首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanical activation of the normal left ventricle (LV) is not simultaneous; however, the potential consequences of the ejection function of the ventricle are not entirely known. We studied contraction of the LV free wall to determine whether it reveals a contraction wave in the axial direction during ejection. Seven guinea pig hearts in situ were studied via thoracotomy. In each heart, the ventricular and aortic pressures were measured by two microtipped manometers (2-Fr, Millar). Contraction of the LV free wall was assessed with a video system (Dalsa D6-0256 camera and EPIX PIXCI D32 frame grabber; acquisition rate, 500 frames/s), and 15-18 epicardial markers were used to divide the region into 20-25 triangular areas. The area sizes were studied during contraction to locate the position of the contraction wave. For each triangular area, two variables were determined as follows: the time (t(c)) from the end of diastole until the size of the area reached 80% of maximum size reduction (normalized with the duration of systole) and the normalized latitude (L(ax)) of the area (determined at the end of diastole). A relationship between these two variables was determined by regression analysis. We found that the t(c) at which the contraction wave reached a triangular area was in positive correlation with the L(ax) value for that triangular area with a slope of 0.25 +/- 0.09 and a linear correlation coefficient of 0.41 +/- 0.08. Thus contraction in the guinea pig LV free wall occurs progressively from apex to base with successive areas reaching 80% contraction.  相似文献   

2.
Abnormalities in intracellular calcium (Ca(i)(2+)) handling have been implicated as the underlying mechanism in a large number of pathologies in the heart. Study into the relation between Ca(i)(2+) behavior and performance of the whole heart function could provide detailed information into the cellular basis of heart function. In this study we describe an optical ratio imaging setup and an analysis method for the beat-to-beat Ca(i)(2+) videofluorescence images of an indo-1 loaded, isolated Tyrode-perfused beating rat heart. The signal-to-noise ratio and the spatiotemporal resolution (with an optimum of 1 ms and 0.6 mm, respectively) made it possible to register different temporal Ca(i)(2+) transients together with left ventricle pressure changes. The Ca(i)(2+) transients showed that Ca(i)(2+) activation propagates horizontally from left to right during sinus rhythm or from the stimulus site during direct left ventricle stimulation. The indo-1 ratiometric video technique developed allows the imaging of ratio changes of Ca(i)(2+) with a high temporal (1 ms) and spatial (0.6 mm) resolution in the isolated Tyrode-perfused beating rat heart.  相似文献   

3.
E Aasum  T S Larsen 《Cryobiology》1999,38(3):243-249
We examined the effect of hypothermia and rewarming on myocardial function and calcium control in Langendorff-perfused hearts from rat and guinea pig. Both rat and guinea pig hearts demonstrated a rise in myocardial calcium ([Ca]total) in response to hypothermic perfusion (40 min, 10 degrees C), which was accompanied by an increase in left ventricular end diastolic pressure (LVEDP). The elevation in [Ca]total was severalfold higher in guinea pig than in rat hearts, reaching 12.9 +/- 0.8 and 3.1 +/- 0.6 micromol.g dry wt-1, respectively. The rise in LVEDP, however, was comparable in the two species: 62.5 +/- 2.5 (guinea pig) and 52.5 +/- 5.1 mm Hg (rat). Following rewarming, [Ca]total remained elevated in guinea pig, whereas a moderate decline in [Ca]total was observed in the rat (13.6 +/- 1.9 and 2.2 +/- 0.3 micromol.g dry wt-1, respectively). Posthypothermic values of LVEDP were also significantly higher in guinea pig compared to rat hearts (42.5 +/- 6.8 vs 20.5 +/- 5.1 mm Hg, P < 0.027). Furthermore, whereas rat hearts demonstrated a 78 +/- 7% recovery of left ventricular developed pressure, there was only a 15 +/- 7% recovery in guinea pig hearts. Measurements of tissue levels of high energy phosphates and glycogen utilization indicated a higher metabolic requirement in guinea pig than in rat hearts in order to oppose the hypothermia-induced calcium load. Thus, we conclude that isolated guinea pig hearts are more sensitive to a hypothermic insult than rat hearts.  相似文献   

4.
The necessity to quantify the mechanical function with high spatial resolution stemmed from the advancement of myocardial salvaging techniques. Since these therapies are localized interventions, a whole field technique with high spatial resolution was needed to differentiate the normal, diseased, and treated myocardium. We developed a phase correlation algorithm for measuring myocardial displacement at high spatial resolution and to determine the regional mechanical function in the intact heart. Porcine hearts were exposed and high contrast microparticles were placed on the myocardium. A pressure transducer, inserted into the left ventricle, synchronized the pressure (LVP) with image acquisition using a charge-coupled device camera. The deformation of the myocardium was measured with a resolution of 0.58+/-0.04 mm. Within the region of interest (ROI), regional stroke work (RSW), defined as the integral of LVP with respect to regional area, was determined on average at 21 locations with a resolution of 27.1+/-2.7 mm2. To alter regional mechanical function, the heart was paced at three different locations around the ROI. Independent of the pacemaker location, RSW decreased in the ROI. In addition, a gradient of increasing RSW in the outward direction radiating from the pacemaker was observed in all pacing protocols. These data demonstrated the ability to determine regional whole field mechanical function with high spatial resolution, and the significant alterations induced by electrical pacing.  相似文献   

5.
A change in activation sequence electrically remodels ventricular myocardium, causing persistent changes in repolarizing currents (T-wave memory). However, the underlying mechanism for triggering activation sequence-dependent remodeling is unknown. Optical action potentials were mapped with high resolution from the epicardial surface of the arterially perfused canine wedge preparation (n = 23) during 30 min of baseline endocardial stimulation, followed by 40 min of epicardial stimulation, and, finally, restoration of endocardial stimulation. Immediately after the change from endocardial to epicardial stimulation, phase 1 notch amplitude of epicardial cells was attenuated by 74 +/- 8% (P < 0.001) compared with baseline and continued to diminish during the period of epicardial pacing, suggesting progressive remodeling of the transient outward current (Ito). When endocardial pacing was restored, notch amplitude did not immediately recover but remained attenuated by 23 +/- 10% (P < 0.001), also consistent with a remodeling effect. Peak Ito current measured from isolated epicardial myocytes changed by 12 +/- 4% (P < 0.025), providing direct evidence for Ito remodeling occurring on a surprisingly short time scale. The mechanism for triggering remodeling of Ito was a significant reduction (by 14 +/- 4%, P < 0.001) of upstroke amplitude in epicardial cells during epicardial stimulation. Reduction in upstroke amplitude during epicardial pacing was explained by electrotonic load on epicardial cells by fully repolarized downstream endocardial cells. These data suggest a novel mechanism for triggering electrical remodeling in the ventricle. Electrotonic load imposed by a change in activation sequence reduces upstroke amplitude, which, in turn, attenuates Ito according to its known voltage-dependent properties, triggering downregulation of current.  相似文献   

6.
Action potentials and isometric force were recorded in papillary muscles from guinea pigs and summer hedgehogs at different temperatures between 37 and 0 degrees C. The action potential of the hedgehog was of a lower amplitude (mean 83 +/- 6 mV) than that of the guinea pig (mean 110 +/- 5 mV). The action potential duration at 50% repolarization was 22 +/- 2 msec in the hedgehog as compared to 105 +/- 11 msec in the guinea pig. Moreover, there was no distinct plateau phase of the hedgehog action potential. Lowering temperature prolonged the action potential duration in the two preparations by about the same percentage. However, the guinea pig preparation became progressively less excitable below 20 degrees C. Lowered temperature produced a positive inotropic effect in the guinea pig, whereas this effect was very slight in the hedgehog heart. Postextrasystolic potentiation was seen in the guinea pig but not in the hedgehog preparation. It is suggested that this difference between the preparations may be due to a greater relative amount of activator calcium in the hedgehog heart. The difference in cold tolerance between the preparations may reflect a difference in chemical composition of the sarcolemma.  相似文献   

7.
The cardiovascular effects of constant intracerebroventricular infusion in anesthetized strain 13 guinea pigs were studied. Bilateral cerebroventricles of the animals were catheterized stereotaxically with two 20-gauge blunt needles, penetrating 5 to 6 mm into the skull. Baseline cerebroventricular pressure values were 1.3 +/- 0.6 mmHg. After artificial cerebrospinal fluid was infused into the left ventricle at 0.5 ml/h, left cerebroventricular pressure increased to 8.1 +/- 1.6 mmHg (P less than 0.01), while right cerebroventricular pressure reached 5.6 +/- 2.2 mmHg within 20 minutes. No significant changes in mean blood pressure or heart rate were observed. When intracerebroventricular infusion rate increased to 5.0 ml/h, cerebrospinal fluid pressures of left and right cerebroventricles increased to 40.0 +/- 4.8 and 38.4 +/- 4.7 mmHg within 10 minutes from baseline values of 1.5 +/- 0.5 and 1.7 +/- 0.7 mmHg, respectively. Simultaneously, mean blood pressure and heart rate increased from 72 +/- 4 to 101 +/- 9 mmHg and from 195 +/- 11 to 218 +/- 17 beats/min, respectively. However, 30 to 50 minutes later, mean blood pressure, heart rate, and cerebrospinal fluid pressure decreased abruptly, and two of four animals died. We suggest that this technique with a low infusion rate (less than 0.5 ml/h) can be used to deliver certain drugs into the brain ventricles directly without producing undesirable effects on blood pressure or heart rate.  相似文献   

8.
We examined myocardial 5'-adenosine monophosphate (5'-AMP) catabolism, adenosine salvage and adenosine responses in perfused guinea pig, rat and mouse heart. MVO(2) increased from 71+/-8 microl O(2)/min per g in guinea pig to 138+/-17 and 221+/-15 microl O(2)/min per g in rat and mouse. VO(2)/beat was 0.42+/-0.03, 0.50+/-0.03 and 0.55+/-0.04 microl O(2)/g in guinea pig, rat and mouse, respectively. Resting and peak coronary flows were highest in mouse vs. rat and guinea pig, and peak ventricular pressures and Ca(2+) sensitivity declined as heart mass increased. Net myocardial 5'-AMP dephosphorylation increased significantly as mass declined (3.8+/-0.5, 9.0+/-1.4 and 11.0+/-1.6 nmol/min per g in guinea pig, rat and mouse, respectively). Despite increased 5'-AMP catabolism, coronary venous [adenosine] was similar in guinea pig, rat and mouse (45+/-8, 69+/-10 and 57+/-14 nM, respectively). Comparable venous [adenosine] was achieved by increased salvage vs. deamination: 64%, 41% and 39% of adenosine formed was rephosphorylated while 23%, 46%, and 50% was deaminated in mouse, rat and guinea pig, respectively. Moreover, only 35-45% of inosine and its catabolites derive from 5'-AMP (vs. IMP) dephosphorylation in all species. Although post-ischemic purine loss was low in mouse (due to these adaptations), functional tolerance to ischemia decreased with heart mass. Cardiovascular sensitivity to adenosine also differed between species, with A(1) receptor sensitivity being greatest in mouse while A(2) sensitivity was greatest in guinea pig. In summary: (i) cardiac 5'-AMP dephosphorylation, VO(2), contractility and Ca(2+) sensitivity all increase as heart mass falls; (ii) adaptations in adenosine salvage vs. deamination limit purine loss and yield similar adenosine levels across species; (iii) ischemic tolerance declines with heart mass; and (iv) cardiovascular sensitivity to adenosine varies, with increasing A(2) sensitivity relative to A(1) sensitivity in larger hearts.  相似文献   

9.
Cheng YP  Yin JX  Cheng LP  He RR 《生理学报》2004,56(2):243-247
应用全细胞膜片钳技术研究低浓度辣椒素(capsaicin,CAP)对单个豚鼠心室肌细胞L-型钙电流的影响及其作用机制.CAP(1~25 nmol/L)可浓度依赖性增加电压依赖性的ICa-L的峰值并下移I-V曲线.CAPl,10,25 nmol/L使ICa-L最大峰值分别由-9.67±0.7pA/pF增至-10.21±0.8pA/pF(P>0.05),-11.37±0.8pA/pF和-12.84±0.9pA/pF(P<0.05).CAP25nmol/L可明显使稳态激活曲线左移,激活中点电压(V0.5)由-20.76±2.0mV变至-26.71±3.0mV(P<0.05),表明低浓度CAP改变了钙通道激活的电压依赖性.CAP25nmol/L对电压依赖性稳态失活曲线和ICa-L从失活状态下复活过程无明显影响.辣椒素受体(VR1)阻断剂钌红(RR,10μmol/L)可阻断低浓度辣椒素的效应.以上结果表明,低浓度辣椒素使钙通道稳态激活曲线左移,增加ICa-L,这一效应可能由VRl介导.  相似文献   

10.
大鼠成长期左心室基因表达谱的变化   总被引:2,自引:0,他引:2  
Li P  Li JL  Hou R  Han QD  Zhang YY 《生理学报》2003,55(2):191-196
为观察大鼠发育成熟过程中心脏生长与其基因表达谱变化的关系 ,应用超声心动术检测 8、10、12周龄Wistar大鼠的心脏结构和功能指标 ,应用cDNA基因芯片技术观察心脏基因表达水平的变化。大鼠从 8周龄生长至12周龄 ,体重增加约 45 7% ( 2 87± 13 gvs 197± 10g) ,前 2周和后 2周增加幅度相近。心脏左心室重量和室壁厚度分别增加约 2 7 7% ( 0 60± 0 0 3 gvs 0 47± 0 0 2 g)和 2 3 6% ( 2 0 4± 0 0 4mmvs 1 65± 0 13mm) ,前 2周增加幅度明显大于后 2周。基因表达谱的改变涉及细胞结构、代谢、氧化应激及信号转导等多方面的基因。 10周龄和 8周龄大鼠比较 ,变化的基因多数上调 ;12周龄和 10周龄大鼠比较 ,基因表达谱基本又返转至 8周龄水平。结果表明 ,大鼠在成长期的 4周内 ( 8- 12周龄 ) ,左心室基因表达谱发生的变化适应生理性心肌生长需要  相似文献   

11.
The total heart volume variation (THVV) during systole has been proposed to be caused by radial function of the ventricles, but definitive data for both ventricles have not been presented. Furthermore, the right ventricle (RV) has been suggested to have a greater longitudinal pumping component than the left ventricle (LV). Therefore, we aimed to compare the stroke volume (SV) generated by radial function to the volume variation of the left, right, and total heart. To do this, we also needed to develop a new method for measuring the contribution of the longitudinal atrioventricular plane displacement (AVPD) to the RVSV (RVSV(AVPD)). For our study, 11 volunteers underwent cine MRI in the short- and long-axis planes and MRI flow measurement in all vessels leading to and from the heart. The left, right, and total heart showed correlations between volume variation from flow measurements and radial function calculated as SV minus the longitudinal function (r = 0.81, P < 0.01; r = 0.80, P < 0.01; and r = 0.92, P < 0.001, respectively). Compared with the LV, the RV had a greater AVPD (23.4 +/- 0.8 vs. 16.4 +/- 0.5 mm), center of volume movement (13.0 +/- 0.7 vs. 7.8 +/- 0.4 mm), and, RVSV(AVPD) (82 +/- 2% vs. 60 +/- 2%) (P < 0.001 for all). We found that THVV is predominantly caused by radial function of the ventricles. Longitudinal AVPD accounts for approximately 80% of the RVSV, compared with approximately 60% for the LVSV. This difference explains the larger portion of THVV found on the left side of the heart.  相似文献   

12.
Our previous study (27) showed that the cardiac sympathetic afferent reflex (CSAR) was enhanced in dogs with congestive heart failure. The aim of this study was to test whether blood volume expansion, which is one characteristic of congestive heart failure, potentiates the CSAR in normal dogs. Ten dogs were studied with sino-aortic denervation and bilateral cervical vagotomy. Arterial pressure, left ventricular pressure, left ventricular epicardial diameter, heart rate, and renal sympathetic nerve activity were measured. Coronary blood flow was also measured and, depending on the experimental procedure, controlled. Blood volume expansion was carried out by infusion of isosmotic dextran into a femoral vein at 40 ml/kg at a rate of 50 ml/min. CSAR was elicited by application of bradykinin (5 and 50 microg) and capsaicin (10 and 100 microg) to the epicardial surface of the left ventricle. Volume expansion increased arterial pressure, left ventricular pressure, left ventricular diameter, and coronary blood flow. Volume expansion without controlled coronary blood flow only enhanced the RSNA response to the high dose (50 microg) of epicardial bradykinin (17. 3 +/- 1.9 vs. 10.6 +/- 4.8%, P < 0.05). However, volume expansion significantly enhanced the RSNA responses to all doses of bradykinin and capsaicin when coronary blood flow was held at the prevolume expansion level. The RSNA responses to bradykinin (16. 9 +/- 4.1 vs. 5.0 +/- 1.3% for 5 microg, P < 0.05, and 28.9 +/- 3.7 vs. 10.6 +/- 4.8% for 50 microg, P < 0.05) and capsaicin (29.8 +/- 6.0 vs. 9.3 +/- 3.1% for 10 microg, P < 0.05, and 34.2 +/- 2.7 vs. 15.1 +/- 2.7% for 100 microg, P < 0.05) were significantly augmented. These results indicate that acute volume expansion potentiated the CSAR. These data suggest that enhancement of the CSAR in congestive heart failure may be mediated by the concomitant cardiac dilation, which accompanies this disease state.  相似文献   

13.
Francis Rioux  H  l  ne Bachelard  Jean Barab    Serge St-Pierre 《Peptides》1986,7(6):1087-1094
Topical application of picomoles of neurotensin (NT) on the surface of the left ventricle (epicardial application) of anesthetized guinea pigs evoked dose-dependent pressor effects and tachycardia. The pressor response to epicardial NT was attenuated by pentolinium, a mixture of phentolamine and propranolol, or by guanethidine. However it was not affected by indomethacin, atropine or by a mixture of mepyramine and cimetidine. The tachycardia caused by epicardial NT was not modified by any of the aforementioned drugs. Both the pressor effects and tachycardia elicited by epicardial application of NT were markedly inhibited by chronic treatment of guinea pigs with capsaicin, and by topical application of lidocaine or tetrodotoxin to the surface of the left ventricle. Epicardial application of calcitonin gene-related peptide (CGRP), substance P (SP) or capsaicin also elicited tachycardia and either a decrease (CGRP and SP) or increase of blood pressure (capsaicin) in anesthetized guinea pigs. Epicardial application of NT, CGRP, or capsaicin in isolated, perfused hearts of guinea pigs also caused tachycardia. Together, these results suggest that the pressor responses to topical application of NT on the surface of the left ventricle in anesthetized guinea pigs are partially reflex in nature and likely to result from the stimulation by NT of cardiac sympathetic, capsaicin-sensitive, sensory nerve endings, whereas the tachycardia caused by epicardial NT appears to be due both to direct and indirect effects of NT on ventricular muscle cells. The possible participation of CGRP and/or SP in the chronotropic effect of NT applied on the epicardium, and their putative role as neurotransmitter of cardiac, capsaicin-sensitive, sensory neurons are discussed.  相似文献   

14.
A method is described for determining the spatial distribution of pulmonary parenchymal strains in the intact canine thorax, using measurements of displacement of metallic (1-mm-diam)) markers percutaneously implanted throughout the parenchyma of the right lung. Dogs are supported head up or head down in a water-immersion respirator with the animal's airway connected to ambient air. Tracking of the parenchymal markers is accomplished by stereo biplane videoroentgenographic recordings, which allow high temporal (60/S) and spatial (+/- 1.5 mm) resolution measurements of the "tagged" lungs during various respiratory maneuvers. After transferring the video information to a stop-action video disc, an operator-interactive computer program is used to input the geometric coordinates of the markers into the computer. The true spatial coordinates are then determined after correction for pincushion and magnification distortions. Spatial and temporal distributions of regional parenchymal strains are obtained by determining the distance between markers on a frame-by-frame basis over the extent of the respiratory cycle. Data indicate nonuniformity in regional lung parenchymal strains.  相似文献   

15.
The objective of this study was to determine the effect of passive myocardium on the coronary arteries under distension and compression. To simulate distension and compression, we placed a diastolic-arrested heart in a Lucite box, where both the intravascular pressure and external (box) pressure were varied independently and expressed as a pressure difference (DeltaP = intravascular pressure - box pressure). The DeltaP-cross-sectional area relationship of the first several generations of porcine coronary arteries and the DeltaP-volume relationship of the coronary arterial tree (vessels >0.5 mm in diameter) were determined using a video densitometric technique in the range of +150 to -150 mmHg. The vasodilated left anterior descending (LAD) coronary artery of six KCl-arrested hearts were perfused with iodine and 3% Cab-O-Sil. The intravascular pressure was varied in a triangular pattern, whereas the absolute cross-sectional area of each vessel and the total arterial volume were calculated using video densitometry under different box pressures (0, 50, 100, and 150 mmHg). In the range of positive DeltaP, we found that the compliance of the proximal LAD artery in situ (4.85 +/- 3.8 x 10-3 mm2/mmHg) is smaller than that of the same artery in vitro (16.5 +/- 6 x 10-3 mm2/mmHg; P = 0.009). Hence, the myocardium restricts the compliance of the epicardial artery under distension. In the negative DeltaP range, the LAD artery does not collapse, whereas the same vessel readily collapses when tested in vitro. Hence, we conclude that myocardial tethering prevents collapse of large blood vessel under compression.  相似文献   

16.
During one cardiac cycle, the volume encompassed by the pericardial sack in healthy subjects remains nearly constant, with a transient +/-5% decrease in volume at end systole. This "constant-volume" attribute defines a constraint that the longitudinal versus radial pericardial contour dimension relationship must obey. Using cardiac MRI, we determined the extent to which the constant-volume attribute is valid from four-chamber slices (two-dimensional) compared with three-dimensional volumetric data. We also compared the relative percentage of longitudinal versus radial (short-axis) change in cross-sectional area (dimension) of the pericardial contour, thereby assessing the fate of the +/-5% end-systolic volume decrease. We analyzed images from 10 normal volunteers and 1 subject with congenital absence of the pericardium, obtained using a 1.5-T MR scanner. Short-axis cine loop stacks covering the entire heart were acquired, as were single four-chamber cine loops. In the short-axis and four-chamber slices, relative to midventricular end-diastolic location, end-systolic pericardial (left ventricular epicardial) displacement was observed to be radial and maximized at end systole. Longitudinal (apex to mediastinum) pericardial contour dimension change and pericardial area change on the four-chamber slice were negligible throughout the cardiac cycle. We conclude that the +/-5% end-systolic decrease in the volume encompassed by the pericardial sack is primarily accounted for by a "crescent effect" on short-axis views, manifesting as a nonisotropic radial diminution of the pericardial/epicardial contour of the left ventricle. This systolic drop in cardiac volume occurs primarily at the ventricular level and is made up during the subsequent diastole when blood crosses the pericardium in the pulmonary venous Doppler D wave during early rapid left ventricular filling.  相似文献   

17.
In previous works we demonstrated that 2-methyl-1,4-naphthoquinone (menadione) causes a marked increase in the force of contraction of guinea pig and rat isolated atria. This inotropic effect was significantly higher in the guinea pig than in the rat and was strictly related to the amount of superoxide anion (O(2)(*-)), generated as a consequence of cardiac menadione metabolism through mitochondrial NADH-ubiquinone oxidoreductase. The present study was designed to further elucidate the basis of these quantitatively different positive inotropic responses. To this purpose, we measured O(2)(*-) and hydrogen peroxide (H(2)O(2)) produced by mitochondria isolated from guinea pig and rat hearts in the presence of 20 microM menadione. Moreover, we evaluated the menadione detoxification activity (DT-diaphorase) and the antioxidant defences of guinea pig and rat hearts, namely their GSH/GSSG content, Cu/Zn- and Mn-dependent superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (Gpx) activities. Our results indicate that DT-diaphorase activity and glutathione levels were similar in both animal species. By contrast, guinea pig mitochondria produced greater amounts of O(2)(*-) and H(2)O(2) than those of rat heart. This is probably due to both the higher Mn-SOD activity (2.93 +/- 0.02 vs. 1.95 +/- 0.06 units/mg protein; P < 0.05) and to the lower Gpx activity (10.09 +/- 0.30 vs. 32.67 +/- 1.02 units/mg protein; P < 0.001) of guinea pig mitochondria. A lower CAT activity was also observed in guinea pig mitochondria (2.40 +/- 0.80 vs. 6.13 +/- 0.20 units/mg protein; P < 0.01). Taken together, these data provide a rational explanation for the greater susceptibility of guinea pig heart to the toxic effect of menadione: because of the greater amount of O(2)(*-) generated by the quinone and the higher mitochondrial Mn-SOD activity, guinea pig heart is exposed to more elevated concentrations of H(2)O(2) that is less efficiently detoxified, because of lower Gpx and CAT levels of mitochondria.  相似文献   

18.
慢性低氧对豚鼠右室心肌细胞钙、钾电流的影响   总被引:2,自引:0,他引:2  
Bie BH  Zhang ZX  Xu YJ  Yue YK  Tang M 《生理学报》1999,51(5):527-532
采用全细胞膜片箝技术,分别记录并比较正常对照组与慢性低氧组豚鼠单个右室心肌细胞的膜电容、L型钙电流和延迟整流钾电流峰值和电流-电压关系曲线,以探讨慢性低氧对豚鼠右室心肌细胞L型钙电流和延迟整流钾电流的影响。结果表明,上述两组细胞膜电容分别为(155±13.2)pF、(179±14,8)pF,低氧组显著大于正常对照组(P<0.01);L型钙电流峰值分别为(1.07±0.21)nA和(0.99±0.17)nA,两组之间无显著差异;在-20mV至+20mV,慢性低氧组L型钙电流密度较正常对照组显著下降(P<0.05)。在+月mV至+60mV之间,慢性低氧组豚鼠右室心肌细胞延迟整流钾电流幅度均小于正常对照组;在-20mV至+60mV之间,慢性低氧组豚鼠右室心肌细胞延迟整流钾电流密度明显低于正常对照组。可见慢性低氧能使豚鼠右室心肌细胞膜电容增加,L型钙电流幅度不变,但L型钙电流密度下降;同时慢性低氧降低豚鼠右室心肌细胞延迟整流钾电流幅度和密度。  相似文献   

19.
Cardiac MRI is an accurate, noninvasive modality for assessing the structure and function of the murine heart. In addition to conventional imaging, MRI tissue tracking methods can quantify numerous aspects of myocardial mechanics, including intramyocardial displacement, strain, twist, and torsion. In the present study, we developed and applied a novel pulse sequence based on displacement-encoded imaging using stimulated echoes (DENSE) that achieves multislice coverage, high spatial resolution, and three-dimensional (3D) displacement encoding. With the use of this technique, myocardial mechanics of C57Bl/6 mice were measured at baseline and 1 day after experimental myocardial infarction. At baseline, the mean systolic transmural circumferential strain was -0.14 +/- 0.02 and the mean systolic radial strain was 0.30 +/- 0.05. Changes in circumferential and radial strains from the subepicardium to the subendocardium were detected at baseline (P < 0.05). One day after infarction, significantly reduced 3D displacements and strain were detected in infarcted and noninfarcted myocardium. Infarction also reduced normalized systolic torsion from its baseline value of 1.35 +/- 0.27 degrees /mm (R = 0.99) to 0.07 +/- 0.54 degrees /mm (R = 0.96, P < 0.05). DENSE MRI can assess the 3D myocardial mechanics of the murine heart in <1 h of scan time at 4.7 T and may be applied to studies of myocardial mechanics in genetically engineered mice.  相似文献   

20.
This report is intended as an overview of the distribution, origin and sensitivity to capsaicin of substance P-immunoreactive (SP-I) primary afferent cardiac nerves. Immunohistochemical and physiological methods were employed to compare the presence and density of these nerve fibers in the guinea pig and rat hearts. SP-I fibers are numerous in the guinea pig heart including the parietal pericardium, atria, ventricles, valves, coronary arteries and around intrinsic cardiac ganglion cells. The rat heart contains few SP-I fibers. Vagotomy does not influence the number of intensity of immunoreactive fibers in the guinea pig heart. By stimulating the atrium or ventricle and recording from the second or third thoracic dorsal roots Ad1, Ad2 and C fibers were demonstrated in the atria, but only Ad fibers in the guinea pig ventricle; in addition, only Ad fibers were recorded from the vagus nerves. Only Ad1 fibers were demonstrated in the rat heart. Treatment with capsaicin depletes the SP-I and decreases the conduction velocity of C-fibers and some Ad2 fibers in the guinea pig heart. We suggest that SP-I primary afferent nerve fibers are unmyelinated (C-type) or small myelinated (Ad2-type) nerves in the guinea pig heart and that their cell bodies of origin are predominantly in dorsal root ganglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号