首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The only characteristic symptom produced by Verticillium albo-atrum and V. dahliae in infected potato plants is unilateral chlorosis and necrosis: this was not shown until the approach of host maturity, and was distinguishable from symptoms of natural senescence only in its slightly earlier expression. Of six species of Verticillium tested against potato (King Edward), V. albo-atrum, V. dahliae, V. nigrescens and V. nubilum were pathogenic (all produced ‘wilt’ symptoms and relative virulence was in that decreasing order) but V. tricorpus and V. lateritium did not induce disease. Isolates of V. albo-atrum and V. dahliae, obtained from a number of other host plants, were also pathogenic to potato. Possible reasons are given for the fewness of records of ‘Early dying’ disease (Verticillium wilt) of potatoes in the field.  相似文献   

2.
Accurate species identification is essential for effective plant disease management, but is challenging in fungi including Verticillium sensu stricto (Ascomycota, Sordariomycetes, Plectosphaerellaceae), a small genus of ten species that includes important plant pathogens. Here we present fifteen PCR assays for the identification of all recognized Verticillium species and the three lineages of the diploid hybrid V. longisporum. The assays were based on DNA sequence data from the ribosomal internal transcribed spacer region, and coding and non-coding regions of actin, elongation factor 1-alpha, glyceraldehyde-3-phosphate dehydrogenase and tryptophan synthase genes. The eleven single target (simplex) PCR assays resulted in amplicons of diagnostic size for V. alfalfae, V. albo-atrum, V. dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii, V. nonalfalfae, V. nubilum, V. tricorpus, V. zaregamsianum, and Species A1 and Species D1, the two undescribed ancestors of V. longisporum. The four multiple target (multiplex) PCR assays simultaneously differentiated the species or lineages within the following four groups: Verticillium albo-atrum, V. alfalfae and V. nonalfalfae; Verticillium dahliae and V. longisporum lineages A1/D1, A1/D2 and A1/D3; Verticillium dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii and V. tricorpus; Verticillium isaacii, V. klebahnii and V. tricorpus. Since V. dahliae is a parent of two of the three lineages of the diploid hybrid V. longisporum, no simplex PCR assay is able to differentiate V. dahliae from all V. longisporum lineages. PCR assays were tested with fungal DNA extracts from pure cultures, and were not evaluated for detection and quantification of Verticillium species from plant or soil samples. The DNA sequence alignments are provided and can be used for the design of additional primers.  相似文献   

3.
Verticillium wilt disease of potato is caused predominantly by Verticillium albo-atrum and V. dahliae. StVe1 —a putative QTL for resistance against V. dahliae —was previously mapped to potato chromosome 9. To develop allele-specific, SNP-based markers within the locus, the StVe1 fragment from a set of 30 North American potato cultivars was analyzed. Three distinct and highly diverse haplotypes can be distinguished at the StVe1 locus. These were detected in 97%, 33%, and 10% of the cultivars analyzed. We tested for haplotype association and for genetic linkage between the StVe1 haplotypes and resistance of tetraploid potato to V. albo-atrum. Moreover, field resistance was assessed in diploid populations with known molecular linkage maps in order to identify novel QTLs. Resistance QTLs against V. albo-atrum were detected on four chromosomes (2, 6, 9, and 12) at the diploid level, with one QTL on chromosome 2 contributing over 40% to the total phenotypic variation of the trait. At the tetraploid level, a significant association between the StVe1-839-C haplotype and susceptibility to the disease was detected, suggesting that resistance-related genes directed against V. albo-atrum and V. dahliae are located in the same genomic region of chromosome 9. However, on the basis of the present analysis, we cannot determine whether these genes are closely linked or if a single gene provides resistance against both Verticillium species. To assess the usefulness of the StVe1-839-C haplotype for marker-assisted selection, we subjected the resistance data to Bayesian analysis, and calculated positive (0.65) and negative (0.75) predictive values, and overall predictive accuracy (0.72). Our results indicate that tagging of additional genes for resistance to Verticillium with molecular markers will be required for efficient marker-assisted selection.Communicated by M.-A. Grandbastien  相似文献   

4.
In 1998, Verticillium sp. (CE98Vt1 and CE98Vt2) were isolated from discolored vascular structures of potato tubers sold at a market in Chiba Prefecture. These isolates were identified as Verticillium tricorpus on the basis of cultural and morphological characteristics and PCR diagnosis. This observed vascular discoloration of the potato tuber was demonstrated in three cultivars (Touya, Toyoshiro, and Waseshiro) among eight cultivars by inoculation to seedlings. External and internal symptoms of these isolates were not distinct in potato plants. The virulence of these isolates to potato was very low as compared with Verticillium dahliae. These two isolates were not pathogenic to Chinese cabbage, eggplant, green pepper, larkspur, parsley, snapdragon, soybean, tobacco, and tomato. This is the first report of V. tricorpus from potato in Japan.  相似文献   

5.
An account is given of several biochemical and physiological techniques which were evaluated as tools to assist in identification of different strains of five species in Verticillium section Nigrescentia, including the important pathogens V. albo-atrum and V. dahliae. Although many of the tests gave results that varied between individual strains of the same species certain enzymatic activity tests provide a means of characterising the individual species studied.  相似文献   

6.
A collection of 24 isolates of Verticillium dahliae, 11 isolates of V. longisporum and one isolate of V. albo‐atrum originating from different host plants and geographical regions was tested for genetic variability by random amplified polymorphic DNA‐polymerase chain reaction (RAPD–PCR). Based on nine primers, the three Verticillium species could be clearly differentiated. Likewise, this analysis provided a distinct separation of vegetative compatibility groups (VCG) 2B, 4A and 4B of V. dahliae by specific DNA banding patterns. Additionally, V. longisporum was found to segregate into two subgroups with only 88% similarity. This molecular‐genetic approach was used for the analysis of randomly selected Verticillium isolates from a field with high intensity of oilseed rape cultivation (33% in crop rotation). RAPD‐PCR analysis revealed that 95 of 100 isolates tested belonged to V. longisporum and 5 to VCG 2B of V. dahliae. This study demonstrates an adaptation of Verticillium soil populations to a specific cropping history.  相似文献   

7.
Two isolates (CVd‐WHw and CVn‐WHg) recovered from Verticillium‐wilt‐symptomatic cotton grown in Hubei Province of China were identified based on their morphology, growth characteristics in culture, specific amplification and identification of internal transcribed spacer (ITS) rDNA sequence. According to the morphological characteristics, specific PCR amplification and ITS sequences, CVd‐WHw was identified as V. dahliae and CVn‐WHg as Gibellulopsis nigrescens. In bioassays, the two isolates had significantly lower pathogenicity to cotton plant than V. dahliae isolate CVd‐AYb. Cotton pre‐inoculated with isolate CVn‐WHg or CVd‐WHw exhibited reduced disease indices of Verticillium wilt compared with those inoculated with CVd‐AYb alone. Cotton co‐inoculated with CVn‐WHg or CVd‐WHw and CVd‐AYb provided increased protection from subsequent CVd‐AYb inoculation. These results suggest that the two isolates have the potential to be developed as biocontrol agents for the control of Verticillium wilt in cotton. To our knowledge, this is the first report of a cross‐protection phenomenon using Gibellulopsis nigrescens against Verticillium wilt caused by V. dahliae on cotton.  相似文献   

8.
Verticillium wilt of oilseed rape is caused by the host-adapted pathogen Verticillium longisporum comb. nov. With one set of nuclear SSU-rRNA gene primers, a PCR amplification product of ca. 2.5 kb was generated from all isolates of V. longisporum tested (36 from Europe, Japan, and USA), with the exception of two recombinant isolates. On the contrary, all the other phytopathogenic and non-phytopathogenic species of Verticillium tested (18 species, 46 isolates), with the exception of one isolate of V. lecanii and two of Cordyceps sp., generated a product of ca. 1.65 kb. Sequence analysis of the SSU-rRNA gene of two typical isolates of V. longisporum (wild radish, Japan, and oilseed rape, Germany) revealed that this dimorphism was due to the presence of an identical 839-bp intron located in a highly conserved insertion position (nt 1165 of Saccharomyces cerevisiae). The intron sequence was classified as group-I intron on the basis of conserved sequence and secondary structural elements. Primers designed from the 839-bp intron sequence amplified only the V. longisporum. Phylogenetic analysis based on SSU-rDNA sequences showed that V. longisporum was closely related to the genera of other filamentous Ascomycetes with fruiting bodies. Received: 24 August 2000 / Accepted: 25 September 2000  相似文献   

9.
Verticillium dahliae but not V. albo-atrum Berth was isolated from eight out of twenty-one stone fruit orchards surveyed for Verticillium wilt disease in western New York. Wilt incidence was related to the cultivation of tomato or legumes as previous or inter-crop with stone fruit trees. A limited cross species inoculation using isolates of V. albo-atrum and V. dahliae from woody and herbaceous plants showed that peach and cherry were susceptible to both species. The effect of V. dahliae on growth of cherry seedlings in the presence of Tylenchorynchus claytoni, Pratylenchus penetrans and Meloidogyne hapla was compared. P. penetrans and M. hapla produced more severe growth reduction than T. claytoni. The adverse effect of Verticillium on the growth of cherry seedlings was greater acting together with any one of the three nematodes than acting alone. V. dahliae was shown to be capable of passage through earthworms without loss of infectivity.  相似文献   

10.
A close relationship was established between the virulence in the field of six isolates of Verticillium and their ability to penetrate and colonize sterile tomato seedlings grown in culture. The highly pathogenic species V. albo-atrum and V. tricorpus rapidly colonized host tissue in culture, host reactions being absent or only slight. V. nigrescens and V. nubilum, mild pathogens, penetrated sterile roots more slowly and caused host reactions. The variation in pathogenicity in the field between two isolates of V. dahliae suggests that they are different physiological strains, but they induced no difference during the first stages of invasion-reaction of sterile seedlings. Hyaline variants of all these isolates were less pathogenic than the original parent types. Variations in temperature from 25° C. (near optimum for the growth of both tomato plants and the fungi) caused changes in host reactions. Ability to penetrate was not affected within the pH range 4.0–8.0, but at extreme values (3.2, 9.4 and 10.0) all isolates entered without any host reaction. Variations in nitrogen supply to the pathogens induced modifications in their ability to penetrate, whereas changes in supply of nitrogen to the seedlings had no apparent effect upon host/parasite relations. The effects of simultaneous contact of non-pathogenic and pathogenic isolates with seedling roots suggested that resistance of host tissue was controlled by the growing tip.  相似文献   

11.
Although the isolation of Verticillium albo-atrum and V. dahliae from soil and dried moribund stems following infection of a potato crop proved extremely difficult, both fungi were equally capable of overwintering in these substrates and of inducing disease in a subsequently planted susceptible crop. In the absence of a susceptible crop some weed species became colonized. The two species, however, appeared to differ in their capacity for survival both beneath a monocotyledonous crop and within the potato tubers. Colonization of the roots of wheat, barley, oats, rye and maize was observed with V. dahliae but not with V. albo-atrum. The latter appeared to be capable of prolonged survival in the tubers, whereas V. dahliae did not remain viable in storage over winter. Consequently only tubers infected with V. albo-atrum produced infected plants. The presence of the fungi within the tubers affected neither dormancy nor the initial development of the sprouts. Some correlation was noted between tuber size, the percentage of tubers infected, the distribution of V. albo-atrum within the tubers and the development of disease in plants subsequently grown from these tubers.  相似文献   

12.
A collection of 24 isolates of Verticillium dahliae and 10 isolates of Verticillium longisporum originating from nine different host plants and from several geographic regions was tested for host specificity on 11 economically important crops such as potato, tomato, strawberry, linseed, three legumes and four Brassica species. In order to reveal host specificity the potential of each isolate to induce disease and affect plant yield was recorded for all isolate–host combinations. The collected data were statistically processed by means of a cluster analysis. As a result, the host range of individual isolates was found to be more dependent on the vegetative compatibility group (VCG) of the isolate than on its original host plant provenance. Twenty‐two out of 24 V. dahliae isolates belonged to either VCG 2B or 4B. VCG 2B isolates showed specificity for legumes, strawberry, potato and linseed, whereas VCG 4B was specifically virulent on potato, strawberry and linseed. Subgroups within VCG 2B and 4B almost lacking any host preference were designated 2B* and 4B*. Three isolates from VCG 2B*, however, severely attacked tomato which is a host outside the authentic host range of VCG 2B. The pathogenicity of V. longisporum isolates was restricted to cruciferous hosts. Conversely, cruciferous plants were not affected by isolates from VCGs 2B and 4B of V. dahliae. This lack of cross‐infectivity of certain subpopulations of V. dahliae and of V. longisporum may be useful in the management of this soil‐borne wilt disease.  相似文献   

13.
Wilt caused by Verticillium dahliae significantly reduces cotton yields, as host resistance in commercially cultivated Gossypium species is lacking. Understanding the molecular basis of disease resistance in non‐commercial Gossypium species could galvanize the development of Verticillium wilt resistance in cultivated species. Nucleotide‐binding site leucine‐rich repeat (NBS‐LRR) proteins play a central role in plant defence against pathogens. In this study, we focused on the relationship between a locus enriched with eight NBS‐LRR genes and Verticillium wilt resistance in G. barbadense. Independent virus‐induced gene silencing of each of the eight NBS‐LRR genes in G. barbadense cultivar Hai 7124 revealed that silencing of GbaNA1 alone compromised the resistance of G. barbadense to V. dahliae isolate Vd991. In cultivar Hai 7124, GbaNA1 could be induced by V. dahliae isolate Vd991 and by ethylene, jasmonic acid and salicylic acid. Nuclear protein localization of GbaNA1 was demonstrated by transient expression. Sequencing of the GbaNA1 orthologue in nine G. hirsutum accessions revealed that all carried a non‐functional allele, caused by a premature peptide truncation. In addition, all 10 G. barbadense and nine G. hirsutum accessions tested carried a full‐length (~1140 amino acids) homologue of the V. dahliae race 1 resistance gene Gbve1, although some sequence polymorphisms were observed. Verticillium dahliae Vd991 is a non‐race 1 isolate that lacks the Ave1 gene. Thus, the resistance imparted by GbaNA1 appears to be mediated by a mechanism distinct from recognition of the fungal effector Ave1.  相似文献   

14.
The acrylamide gel electrophoretic patterns of esterases and phosphatases are not helpful in the identification ofVerticillium dahliae andV. albo-atrum. Protein profiles of wild-type isolates of the two species show bands characteristic to each species. For the genus, nine characteristic bands were detected; these remained in natural variants, but in ultraviolet variants only six of them persisted. Of the three bands characteristic ofV. dahliae, only one persisted in natural and in ultraviolet variants.V. albo-atrum showed two characteristic bands. Immunoelectrophoretic analysis reveals the existence of greater intra-specific affinities than at the inter-specific level. Variants from one isolate have immunoelectrophoretic constituents similar to those of the parent and can be identified employing these criteria. Both acrylamide gel electrophoresis and immunoserology, however, affirm the close genetic relationship of the two form-species.  相似文献   

15.
16.
Twenty-two isolates ofVerticillium dahliae, which were isolated from green soybeean (Glycine max), udo (Aralia cordata), horseradish (Cochlearia armoracia), sweetpea (Lathyrus odoratus), or a weed (Chenopodium album) were used in this study. Conidia and microsclerotia of these isolates were morphologically identical with those ofV. dahliae but did not coincide withV. longisporum. Pathogenicity tests showed that these isolates were of weak pathotype. Eleven of the 22 isolates, which were obtained from green soybean and udo, were pathogenic to green soybeans. Thus pathotype E was composed of two groups: ‘soybean pathotype’ which was pathogenic to green soybeans; and isolates nonpathogenic to green soybeans. The latter were defined as isolates of pathotype E in the narrow sense. Selected representativenit1 and NitM mutants of eachV. dahliae isolate were paired with VCGJ testers. Fourteen isolates ofV. dahliae (So1, So22, So23, So27, So28, So39, So40, So41, U54, U68, U69, U90, U95, and U115) showed complementary reactions with subgroups J1 and J3 and were assigned to subgroup J3. Isolate U108 was assigned to subgroup J2. Isolate HR1 was not compatible with any testers of VCGJ. With this exception, isolates of pathotype E in the narrow sense and those of ‘soybean pathotype’ were thus assigned to known VCGJ subgroups and did not form a unique group corresponding to their pathotype. ‘Soybean pathotype’ could not be distinguished among isolates of pathotype E by vegetative compatibility.  相似文献   

17.
The recent revision of Verticillium sect. Prostrata led to the introduction of the genus Lecanicillium, which comprises the majority of the entomopathogenic strains. Sixty-five strains previously classified as Verticillium lecanii or Verticillium sp. from different geographical regions and hosts were examined and their phylogenetic relationships were determined using sequences from three mitochondrial (mt) genes [the small rRNA subunit (rns), the NADH dehydrogenase subunits 1 (nad1) and 3 (nad3)] and the ITS region. In general, single gene phylogenetic trees differentiated and placed the strains examined in well-supported (by BS analysis) groups of L. lecanii, L. longisporum, L. muscarium, and L. nodulosum, although in some cases a few uncertainties still remained. nad1 was the most informative single gene in phylogenetic analyses and was also found to contain group I introns with putative open reading frames (ORFs) encoding for GIY–YIG endonucleases. The combined use of mt gene sequences resolved taxonomic uncertainties arisen from ITS analysis and, alone or in combination with ITS sequences, helped in placing uncharacterised Verticillium lecanii and Verticillium sp. firmly into Lecanicillium species. Combined gene data from all the mt genes and all the mt genes and the ITS region together, were very similar. Furthermore, a relaxed correlation with host specificity—at least for Homoptera—was indicated for the rns and the combined mt gene sequences. Thus, the usefulness of mt gene sequences as a convenient molecular tool in phylogenetic studies of entomopathogenic fungi was demonstrated.  相似文献   

18.
Verticillium wilt of potato is a persistent problem in the USA and worldwide. The disease, which is caused primarily by the fungus Verticillium dahliae, is difficult to manage, causes yield losses, and contaminates soil for subsequent plantings. Control strategies based on host resistance are seen as long-term, stable solutions, but difficult to achieve given the genetic nature of the host and the challenges associated with resistance evaluations. To provide breeders with marker-assisted selection opportunities, we generated a pair of cleaved amplified polymorphic sequence molecular markers within the coding region of Ve2, a potato gene with homology to the tomato Ve1 gene that confers resistance to V. dahliae. The position of the marker was determined according to the consensus sequences of Ve2 homologs of wild Solanum species with resistance to V. dahliae. Marker testing indicated their broad applicability, being able to track the resistance to V. dahliae in progeny containing genetic information derived from species S. chacoense, S. brevicaule, S. berthaultii, S. tarijense, and S. tuberosum. Furthermore, the two isolates of V. dahliae used in our inoculation experiments differed in virulence and demonstrated specificity for some wild potato species. Experimentation leading to the development of the markers and tests of their usefulness against a wide range of diploid potato germplasm is presented.  相似文献   

19.
Verticillium wilt of the hop: the survival of V. albo-atrum in soil   总被引:1,自引:0,他引:1  
Verticillium albo-atrum was apparently eradicated from soil in which dicotyledonous plants were suppressed. In one field experiment V. albo-atrum was not recovered after 4 years of weed-free grass cover; in the same period soil infectivity reduced to very low levels under two bare fallow treatments. Where weeds developed after single annual cultivations soil infectivity declined from the initially high level but finally increased. In three observation trials in which hop plants were used to detect V. albo-atrum after grass-cover treatments, soil infectivity was very low after 2 years and apparently nil after 3–5 years. Grass cover effectively stabilizes infested soil; it may be used for limiting spread from primary disease outbreaks, and also as a short-term treatment to reduce the infectivity of soil to be re-planted with resistant varieties. The frequent incidence of V. dahliae hop infections in one trial indicated that this fungus was not amenable to control by grass cover treatment and hence may be ecologically distinct from V. albo-atrum.  相似文献   

20.
Verticillium dahliae race-2 can invade the resistant cultivars of tomato possessing theVe gene. This new race was recently found in several regions in Japan, and 10 isolates ofV. dahliae race-2 from these regions were used in our study. Pathogenicity tests identified these isolates as the tomato pathotype (B). We examined the vegetative compatibility of 8 of these 10 Japanese isolates ofV. dahliae race-2 to estimate their genetic relatedness with the testers of Japanese vegetative compatibility group previously proposed (VCGJ) usingnit mutants. Compatiblenit1 and NitM mutants were obtained from allV. dahliae race-2 isolates. Selected representativenit1 and NitM mutants of eachV. dahliae race-2 isolates were paired with VCGJ testers. All isolates ofV. dahliae race-2 showed a strong reaction with VCGJ2, i.e., tomato pathotype. All isolates ofV. dahliae race-2 except for isolate To22 reacted weakly to VCGJ1 and J3. Japanese isolates ofV. dahliae race-2 were assigned as VCGJ2 and were hence vegetatively closely related with those ofV. dahliae race-1. The origin of Japanese isolates ofV. dahliae race-2 was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号