首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Peroxisomes are eukaryotic organelles that are the subcellular location of important metabolic reactions. In humans, defects in the organelle's function are often lethal. Yet, relative to other organelles, little is known about how cells maintain and propagate peroxisomes or how they direct specific sets of newly synthesized proteins to these organelles (peroxisome biogenesis/assembly). In recent years, substantial progress has been made in elucidating aspects of peroxisome biogenesis and in identifying PEX genes whose products, peroxins, are essential for one or more of these processes. The most progress has been made in understanding the mechanism by which peroxisome matrix proteins are imported into the organelles. Signal sequences responsible for targeting proteins to the organelle have been defined. Potential signal receptor proteins, a receptor docking protein and other components of the import machinery have been identified, along with insights into how they operate. These studies indicate that multiple peroxisomal protein-import mechanisms exist and that these mechanisms are novel, not simply variations of those described for other organelles.  相似文献   

2.
The organization of eukaryotic cells into membrane-bound compartments must be faithfully sustained for survival of the cell. A subtle equilibrium exists between the degradation and the proliferation of organelles. Commonly, proliferation is initiated by a membrane remodeling process. Here, we dissect the function of proteins driving organelle proliferation in the particular case of peroxisomes. These organelles are formed either through a growth and division process from existing peroxisomes or de novo from the endoplasmic reticulum (ER). Among the proteins involved in the biogenesis of peroxisomes, peroxins, members of the Pex11 protein family participate in peroxisomal membrane alterations. In the yeast Saccharomyces cerevisiae, the Pex11 family consists of three proteins, Pex11p, Pex25p and Pex27p. Here we demonstrate that yeast mutants lacking peroxisomes require the presence of Pex25p to regenerate this organelle de novo. We also provide evidence showing that Pex27p inhibits peroxisomal function and illustrate that Pex25p initiates elongation of the peroxisomal membrane. Our data establish that although structurally conserved each of the three Pex11 protein family members plays a distinct role. While ScPex11p promotes the proliferation of peroxisomes already present in the cell, ScPex25p initiates remodeling at the peroxisomal membrane and ScPex27p acts to counter this activity. In addition, we reveal that ScPex25p acts in concert with Pex3p in the initiation of de novo peroxisome biogenesis from the ER.  相似文献   

3.
The surprising complexity of peroxisome biogenesis   总被引:7,自引:0,他引:7  
Peroxisomes are small organelles with a single boundary membrane. All of their matrix proteins are nuclear-encoded, synthesized on free ribosomes in the cytosol, and post-translationally transported into the organelle. This may sound familiar, but in fact, peroxisome biogenesis is proving to be surprisingly unique. First, there are several classes of plant peroxisomes, each specialized for a different metabolic function and sequestering specific matrix enzymes. Second, although the mechanisms of peroxisomal protein import are conserved between the classes, multiple pathways of protein targeting and translocation have been defined. At least two different types of targeting signals direct proteins to the peroxisome matrix. The most common peroxisomal targeting signal is a tripeptide limited to the carboxyl terminus of the protein. Some peroxisomal proteins possess an amino-terminal signal which may be cleaved after import. Each targeting signal interacts with a different cytosolic receptor; other cytosolic factors or chaperones may also form a complex with the peroxisomal protein before it docks on the membrane. Peroxisomes have the unusual capacity to import proteins that are fully folded or assembled into oligomers. Although at least 20 proteins (mostly peroxins) are required for peroxisome biogenesis, the role of only a few of these have been determined. Future efforts will be directed towards an understanding of how these proteins interact and contribute to the complex process of protein import into peroxisomes.  相似文献   

4.
Peroxisomes are ubiquitous organelles housing a variety of essential biochemical pathways. Peroxisome dysfunction causes a spectrum of human diseases known as peroxisome biogenesis disorders (PBD). Although much is known regarding the mechanism of peroxisome biogenesis, it is still unclear how peroxisome dysfunction leads to the disease state. Several recent studies have shown that mutations in Drosophila peroxin genes cause phenotypes similar to those seen in humans with PBDs suggesting that Drosophila might be a useful system to model PBDs. We have analyzed the proteome of Drosophila to identify the proteins involved in peroxisomal biogenesis and homeostasis as well as metabolic enzymes that function within the organelle. The subcellular localization of five of these predicted peroxisomal proteins was confirmed. Similar to Caenorhabditis elegans, Drosophila appears to only utilize the peroxisome targeting signal type 1 system for matrix protein import. This work will further our understanding of peroxisomes in Drosophila and add to the usefulness of this emerging model system.  相似文献   

5.
Heiland I  Erdmann R 《The FEBS journal》2005,272(10):2362-2372
Genetic and proteomic approaches have led to the identification of 32 proteins, collectively called peroxins, which are required for the biogenesis of peroxisomes. Some are responsible for the division and inheritance of peroxisomes; however, most peroxins have been implicated in the topogenesis of peroxisomal proteins. Peroxisomal membrane and matrix proteins are synthesized on free ribosomes in the cytosol and are imported post-translationally into pre-existing organelles (Lazarow PB & Fujiki Y (1985) Annu Rev Cell Biol1, 489-530). Progress has been made in the elucidation of how these proteins are targeted to the organelle. In addition, the understanding of the composition of the peroxisomal import apparatus and the order of events taking place during the cascade of peroxisomal protein import has increased significantly. However, our knowledge on the basic principles of peroxisomal membrane protein insertion or translocation of peroxisomal matrix proteins across the peroxisomal membrane is rather limited. The latter is of particular interest as the peroxisomal import machinery accommodates folded, even oligomeric, proteins, which distinguishes this apparatus from the well characterized translocons of other organelles. Furthermore, the origin of the peroxisomal membrane is still enigmatic. Recent observations suggest the existence of two classes of peroxisomal membrane proteins. Newly synthesized class I proteins are directly targeted to and inserted into the peroxisomal membrane, while class II proteins reach their final destination via the endoplasmic reticulum or a subcompartment thereof, which would be in accord with the idea that the peroxisomal membrane might be derived from the endoplasmic reticulum.  相似文献   

6.
Peroxisome biogenesis and the role of protein import   总被引:2,自引:0,他引:2  
Peroxisomes are metabolic organelles with enzymatic content that are found in virtually all cells and are involved in β-oxidation of fatty acids, hydrogen peroxide-based respiration and defence against oxidative stress. The steps of their biogenesis involves "peroxins", proteins encoded by PEX genes. Peroxins are involved in three key stages of peroxisome development: (1) import of peroxisomal membrane proteins; (2) import of peroxisomal matrix proteins and (3) peroxisome proliferation. Of these three areas, peroxisomal matrix-protein import is by far the best understood and accounts for most of the available published data on peroxisome biogenesis. Defects in peroxisome biogenesis result in peroxisome biogenesis disorders (PBDs), which although rare, have no known cure to-date. This review explores current understanding of each key area in peroxisome biogenesis, paying particular attention to the role of protein import.  相似文献   

7.
Peroxisome biogenesis   总被引:2,自引:0,他引:2  
Peroxisome biogenesis conceptually consists of the (a) formation of the peroxisomal membrane, (b) import of proteins into the peroxisomal matrix and (c) proliferation of the organelles. Combined genetic and biochemical approaches led to the identification of 25 PEX genes-encoding proteins required for the biogenesis of peroxisomes, so-called peroxins. Peroxisomal matrix and membrane proteins are synthesized on free ribosomes in the cytosol and posttranslationally imported into the organelle in an unknown fashion. The protein import into the peroxisomal matrix and the targeting and insertion of peroxisomal membrane proteins is performed by distinct machineries. At least three peroxins have been shown to be involved in the topogenesis of peroxisomal membrane proteins. Elaborate peroxin complexes form the machinery which in a concerted action of the components transports folded, even oligomeric matrix proteins across the peroxisomal membrane. The past decade has significantly improved our knowledge of the involvement of certain peroxins in the distinct steps of the import process, like cargo recognition, docking of cargo-receptor complexes to the peroxisomal membrane, translocation, and receptor recycling. This review summarizes our knowledge of the functional role the known peroxins play in the biogenesis and maintenance of peroxisomes. Ideas on the involvement of preperoxisomal structures in the biogenesis of the peroxisomal membrane are highlighted and special attention is paid to the concept of cargo protein aggregation as a presupposition for peroxisomal matrix protein import. Electronic Publication  相似文献   

8.
The molecular mechanisms of peroxisome biogenesis have begun to emerge; in contrast, relatively little is known about how the organelle functions as cells age. In this report, we characterize age-related changes in peroxisomes of human cells. We show that aging compromises peroxisomal targeting signal 1 (PTS1) protein import, affecting in particular the critical antioxidant enzyme catalase. The number and appearance of peroxisomes are altered in these cells, and the organelles accumulate the PTS1-import receptor, Pex5p, on their membranes. Concomitantly, cells produce increasing amounts of the toxic metabolite hydrogen peroxide, and we present evidence that this increased load of reactive oxygen species may further reduce peroxisomal protein import and exacerbate the effects of aging.  相似文献   

9.
A main characteristic of the eucaryotic cell is the compartmentalization of different metabolic processes into membrane-enclosed organelles. Each organelle contains a characteristic set of proteins to accomplish specific metabolic functions that are often essential for the cell's viability. The most recently discovered class of organelles includes the microbodies that encompass a group of organelles which have some morphological properties in common. Microbodies are ubiquitous in eucaryotic cells and can be subdivided into different types of organelles according to their metabolic functions (e.g. peroxisomes and glyoxysomes). The size and number of microbodies per cell is often related to the developmental stage and/or the organism in which they occur. This implies that microbody proliferation is inductible in nature. This review summarizes the progress made in recent years in understanding how proteins are targeted to and imported into microbodies. Major breakthroughs were the identification of the two main peroxisomal protein targeting signals (PTS1 and PTS2), protein receptors for the signals and the isolation of yeast mutants defective in the biogenesis of microbodies. Especially the availability of these mutants has opened new ways to identify proteins involved in microbody protein import in plants as well as animals.  相似文献   

10.
Peroxisomes--functions and disturbances in human metabolism   总被引:1,自引:0,他引:1  
Peroxisomes, classical compartments of eucaryotic cells have significant functions in cellular metabolism, which beta-oxidation fatty acids and detoxification of H2O2 are the most important biochemical process. Defects in genes encoding for peroxisomal proteins result in biochemical malfunctioning of these organelles and constitute base for severe human's inherited diseases. This article presents the most important aspects concerning peroxisomal biogenesis, biochemical functions and their disturbance.  相似文献   

11.
Peroxisome biogenesis in yeast   总被引:6,自引:0,他引:6  
Eukaryotic cells have evolved a complex set of intracellular organelles, each of which possesses a specific complement of enzymes and performs unique metabolic functions. This compartmentalization of cellular functions provides a level of metabolic control not available to prokaryotes. However, it presents the eukaryotic cell with the problem of targeting proteins to their specific location(s). Proteins must be efficiently transported from their site of synthesis in the cytosol to their specific organelle(s). Such a process may require translocation across one or more hydrophobic membrane barriers and/or asymmetric integration into specific membranes. Proteins carry cis-acting amino acid sequences that serve to act as recognition motifs for protein sorting and for the cellular translocation machinery. Sequences that target proteins to the endoplasmic reticulum/secretory pathway, mitochondria, and chloroplasts are often present as cleavable amino-terminal extensions. In contrast, most peroxisomal proteins are synthesized at their mature size and are translocated to the organelle without any post-translational modification. This review will summarize what is known about how yeast solve the problem of specifically importing proteins into peroxisomes and will suggest future directions for investigations into peroxisome biogenesis in yeast.  相似文献   

12.
Candida yeasts rapidly form peroxisomes of simple function and composition when grown on methanol. Because the induction is both massive and rapid, this system may be useful for a detailed dissection of peroxisomal biogenesis. We report procedures to express peroxisomal proteins in cells and spheroplasts of Candida boidinii to stabilize peroxisomes in a lysate of spheroplasts and to obtain an enriched peroxisomal fraction. With these techniques we have been able to study the assembly of alcohol oxidase, a homo-octomeric flavoprotein, into the organelle in vivo. The primary translation product of alcohol oxidase comigrates on sodium dodecyl sulfate-polyacrylamide gels with the mature subunit. Pulse-chase experiments indicate that the newly synthesized monomer of alcohol oxidase has a half-life of about 20 min in intact cells and 13 min in spheroplasts before conversion to octomer. The monomer first appears in a high speed supernatant of a lysate of spheroplasts and then chases into a purified peroxisomal fraction before or during its octomerization. There is no detectable intermediary organelle involved in this process.  相似文献   

13.
The biogenesis and maintenance of cellular organelles is of fundamental importance in all eukaryotic cells. One such organelle is the peroxisome. The establishment of a genetic system to study peroxisome biogenesis in the methylotrophic yeast Pichia pastoris has yielded many different complementation groups of peroxisomal assembly (pas) or peroxisome-deficient (per) mutants. Each appears to be deficient in functional peroxisomes. One of these mutants, pas5, has been characterized, complemented, and the gene sequenced. Ultrastructural studies show that normal peroxisomes are not present in pas5, but aberrant peroxisomal structures resembling "membranous ghosts" are frequently observed. The "peroxisome ghosts" appear to be induced and segregated to daughter cells normally. Biochemical fractionation analysis of organelles of the pas5 mutant reveals that peroxisomal matrix enzymes are induced normally but are found mostly in the cytosol. However, purification of peroxisome ghosts from the mutant shows that small amounts (< 5%) of matrix enzymes are imported. The PAS5 gene was cloned and found to encode a 127-kD protein, which contains a 200-amino acid-long region of homology with PAS1, NEM- sensitive factor (NSF), and other related ATPases. Weak homology to a yeast myosin was also observed. The gene is not essential for growth on glucose but is essential for growth on oleic acid and methanol. The role of PAS5 in peroxisome biogenesis is discussed.  相似文献   

14.
Peroxisomes are essential and dynamic organelles that allow cells to rapidly adapt and cope with changing environments and/or physiological conditions by modulation of both peroxisome biogenesis and turnover. Peroxisome biogenesis involves the assembly of peroxisome membranes and the import of peroxisomal matrix proteins. The latter depends on the receptor, PEX5, which recognizes peroxisomal matrix proteins in the cytosol directly or indirectly, and transports them to the peroxisomal lumen. In this review, we discuss the role of PEX5 ubiquitination in both peroxisome biogenesis and turnover, specifically in PEX5 receptor recycling, stability and abundance, as well as its role in pexophagy (autophagic degradation of peroxisomes).  相似文献   

15.
The vital importance of peroxisomal metabolism for regular function of the testis is stressed by the severe spermatogenesis defects induced by peroxisomal dysfunction. However, only sparse information is available on the role and enzyme composition of this organelle in distinct cell types of the testis. In the present study, we characterized the peroxisomal compartment in human and mouse testis in primary cultures of murine somatic cells (Sertoli, peritubular myoid, and Leydig cells) and in GFP-PTS1 transgenic mice with a variety of morphological and biochemical techniques. Formerly, peroxisomes were thought to be absent in late stages of spermatogenesis. However, our results obtained by detection of different peroxisomal marker proteins show the presence of these organelles in most cell types in the testis, except for mature spermatozoa. Furthermore, we demonstrate a strong heterogeneity of peroxisomal protein content in various cell types of the human and mouse testis and show marked differences in structure, abundance, and localization of these organelles in spermatids, depending on their maturation. Highest and selective enrichment of the peroxisomal lipid transporters (ABCD1 and ABCD3) as well as ACOX2, the key regulatory enzyme of the beta-oxidation pathway 2 for side chain oxidation of cholesterol, were found in Sertoli cells, whereas Leydig cells were enriched in catalase and ABCD2. Our results suggest a cell type-specific metabolic function of peroxisomes in the testis and point to an important role for peroxisomes in spermiogenesis and in the lipid metabolism of Sertoli cells.  相似文献   

16.

Background  

Peroxisomes are ubiquitous eukaryotic organelles involved in various oxidative reactions. Their enzymatic content varies between species, but the presence of common protein import and organelle biogenesis systems support a single evolutionary origin. The precise scenario for this origin remains however to be established. The ability of peroxisomes to divide and import proteins post-translationally, just like mitochondria and chloroplasts, supports an endosymbiotic origin. However, this view has been challenged by recent discoveries that mutant, peroxisome-less cells restore peroxisomes upon introduction of the wild-type gene, and that peroxisomes are formed from the Endoplasmic Reticulum. The lack of a peroxisomal genome precludes the use of classical analyses, as those performed with mitochondria or chloroplasts, to settle the debate. We therefore conducted large-scale phylogenetic analyses of the yeast and rat peroxisomal proteomes.  相似文献   

17.
Cellular proteins and organelles such as peroxisomes are under continuous quality control. Upon synthesis in the cytosol, peroxisomal proteins are kept in an import-competent state by chaperones or specific proteins with an analogous function to prevent degradation by the ubiquitin–proteasome system. During protein translocation into the organelle, the peroxisomal targeting signal receptors (Pex5, Pex20) are also continuously undergoing quality control to enable efficient functioning of the translocon (RADAR pathway). Even upon maturation of peroxisomes, matrix enzymes and peroxisomal membranes remain subjected to quality control. As a result of their oxidative metabolism, peroxisomes are producers of reactive oxygen species (ROS), which may damage proteins and lipids. To counteract ROS-induced damage, yeast peroxisomes contain two important antioxidant enzymes: catalase and an organelle-specific peroxiredoxin. Additionally, a Lon-type protease has recently been identified in the peroxisomal matrix, which is capable of degrading nonfunctional proteins. Finally, cellular housekeeping processes keep track of the functioning of peroxisomes so that dysfunctional organelles can be quickly removed via selective autophagy (pexophagy). This review provides an overview of the major processes involved in quality control of yeast peroxisomes.  相似文献   

18.
Most proteins essential for the biogenesis of peroxisomes (peroxins) that are identified to date are associated with or are integral components of the peroxisomal membrane. A prerequisite in elucidating their function is to determine their topology in the membrane. We have developed a novel tool to analyze the topology of peroxisomal membrane proteins in the yeast Hansenula polymorpha in vivo using the 27-kDa NIa protease subunit from the tobacco etch virus (TEVp). TEVp specifically cleaves peptides containing the consensus sequence, EXXYXQ downward arrowS (tev). We show that cytosolic TEVp and peroxisomal TEVp.SKL are selectively active on soluble cytosolic and peroxisomal tev-containing proteins in vivo, respectively, without affecting the viability of the yeast cells. The tev sequence was introduced in between the primary sequence of the peroxisomal membrane proteins Pex3p or Pex10p and the reporter protein enhanced green fluorescent protein (eGFP). Co-synthesis of these functional tev-GFP tagged proteins with either cytosolic TEVp or peroxisomal TEVp.SKL revealed that the C termini of Pex3p and Pex10p are exposed to the cytosol. Additional applications of the TEV protease to study peroxisome biogenesis are discussed.  相似文献   

19.
Fe/S clusters are co-factors of numerous proteins with important functions in metabolism, electron transport and regulation of gene expression. Presumably, Fe/S proteins have occurred early in evolution and are present in cells of virtually all species. Biosynthesis of these proteins is a complex process involving numerous components. In mitochondria, this process is accomplished by the so-called ISC (iron-sulfur cluster assembly) machinery which is derived from the bacterial ancestor of the organelles and is conserved from lower to higher eukaryotes. The mitochondrial ISC machinery is responsible for biogenesis iron-sulfur proteins both within and outside the organelle. Maturation of the latter proteins involves the ABC transporter Atm1p which presumably exports iron-sulfur clusters from the organelle. This review summarizes recent developments in our understanding of the biogenesis of iron-sulfur proteins both within bacteria and eukaryotes.  相似文献   

20.
Subcellular proteomics, which includes isolation of subcellular components prior to a proteomic analysis, is advantageous not only in characterizing large macro-molecular complexes such as organelles but also in elucidating mechanisms of protein transport and organelle biosynthesis. Because of the high sensitivity achieved by the present proteomics technology, the purity of samples to be analyzed is important for the interpretation of the results obtained. In the present study, peroxisomes isolated from rat liver by usual cell fractionation were further purified by immunoisolation using a specific antibody raised against a peroxisomal membrane protein, PMP70. The isolated peroxisomes were analyzed by SDS-PAGE combined with liquid chromatography/mass spectrometry. Altogether 34 known peroxisomal proteins were identified in addition to several mitochondrial and microsomal proteins. Some of the latter may reside in the peroxisomes as well. Analysis of membrane fractions identified all known peroxins except for Pex7. Two new peroxisomal proteins of unknown function were of high abundance. One is a bi-functional protein consisting of an aminoglycoside phosphotransferase-domain and an acyl-CoA dehydrogenase domain. The other is a newly identified peroxisome-specific isoform of Lon protease, an ATP-dependent protease with chaperone-like activity. The peroxisomal localization of the protein was confirmed by immunological techniques. The peroxisome-type Lon protease, which is distinct from the mitochondrial isoform, may play an important role in the peroxisomal biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号