer from Chl b and carotenoids to emission forms of Chl a within LHCII trimers remained effective.  相似文献   

7.
Jin  Ming-Xian  Yao  Zheng-Ju  Mi  Hualing 《Photosynthetica》2001,39(3):419-425
Reduction kinetics of P700+ after far-red radiation (FR)-induced oxidation in intact tobacco leaves was examined by analysing the post-irradiation relaxation of 810–830 nm absorbance difference. The reduction curve could be de-convoluted distinctively into two or three exponential decaying components, depending on the FR irradiance, the treating and measuring temperatures, and the extent of dark adaptation. The multi-phasic kinetics of P700+ re-reduction upon the turning off of FR irradiation is related to the heterogeneity of electron transport around photosystem 1 in thylakoid membranes.  相似文献   

8.
Remodeling of thylakoid membranes in response to illumination is an important process for the regulation of photosynthesis. We investigated the thylakoid network from Arabidopsis thaliana using atomic force microscopy to capture dynamic changes in height, elasticity, and viscosity of isolated thylakoid membranes caused by changes in illumination. We also correlated the mechanical response of the thylakoid network with membrane ultrastructure using electron microscopy. We find that the elasticity of the thylakoid membranes increases immediately upon PSII-specific illumination, followed by a delayed height change. Direct visualization by electron microscopy confirms that there is a significant change in the packing repeat distance of the membrane stacks in response to illumination. Although experiments with Gramicidin show that the change in elasticity depends primarily on the transmembrane pH gradient, the height change requires both the pH gradient and STN7-kinase-dependent phosphorylation of LHCII. Our studies indicate that lumen expansion in response to illumination is not simply a result of the influx of water, and we propose a dynamic model in which protein interactions within the lumen drive these changes.  相似文献   

9.
The main objective of the present work was to examine the effects of the red:far-red ratio (R:FR) prevailing during leaf development on the photosynthetic capacity of mature leaves. Plants of Phaseolus vulgaris L. cv. Balin de Albenga were grown from time of emergence in a controlled environment room, 25 ± 3°C, 12-h photoperiod, with different light treatments:a) high photosynthetic photon flux density (PPFD) = 800 μmol m−1 s−1+ high R:FR= 1.3;b) low PPFD= 300 μmol m−2 s−1+ high R:FR= 1.3; c) high PPFD=800 μmol m−2 s−1+ low R:FR= 0.7; d) low PPFD= 300 μmol m−2s−1+ low R:FR=0.7. With an R:FR ratio of 1.3, a decrease in irradiance during leaf growth reduced photosynthesis when measured at moderate to high PPFD; but when measured at low PPFD, leaves expanded under low irradiance actually had photosynthesis rates higher than those of leaves grown in high irradiance. A low R:FR ratio during development reduced the photosynthetic capacity of the leaves. In leaves expanded under R:FR = 0.7 and high irradiance photosynthesis was reduced by 42 to 89%, depending on the PPFD at which measurements were made, whereas for leaves developed at R:FR = 0.7 and low irradiance photosynthesis decreased by 21 to 24%, compared to leaves under R:FR = 1.3 and similar irradiance. The reduced photosynthetic capacity under R:FR = 0.7 and high irradiance. In natural environments, leaves may experience low R:FR conditions temporarily during their development, and this may affect their future photosynthetic capacity in full sunlight.  相似文献   

10.
W.J. Vredenberg  W.J.M. Tonk 《BBA》1975,387(3):580-587
The potential difference across the thylakoid membranes under steady-state saturating light conditions, measured with microcapillary glass electrodes, was found to be small as compared to the potential initially generated at the onset of illumination. This result is discussed to be in agreement with quantitative estimates on the approximate magnitudes of the potential generating electron flux through the photo-synthetic electron transport chain and of the potential dissipating ion fluxes across the thylakoid membrane under steady-state conditions. It is concluded that a pH gradient of approx. 3–3.4 units is built up in the light across the membrane. The negative diffusion potential associated with this gradient is suggested to cause the transient negative potential observed in the dark after illumination.  相似文献   

11.
Light-induced deepoxidation of violaxanthin to antheraxanthin and zeaxanthin in plants is associated with the induction of pronounced xanthophyll-dependent non-photochemical quenching (NPQ). To date, a misbalance between a high amount of zeaxanthin in thylakoid membranes and low NPQ has been explained by an absence of lumen acidification (e.g. when NPQ is measured in the dark after high light stress). In this study, we report that this misbalance can also be observed under moderate light. We found this result (deepoxidation state, DEPS, above 55% and NPQ0.9) in barley leaves treated with 10 μM methyl viologen (MV) under white light (100 μmol photons m−2 s−1, photosynthetically active radiation (PAR), growth irradiance). The addition of MV at this moderate light did not accelerate electron transport in thylakoid membranes, and induced only slight oxidative stress (no lipid peroxidation, almost unchanged maximum yield of photosystem II photochemistry, a decrease in activity of ascorbate peroxidase, and an increase in that of glutathion reductase). We suggest that, in leaves treated under the conditions used here, the lumen acidification induced by light-limited electron transport in thylakoid membranes was high enough to activate violaxanthin deepoxidase, but not sufficiently high to form the expected number of zeaxanthin-dependent quenching centers in photosystem II antennae.  相似文献   

12.
Summary iserum against two polypeptides of the major fucoxanthin-chlorophylla/c light-harvesting complex of the diatomPhaeodactylum tricornutum and heterologous antiserum against purified photosystem I particles of maize were used to localize these two complexes on the thylakoid membranes ofP. tricornutum. As in many chromophyte algae, the thylakoids are loosely appressed and organized into extended bands of three, giving a ratio of 21 for appressed versus non-appressed membranes. Immunoelectron microscopy demonstrated that the fucoxanthin-chlorophylla/c light-harvesting complex, which is believed to be associated with photosystem II, was equally distributed on the appressed and non-appressed thylakoid membranes. Photosystem I was also found on both types of membranes, but was slightly more concentrated on the two outer non-appressed membranes of each band. Similarly, photosystem I activity, as measured by the photooxidation of 3,3-diaminobenzidine, was higher in the outer thylakoids than in the central thylakoid of each band. We conclude that the thylakoids of diatoms differ from those of green algae and higher plants in their macromolecular organization as well as in their morphological arrangement.Abbreviations BSA bovine serum albumin - DAB 3,3-diaminobenzidine - FCPC fucoxanthin-chlorophylla/c light-harvesting complex - LHC light-harvesting complex - PBS phosphate-buffered saline - PS photosystem  相似文献   

13.
The rate of accumulation of total chlorophyll (Chl) and carotenoids (Car) of leaves grown under high irradiance, HI (30 and 45 W m–2) was faster than at moderate irradiance, MI (15 W m–2). However, the senescence phase started earlier in the samples and proceeded at a faster rate. Chl a/b and Chl (a+b)/Car values showed faster loss of Chl a (compared to Chl b) and Chl (a+b) (compared to Car) in HI leaves. Protein accumulation and loss were also similar to that of Chl (a+b) content. Increase in Chl fluorescence during the development phase may suggest a gradual change in thylakoid organisation, however, the temporal kinetics were different in HI and MI samples. Increase in fluorescence polarisation during senescence of HI leaves compared to the control (MI) suggests conversion of thylakoid membranes to gel phase. Chloroplasts prepared from HI seedlings showed higher rate of photochemical activities, however, the activity declined earlier and at faster rate compared to the control.  相似文献   

14.
Summary. Among prokaryotes, cyanobacteria are unique in having highly differentiated internal membrane systems. Like other Gram-negative bacteria, cyanobacteria such as Synechocystis sp. strain PCC 6803 have a cell envelope consisting of a plasma membrane, peptidoglycan layer, and outer membrane. In addition, these organisms have an internal system of thylakoid membranes where the electron transfer reactions of photosynthesis and respiration occur. A long-standing controversy concerning the cellular ultrastructures of these organisms has been whether the thylakoid membranes exist inside the cell as separate compartments, or if they have physical continuity with the plasma membrane. Advances in cellular preservation protocols as well as in image acquisition and manipulation techniques have facilitated a new examination of this topic. We have used a combination of electron microscopy techniques, including freeze-etched as well as freeze-substituted preparations, in conjunction with computer-aided image processing to generate highly detailed images of the membrane systems in Synechocystis cells. We show that the thylakoid membranes are in fact physically discontinuous from the plasma membrane in this cyanobacterium. Thylakoid membranes in Synechocystis sp. strain PCC 6803 thus represent bona fide intracellular organelles, the first example of such compartments in prokaryotic cells. Supplementary material to this paper is available in electronic form at Correspondence and reprints: Department of Biology, CB1137, Washington University, St. Louis, MO 63130, U.S.A.  相似文献   

15.
A reduced red to far-red (R/FR) light ratio and low photosynthetically active radiation (PAR) irradiance are both strong signals for inducing etiolation growth of plant stems. Under natural field conditions, plants can be exposed to either a reduced R/FR ratio or lower PAR, or to a combination of both. We used Helianthus annuus L., the sunflower, to study the effect of reduced R/FR ratio, low PAR or their combination on hypocotyl elongation. To accomplish this, we attempted to uncouple light quality from light irradiance as factors controlling hypocotyl elongation. We measured alterations in the levels of endogenous gibberellins (GAs), cytokinins (CKs) and the auxin indole-3-acetic acid (IAA), and the effect of exogenous hormones on hypocotyl growth. As expected, both reduced R/FR ratio and lower PAR can significantly promote sunflower hypocotyl elongation when given separately. However, providing the reduced R/FR ratio at a low PAR resulted in the greatest hypocotyl growth, and this was accompanied by significantly higher levels of endogenous IAA, GA1, GA8, GA20 and of a wide range of CKs. Providing a reduced R/FR ratio under normal PAR also significantly increased growth and again gave significantly higher levels of endogenous IAA, GAs and CKs. However, only under the de-etiolating influence of a normal R/FR ratio did lowering PAR significantly increase levels of GA1, GA8 and GA20. We thus conclude that light quality (e.g. the R/FR ratio) is the most important component of shade for controlling hypocotyl growth and elevated growth hormone content.  相似文献   

16.
Summary Photoautotrophically growing cultures of the fresh water cyanobacteriumAnacystis nidulans adapted to the presence of 0.4–0.5 M NaCl (about sea water level) with a lag phase of two days after which time the growth rate reassumed 80–90% of the control. Plasma and thylakoid membranes were separated from cell-free extracts of French pressure cell treatedAnacystis nidulans by discontinuous sucrose density gradient centrifugation and purified by repeated recentrifugation on fresh gradients. Identity of the plasma and thylakoid membrane fractions was confirmed by labeling of intact cells with impermeant protein markers prior to breakage and membrane isolation. Electron microscopy revealed that each type of membrane was obtained in the form of closed and perfectly spherical vesicles. Major changes in structure and function of the plasma membranes (and, to a much lesser extent, of the thylakoid membranes) were found to accompany the adaptation process. On the average, diameters of plasma membrane vesicles from salt adapted cells were only one-third of the diameters of corresponding vesicles from control cells. By contrast, the diameters of thylakoid membrane vesicles were the same in both cases.Freeze-etching the cells and counting the number of membrane-intercalating particles on both protoplasmic and exoplasmic fracture faces of plasma and thylakoid membranes indicated a roughly 50% increase of the particle density in plasma membranes during the adaptation process while that in thylakoid membranes was unaffected. Comparison between particle densities on isolated membranes and those on corresponding whole cell membranes permitted an estimate as to the percentage of inside-out and right-side-out vesicles. Stereometric measurement of particle sizes suggested that two distinct sub-populations of the particles in the plasma membranes increased during the adaptation process, tentatively correlated to the cytochrome oxidase and sodium-proton antiporter, respectively. The effects of salt adaptation described in this paper were fully reversed upon withdrawal of the additional NaCl from the growth medium (deadaptation). Moreover, they were not observed when the NaCl was replaced by KCl.Abbreviations CM cytoplasmic or plasma membrane - ICM intracytoplasmic or thylakoid membrane - EF exoplasmic fracture face - PF protoplasmic fracture face - DABS diazobenzosulfonate; Hepes N-2-hydroxyethylpiperazine-N-2-ethane-sulfonate - PMSF phenylmethylsulfonylfluoride Dedicated to the memory of Professor Oswald Kiermayer  相似文献   

17.
It has been demonstrated that far-red light reduces growth of marine phytoplankton and that light quality controls growth and photosynthetic metabolism in algae. The green halotolerant microalga, Dunaliella bardawil, accumulates high amounts of β-carotene (up to 10% of its dry weight) under conditions of high light or nutrient limitation. The influence of increasing irradiance and of far-red light in D. bardawil was studied. Continuous irradiance was provided by white fluorescent lamps alone (WL) or supplemented with far-red Linestra lamps (WL+FR). For both types of light, cultures were acclimatized at increasing irradiances (50-300 µmol m?2 s?1), and cell density, photosynthetic activity and pigment content were determined. Cell density increased with the photon irradiance, and was higher in WL than in WL+FR under the same irradiance, but the reverse occurred in respect of cell volume. Growth rate was higher under WL+FR. Far-red light induced faster growth but reduced the maximal cell density of the cultures. Chlorophyll a concentration was higher in white light, but total carotenoid content increased dramatically in both far-red light treatments (about 50% on a per cell basis) and with the increase of irradiance. Our results show that far-red light has a significant influence on growth and photosynthesis of D. bardawil, inducing a decrease in cell density, photosynthetic activity and chlorophyll concentration, and an increase in growth rate, cell volume and carotenoid content.  相似文献   

18.
Depressions in the red to far-red ratio (R:FR) of solar radiation arising from the selective absorption of R (600–700 nm) and scattering of FR (700–800 nm) by chlorophyll within plant canopies may function as an environmental signal directly regulating axillary bud growth and subsequent ramet recruitment in clonal plants. We tested this hypothesis in the field within a single cohort of parental ramets in established clones of the perennial bunchgrass, Schizachyrium scoparium. The R:FR was modified near leaf sheaths and axillary buds at the bases of individual ramets throughout the photoperiod without increasing photosynthetic photon flux density (PPFD) by either (1) supplementing R beneath canopies to raise the naturally low R:FR or (2) supplementing FR beneath partially defoliated canopies to suppress the natural R:FR increase following defoliation. Treatment responses were assessed by simultaneously monitoring ramet recruitment, PPFD and the R:FR beneath individual clone canopies at biweekly intervals over a 12-week period. Neither supplemental R nor FR influenced the rate or magnitude of ramet recruitment despite the occurrence of ramet recruitment in all experimental clones. In contrast, defoliation with or without supplemental FR beneath clone canopies reduced ramet recruitment 88% by the end of the experiment. The hypothesis stating that the R:FR signal directly regulates ramet recruitment is further weakened by evidence demonstrating that (1) the low R:FR-induced suppression of ramet recruitment is only one component of several architectural modifications exhibited by ramets in response to the R:FR signal (2) immature leaf blades, rather than leaf sheaths or buds, function as sites of R:FR perception on individual ramets, and (3) increases in the R:FR at clone bases following partial canopy removal are relatively transient and do not override the associated constraints on ramet recruitment resulting from defoliation. A depressed R:FR is probably of greater ecological significance as a signal of competition for light in vegetation canopies than as a density-dependent signal which directly regulates bud growth and ramet recruitment.  相似文献   

19.
Type I signal peptidases are a widespread family of enzymes which remove the presequences from proteins translocated across cell membranes, including thylakoid and cytoplasmic membranes of cyanobacteria and thylakoid membranes of chloroplasts. We have cloned and sequenced a signal peptidase gene from the thermophilic cyanobacterium Phormidium laminosum which is believed to encode an enzyme common to both membrane systems. The deduced amino acid sequence is 203 residues long and although the overall similarity among signal peptidases is rather low there are a number of identifiable conserved regions present. The P. laminosum enzyme is predicted to have a single transmembrane domain, in contrast to other Gram-negative bacterial sequences, but similar to other type I signal peptidases.  相似文献   

20.
Young leaves of white clover are subjected to low irradiance and low red to far-red (R:FR) ratio within canopies. The objectives were to investigate the consequences of low R:FR ratio on morphology, net CO2 assimilation and photochemical activity of leaves developed under simulated light environment of canopy. We used far-red (FR) light emitting diodes to modify the R:FR ratio only at the developing leaf under a low irradiance. Net CO2 assimilation rate, stomatal conductance and leaf morphology were not affected by low R:FR ratio. FR exposure slightly reduced the photochemical quantum yield of PSII but there were no consequences on electron flow through photosystem II. The carbon fixation by the leaf was therefore not modified by light quality. However, low R:FR ratio decreased the leaf chlorophyll content by 21 %. Those effects were only attributed to just unfolded leaves as they were not persistent in mature leaves and there were no consequences on plant biomass accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号