首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.

Background

Pluri-potent bone marrow stromal cells (MSCs) provide an attractive opportunity to generate unlimited glucose-responsive insulin-producing cells for the treatment of diabetes. We explored the potential for human MSCs (hMSCs) to be differentiated into glucose-responsive cells through a non-viral genetic reprogramming approach.

Methods and Findings

Two hMSC lines were transfected with three genes: PDX-1, NeuroD1 and Ngn3 without subsequent selection, followed by differentiation induction in vitro and transplantation into diabetic mice. Human MSCs expressed mRNAs of the archetypal stem cell markers: Sox2, Oct4, Nanog and CD34, and the endocrine cell markers: PDX-1, NeuroD1, Ngn3, and Nkx6.1. Following gene transfection and differentiation induction, hMSCs expressed insulin in vitro, but were not glucose regulated. After transplantation, hMSCs differentiated further and ∼12.5% of the grafted cells expressed insulin. The graft bearing kidneys contained mRNA of insulin and other key genes required for the functions of beta cells. Mice transplanted with manipulated hMSCs showed reduced blood glucose levels (from 18.9+/−0.75 to 7.63+/−1.63 mM). 13 of the 16 mice became normoglycaemic (6.9+/−0.64 mM), despite the failure to detect the expression of SUR1, a K+-ATP channel component required for regulation of insulin secretion.

Conclusions

Our data confirm that hMSCs can be induced to express insulin sufficient to reduce blood glucose in a diabetic mouse model. Our triple gene approach has created cells that seem less glucose responsive in vitro but which become more efficient after transplantation. The maturation process requires further study, particularly the in vivo factors influencing the differentiation, in order to scale up for clinical purposes.  相似文献   

4.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) regulate islet function after carbohydrate ingestion. Whether incretin hormones are of importance for islet function after ingestion of noncarbohydrate macronutrients is not known. This study therefore examined integrated incretin and islet hormone responses to ingestion of pure fat (oleic acid; 0.88 g/kg) or protein (milk and egg protein; 2 g/kg) over 5 h in healthy men, aged 20-25 yr (n=12); plain water ingestion served as control. Both intact (active) and total GLP-1 and GIP levels were determined as was plasma activity of dipeptidyl peptidase-4 (DPP-4). Following water ingestion, glucose, insulin, glucagon, GLP-1, and GIP levels and DPP-4 activity were stable during the 5-h study period. Both fat and protein ingestion increased insulin, glucagon, GIP, and GLP-1 levels without affecting glucose levels or DPP-4 activity. The GLP-1 responses were similar after protein and fat, whereas the early (30 min) GIP response was higher after protein than after fat ingestion (P<0.001). This was associated with sevenfold higher insulin and glucagon responses compared with fat ingestion (both P<0.001). After protein, the early GIP, but not GLP-1, responses correlated to insulin (r(2)=0.86; P=0.0001) but not glucagon responses. In contrast, after fat ingestion, GLP-1 and GIP did not correlate to islet hormones. We conclude that, whereas protein and fat release both incretin and islet hormones, the early GIP secretion after protein ingestion may be of primary importance to islet hormone secretion.  相似文献   

5.
6.
Progenitor cells exist in the adult pancreas and transform to endocrine cells in pathological conditions. To address the mechanism of beta cell regeneration, mice were treated with streptozotocin (STZ group) or streptozotocin and exendin-4 (STZ + Ex-4 group), and the expression of PDX-1, Ngn3, insulin, IRS-2, and Foxo1 was investigated. PDX-1 mRNA was upregulated biphasically and induction of Ngn3 mRNA occurred shortly after the first increase of PDX-1 expression, a pattern similar to that observed during embryogenesis. PDX-1-positive cells appeared only in islet-like cell clusters (ICCs) in STZ group, but they appeared both in ducts and ICCs in STZ + Ex-4 group. Ngn3-positive cells emerged in ICCs but not in ducts. Therefore, regeneration seemed to occur mainly from intra-islet stem/progenitor cells. Exendin-4 upregulated PDX-1 expression which paralleled increased IRS-2 expression and translocation of Foxo1 from nucleus to cytoplasm. Further analysis of beta cell regeneration should help in the design of novel therapy for diabetes.  相似文献   

7.
8.
9.
Regulatory proteins have been identified in embryonic development of the endocrine pancreas. It is unknown whether these factors can also play a role in the formation of pancreatic endocrine cells from postnatal nonendocrine cells. The present study demonstrates that adult human pancreatic duct cells can be converted into insulin-expressing cells after ectopic, adenovirus-mediated expression of the class B basic helix-loop-helix factor neurogenin 3 (ngn3), which is a critical factor in embryogenesis of the mouse endocrine pancreas. Infection with adenovirus ngn3 (Adngn3) induced gene and/or protein expression of NeuroD/beta2, Pax4, Nkx2.2, Pax6, and Nkx6.1, all known to be essential for beta-cell differentiation in mouse embryos. Expression of ngn3 in adult human duct cells induced Notch ligands Dll1 and Dll4 and neuroendocrine- and beta-cell-specific markers: it increased the percentage of synaptophysin- and insulin-positive cells 15-fold in ngn3-infected versus control cells. Infection with NeuroD/beta2 (a downstream target of ngn3) induced similar effects. These data indicate that the Delta-Notch pathway, which controls embryonic development of the mouse endocrine pancreas, can also operate in adult human duct cells driving them to a neuroendocrine phenotype with the formation of insulin-expressing cells.  相似文献   

10.
GLP-1(1~37) 诱导人类胚胎小肠 上皮细胞表达胰岛素   总被引:1,自引:0,他引:1  
胶原酶消化法分离培养人类胚胎小肠的上皮细胞,应用胰高血糖素样肽 1 (glucagon-like peptide 1 (1~37),GLP-1) 诱导小肠上皮细胞向胰岛素分泌细胞分化,免疫组化方法对分化的和未分化的细胞进行鉴定, RT-PCR 检测胰岛内分泌细胞相关基因的表达 . 结果成功分离培养出人类小肠上皮细胞,免疫组化证明细胞表达小肠上皮的标志物细胞角蛋白 18 和 19 ,同时细胞也表达胰高血糖素和生长抑素,但无胰岛素表达 . GLP-1(1~37) 诱导小肠上皮细胞 6 天, RT-PCR 显示胰十二指肠同源异型基因盒 1 (pancreatic duodenal homeobox-1 , PDX-1) 、葡萄糖转运蛋白 2 (glucose transporter-2 , GLUT-2) 和胰岛素基因均有表达,免疫组化也检测到胰岛素阳性小肠上皮细胞 . 未用 GLP-1(1~37) 诱导小肠上皮细胞为对照的 RT-PCR 显示 PDX-1 、 GLUT-2 也表达,但无胰岛素 mRNA 和蛋白质的表达 . 研究表明 GLP-1(1~37) 能够诱导人类胚胎小肠上皮细胞向胰岛素分泌细胞分化 .  相似文献   

11.
12.
13.
14.
15.
16.

Background

A distinctive feature of type 2 diabetes is inability of insulin-secreting β-cells to properly respond to elevated glucose eventually leading to β-cell failure. We have hypothesized that an abnormally increased NO production in the pancreatic islets might be an important factor in the pathogenesis of β-cell dysfunction.

Principal Findings

We show now that islets of type 2 spontaneous diabetes in GK rats display excessive NO generation associated with abnormal iNOS expression in insulin and glucagon cells, increased ncNOS activity, impaired glucose-stimulated insulin release, glucagon hypersecretion, and impaired glucose-induced glucagon suppression. Pharmacological blockade of islet NO production by the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) greatly improved hormone secretion from GK islets suggesting islet NOS activity being an important target to inactivate for amelioration of islet cell function. The incretin hormone GLP-1, which is used in clinical practice suppressed iNOS and ncNOS expression and activity with almost full restoration of insulin release and partial restoration of glucagon release. GLP-1 suppression of iNOS expression was reversed by PKA inhibition but unaffected by the proteasome inhibitor MG132. Injection of glucose plus GLP-1 in the diabetic rats showed that GLP-1 amplified the insulin response but induced a transient increase and then a poor depression of glucagon.

Conclusion

The results suggest that abnormally increased NO production within islet cells is a significant player in the pathogenesis of type 2 diabetes being counteracted by GLP-1 through PKA-dependent, nonproteasomal mechanisms.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号