首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A hallmark of prion diseases in mammals is a conformational transition of the cellular prion protein (PrP(C)) into a pathogenic isoform termed PrP(Sc). PrP(C) is highly conserved in mammals, moreover, genes of PrP-related proteins have been recently identified in fish. While there is only little sequence homology to mammalian PrP, PrP-related fish proteins were predicted to be modified with N-linked glycans and a C-terminal glycosylphosphatidylinositol (GPI) anchor. We biochemically characterized two PrP-related proteins from zebrafish in cultured cells and show that both zePrP1 and zeSho2 are imported into the endoplasmic reticulum and are post-translationally modified with complex glycans and a C-terminal GPI anchor.  相似文献   

2.
Prion diseases form a group of neurodegenerative disorders with the unique feature of being transmissible. These diseases involve a pathogenic protein, called PrP(Sc) for the scrapie isoform of the cellular prion protein (PrP(C)) which is an abnormally-folded counterpart of PrP(C). Many questions remain unresolved concerning the function of PrP(C) and the mechanisms underlying prion replication, transmission and neurodegeneration. PrP(C) is a glycosyl-phosphatidylinositol-anchored glycoprotein expressed at the cell surface of neurons and other cell types. PrP(C) may be present as distinct isoforms depending on proteolytic processing (full length and truncated), topology(GPI-anchored, transmembrane or soluble) and glycosylation (non- mono- and di-glycosylated). The present review focuses on the implications of PrP(C) glycosylation as to the function of the normal protein, the cellular pathways of conversion into PrP(Sc), the diversity of prion strains and the related selective neuronal targeting.  相似文献   

3.
The phenotype of human sporadic prion diseases is affected by patient genotype at codon 129 of the prion protein (PrP) gene, the site of a common methionine/valine polymorphism, and by the type of the scrapie PrP (PrP(Sc)), which likely reflects the prion strain. However, two distinct disease phenotypes, identified as sporadic Creutzfeldt-Jakob disease (M/M2 sCJD) and sporadic fatal insomnia (sFI), share methionine homozygosity at codon 129 and PrP(Sc) type 2. One-dimensional gel electrophoresis and immunoblotting reveal no difference between the M/M2 sCJD and sFI species of PrP(Sc) in gel mobility and glycoform ratio. In contrast, the two-dimensional immunoblot demonstrates that in M/M2 sCJD the full-length PrP(Sc) form is overrepresented and carries glycans that are different from those present in the PrP(Sc) of sFI. Because the altered glycans are detectable only in the PrP(Sc) and not in the normal or cellular PrP (PrP(C)), they are likely to result from preferential conversion to PrP(Sc) of rare PrP(C) glycoforms. This is the first evidence that a qualitative difference in glycans contributes to prion diversity.  相似文献   

4.
Prion diseases like Creutzfeldt-Jakob disease in humans, Scrapie in sheep or bovine spongiform encephalopathy are fatal neurodegenerative diseases, which can be of sporadic, genetic, or infectious origin. Prion diseases are transmissible between different species, however, with a variable species barrier. The key event of prion amplification is the conversion of the cellular isoform of the prion protein (PrP(C)) into the pathogenic isoform (PrP(Sc)). We developed a sodiumdodecylsulfate-based PrP conversion system that induces amyloid fibril formation from soluble α-helical structured recombinant PrP (recPrP). This approach was extended applying pre-purified PrP(Sc) as seeds which accelerate fibrillization of recPrP. In the present study we investigated the interspecies coherence of prion disease. Therefore we used PrP(Sc) from different species like Syrian hamster, cattle, mouse and sheep and seeded fibrillization of recPrP from the same or other species to mimic in vitro the natural species barrier. We could show that the in vitro system of seeded fibrillization is in accordance with what is known from the naturally occurring species barriers.  相似文献   

5.
The conversion of the normal cellular prion protein (PrP(C)) into the abnormal scrapie isoform (PrP(Sc)) is a key feature of prion diseases. The pathogenic mechanisms and the subcellular sites of the conversion are complex and not completely understood. In particular, little is known on the role of the early compartment of the secretory pathway in the processing of PrP(C) and in the pathogenesis of prion diseases. In order to interfere with the intracellular traffic of endogenous PrP(C) we have generated two anti-prion single chain antibody fragments (scFv) directed against different epitopes, each fragment tagged either with a secretory leader or with the ER retention signal KDEL. The stable expression of these constructs in PC12 cells allowed us to study their specific effects on the synthesis, maturation, and processing of endogenous PrP(C) and on PrP(Sc) formation. We found that ER-targeted anti-prion scFvs retain PrP(C) in the ER and inhibit its translocation to the cell surface. Retention in the ER strongly affects the maturation and glycosylation state of PrP(C), with the appearance of a new aberrant endo-H sensitive glycosylated species. Interestingly, ER-trapped PrP(C) acquires detergent insolubility and proteinase K resistance. Furthermore, we show that ER-targeted anti-prion antibodies prevent PrP(Sc) accumulation in nerve growth factor-differentiated PC12 cells, providing a new tool to study the molecular pathology of prion diseases.  相似文献   

6.
Conversion of the cellular isoform of the prion protein (PrP(C)) into the disease-associated isoform (PrP(Sc)) plays a key role in the development of prion diseases. Within its cellular pathway, PrP(C) undergoes several posttranslational modifications, i.e., the attachment of two N-linked glycans and a glycosyl phosphatidyl inositol (GPI) anchor, by which it is linked to the plasma membrane on the exterior cell surface. To study the interaction of PrP(C) with model membranes, we purified posttranslationally modified PrP(C) from transgenic Chinese hamster ovary (CHO) cells. The mono-, di- and oligomeric states of PrP(C) free in solution were analyzed by analytical ultracentrifugation. The interaction of PrP(C) with model membranes was studied using both lipid vesicles in solution and lipid bilayers bound to a chip surface. The equilibrium and mechanism of PrP(C) association with the model membranes were analyzed by surface plasmon resonance. Depending on the degree of saturation of binding sites, the concentration of PrP(C) released from the membrane into aqueous solution was estimated at between 10(-9) and 10(-7) M. This corresponds to a free energy of the insertion reaction of -48 kJ/mol. Consequences for the conversion of PrP(C) to PrP(Sc) are discussed.  相似文献   

7.
Transmissible spongiform encephalopathies form a group of fatal neurodegenerative disorders that have the unique property of being infectious, sporadic, or genetic in origin. Although some doubts remain on the nature of the responsible agent of these diseases, it is clear that a protein called PrP(Sc) (which stands for the scrapie isoform of the prion protein) has a central role in their pathology. PrP(Sc) represents a conformational variant of a normal protein of the host: the cellular isoform of the prion protein, or PrP(C). Compounds such as glycosaminoglycans and Congo red (CR) have been shown to interfere with both in vitro and in vivo PrP(Sc) formation. It was hypothesized that CR acts by overstabilizing the conformation of PrP(Sc) molecules or by modifying trafficking of PrP(C). Using transfected cells expressing 3F4-tagged mouse PrPs, we show here that CR does not interfere with conversion of PrP molecules carrying pathogenic mutations. On the contrary, after incubation with the drug, some of their properties, such as insolubility and protease resistance, are enhanced and are even acquired by the wild-type molecule. This last observation suggests an alternative mechanism of action of CR and leads us to reconsider the relationship between the biochemical properties of PrP and conformational alteration of the protein.  相似文献   

8.
Prion diseases are characterized by high accumulation of infectious prion proteins (PrP(Sc)) in brains. PrP(Sc) are propagated by the conversion of host-encoded cellular prion proteins (PrP(C)) which are essential for developing the disease but are heterogeneously expressed in brains. The disease can be transmitted to humans and animals through blood and blood products, however, little attention has been given to molecular characterization of PrP(C) in blood cells. In this presented study, we characterized phenotypically PrP(C) of platelets (plt) and characterized the proteins regarding their glycobanding profiles by quantitative immunoblotting using a panel of monoclonal antibodies. The glycosylation patterns of plt and brain PrP(C) were compared using the ratios of di-, mono-, and non-glycosylated prions. The detergent solubility of plt and brain PrP(C) was also analyzed. The distinct banding patterns and detergent solubility of plt PrP(C) differed clearly from the glycosylation profiles and solubility characteristics of brain PrP(C). Plt PrP(C) exhibited single or only few prion protein types, whereas brain PrP(C) showed more extensive banding patterns and lower detergent solubility. Plt PrP(C) are post-translational modified differently from PrP(C) in brain. These findings suggest other or less physiological functions of plt PrP(C) than in brain.  相似文献   

9.
Conversion of the cellular prion protein (PrP(C)) into the abnormal scrapie isoform (PrP(Sc)) is the hallmark of prion diseases, which are fatal and transmissible neurodegenerative disorders. ER-retained anti-prion recombinant single-chain Fv fragments have been proved to be an effective tool for inhibition of PrP(C) trafficking to the cell surface and antagonize PrP(Sc) formation and infectivity. In the present study, we have generated the secreted version of 8H4 intrabody (Sec-8H4) in order to compel PrP(C) outside the cells. The stable expression of the Sec-8H4 intrabodies induces proteasome degradation of endogenous prion protein but does not influence its glycosylation profile and maturation. Moreover, we found a dramatic diverting of PrP(C) traffic from its vesicular secretion and, most importantly, a total inhibition of PrP(Sc) accumulation in NGF-differentiated Sec-8H4 PC12 cells. These results confirm that perturbing the intracellular traffic of endogenous PrP(C) is an effective strategy to inhibit PrP(Sc) accumulation and provide convincing evidences for application of intracellular antibodies in prion diseases.  相似文献   

10.
The transformation of the cellular prion protein (PrP(C)) into the infectious form (PrP(Sc)) is implicated in the invariably fatal transmissible spongiform encephalopathies. To identify a mechanism to prevent the undesired PrP(C)-->PrP(Sc) transformation, we investigated the interactions of recombinant prion proteins with a number of potential therapeutic agents which inhibit the PrP(Sc) formation, infectivity, and the accumulation of the misfolded form. We show that the prion aggregates formed in the presence of six compounds have no beta-structure, which is typical of the infectious form, and possess considerably higher alpha-helical content than the normal PrP(C). The investigated compounds stimulate the formation of alpha-helices and the destruction of beta-structure. They prevent the transformation of alpha-helical structure into beta-sheets. Probably, this is the reason for the resistance to PrP(C)-->PrP(Sc) transformation in the presence of these compounds. The results may be useful for the future therapy of neurodegenerative diseases.  相似文献   

11.
Prion diseases are fatal neurodegenerative disorders, and the conformational conversion of normal cellular prion protein (PrP(C)) into its pathogenic, amyloidogenic isoform (PrP(Sc)) is the essential event in the pathogenesis of these diseases. Lactoferrin (LF) is a cationic iron-binding glycoprotein belonging to the transferrin (TF) family, which accumulates in the amyloid deposits in the brain in neurodegenerative disorders, such as Alzheimer's disease and Pick's disease. In the present study, we have examined the effects of LF on PrP(Sc) formation by using cell culture models. Bovine LF inhibited PrP(Sc) accumulation in scrapie-infected cells in a time- and dose-dependent manner, whereas TF was not inhibitory. Bioassays of LF-treated cells demonstrated prolonged incubation periods compared with non-treated cells indicating a reduction of prion infectivity. LF mediated the cell surface retention of PrP(C) by diminishing its internalization and was capable of interacting with PrP(C) in addition to PrP(Sc). Furthermore, LF partially inhibited the formation of protease-resistant PrP as determined by the protein misfolding cyclic amplification assay. Our results suggest that LF has multifunctional antiprion activities.  相似文献   

12.
Kuwata K  Li H  Yamada H  Legname G  Prusiner SB  Akasaka K  James TL 《Biochemistry》2002,41(41):12277-12283
A crucial step for transformation of the normal cellular isoform of the prion protein (PrP(C)) to the infectious prion protein (PrP(Sc)) is thought to entail a previously uncharacterized intermediate conformer, PrP*, which interacts with a template PrP(Sc) molecule in the conversion process. By carrying out (15)N-(1)H two-dimensional NMR measurements under variable pressure on Syrian hamster prion protein rPrP(90-231), we found a metastable conformer of PrP(C) coexisting at a population of approximately 1% at pH 5.2 and 30 degrees C, in which helices B and C are preferentially disordered. While the identity is still unproven, this observed metastable conformer is most logically PrP* or a closely related precursor. The structural characteristics of this metastable conformer are consistent with available immunological and pathological information about the prion protein.  相似文献   

13.
Prion diseases are progressive neurodegenerative diseases that are associated with the conversion of normal cellular prion protein (PrP(C)) to abnormal pathogenic prion protein (PrP(SC)) by conformational changes. Prion protein is a metal-binding protein that is suggested to be involved in metal homeostasis. We investigated here the effects of trace elements on the conformational changes and neurotoxicity of synthetic prion peptide (PrP106-126). PrP106-126 exhibited the formation of β-sheet structures and enhanced neurotoxicity during the aging process. The co-existence of Zn(2+) or Cu(2+) during aging inhibited β-sheet formation by PrP106-126 and attenuated its neurotoxicity on primary cultured rat hippocampal neurons. Although PrP106-126 formed amyloid-like fibrils as observed by atomic force microscopy, the height of the fibers was decreased in the presence of Zn(2+) or Cu(2+). Carnosine (β-alanyl histidine) significantly inhibited both the β-sheet formation and the neurotoxicity of PrP106-126. Our results suggested that Zn(2+) and Cu(2+) might be involved in the pathogenesis of prion diseases. It is also possible that carnosine might become a candidate for therapeutic treatments for prion diseases.  相似文献   

14.
Prions     
The discovery of infectious proteins, denoted prions, was unexpected. After much debate over the chemical basis of heredity, resolution of this issue began with the discovery that DNA, not protein, from pneumococcus was capable of genetically transforming bacteria (Avery et al. 1944). Four decades later, the discovery that a protein could mimic viral and bacterial pathogens with respect to the transmission of some nervous system diseases (Prusiner 1982) met with great resistance. Overwhelming evidence now shows that Creutzfeldt-Jakob disease (CJD) and related disorders are caused by prions. The prion diseases are characterized by neurodegeneration and lethality. In mammals, prions reproduce by recruiting the normal, cellular isoform of the prion protein (PrP(C)) and stimulating its conversion into the disease-causing isoform (PrP(Sc)). PrP(C) and PrP(Sc) have distinct conformations: PrP(C) is rich in α-helical content and has little β-sheet structure, whereas PrP(Sc) has less α-helical content and is rich in β-sheet structure (Pan et al. 1993). The conformational conversion of PrP(C) to PrP(Sc) is the fundamental event underlying prion diseases. In this article, we provide an introduction to prions and the diseases they cause.  相似文献   

15.
Infection by prions involves conversion of a host-encoded cell surface protein (PrP(C)) to a disease-related isoform (PrP(Sc)). PrP(C) carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrP(C) glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrP(Sc) and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrP(Sc), while PrP(C) with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrP(C), were able to form infectious PrP(Sc). Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection.  相似文献   

16.
Transmissible spongiform encepahalopathies (TSEs) are fatal diseases that damage the central nervous system. TSEs are unique in that they may be inherited, infectious or spontaneous. The central pathogenic agent is thought to be a conformationally distinct form (PrP(Sc;)) of the endogenous prion protein(PrP(c)), which is high in beta-sheet content and is resistant to proteases; infectivity is thought to involve formation of PrP(Sc) via imprinting of abnormal conformation on the normal form of the protein (PrP(c)) by seeds of PrP(Sc). A number of compounds found to inhibit the conversion of PrP(c) to PrP(Sc) have been proposed as therapeutics to halt TSEs.  相似文献   

17.
J Tatzelt  S B Prusiner    W J Welch 《The EMBO journal》1996,15(23):6363-6373
The fundamental event in prion diseases involves a conformational change in one or more of the alpha-helices of the cellular prion protein (PrP(C)) as they are converted into beta-sheets during the formation of the pathogenic isoform (PrP(Sc)). Here, we show that exposure of scrapie-infected mouse neuroblastoma (ScN2a) cells to reagents known to stabilize proteins in their native conformation reduced the rate and extent of PrP(Sc) formation. Such reagents include the cellular osmolytes glycerol and trimethylamine N-oxide (TMAO) and the organic solvent dimethylsulfoxide (DMSO), which we refer to as 'chemical chaperones' because of their influence on protein folding. Although the chemical chaperones did not appear to affect the existing population of PrP(Sc) molecules in ScN2a cells, they did interfere with the formation of PrP(Sc) from newly synthesized PrP(C). We suggest that the chemical chaperones act to stabilize the alpha-helical conformation of PrP(C) and thereby prevent the protein from undergoing a conformational change to produce PrP(Sc). These observations provide further support for the idea that prions arise due to a change in protein conformation and reveal potential strategies for preventing PrP(Sc) formation.  相似文献   

18.
A hallmark in prion diseases is the conformational transition of the cellular prion protein (PrP(C)) into a pathogenic conformation, designated scrapie prion protein (PrP(Sc)), which is the essential constituent of infectious prions. Here, we show that epigallocatechin gallate (EGCG) and gallocatechin gallate, the main polyphenols in green tea, induce the transition of mature PrP(C) into a detergent-insoluble conformation distinct from PrP(Sc). The PrP conformer induced by EGCG was rapidly internalized from the plasma membrane and degraded in lysosomal compartments. Isothermal titration calorimetry studies revealed that EGCG directly interacts with PrP leading to the destabilizing of the native conformation and the formation of random coil structures. This activity was dependent on the gallate side chain and the three hydroxyl groups of the trihydroxyphenyl side chain. In scrapie-infected cells EGCG treatment was beneficial; formation of PrP(Sc) ceased. However, in uninfected cells EGCG interfered with the stress-protective activity of PrP(C). As a consequence, EGCG-treated cells showed enhanced vulnerability to stress conditions. Our study emphasizes the important role of PrP(C) to protect cells from stress and indicate efficient intracellular pathways to degrade non-native conformations of PrP(C).  相似文献   

19.
The pathogenic isoform (PrP(Sc)) of the host-encoded cellular prion protein (PrP(C)) is considered to be an infectious agent of transmissible spongiform encephalopathy (TSE). The detailed mechanism by which the PrP(Sc) seed catalyzes the structural conversion of endogenous PrP(C) into nascent PrP(Sc) in vivo still remains unclear. Recent studies reveal that bacterially derived recombinant PrP (recPrP) can be used as a substrate for the in vitro generation of protease-resistant recPrP (recPrP(res)) by protein-misfolding cyclic amplification (PMCA). These findings imply that PrP modifications with a glycosylphosphatidylinositol (GPI) anchor and asparagine (N)-linked glycosylation are not necessary for the amplification and generation of recPrP(Sc) by PMCA. However, the biological properties of PrP(Sc) obtained by in vivo transmission of recPrP(res) are unique or different from those of PrP(Sc) used as the seed, indicating that the mechanisms mediated by these posttranslational modifications possibly participate in reproductive propagation of PrP(Sc). In the present study, using baculovirus-derived recombinant PrP (Bac-PrP), we demonstrated that Bac-PrP is useful as a PrP(C) substrate for amplification of the mouse scrapie prion strain Chandler, and PrP(Sc) that accumulated in mice inoculated with Bac-PrP(res) had biochemical and pathological properties very similar to those of the PrP(Sc) seed. Since Bac-PrP modified with a GPI anchor and brain homogenate of Prnp knockout mice were both required to generate Bac-PrP(res), the interaction of GPI-anchored PrP with factors in brain homogenates is essential for reproductive propagation of PrP(Sc). Therefore, the Bac-PMCA technique appears to be extremely beneficial for the comprehensive understanding of the GPI anchor-mediated stimulation pathway.  相似文献   

20.
The principal infectious and pathogenic agent in all prion disorders is a beta-sheet-rich isoform of the cellular prion protein (PrP(C)) termed PrP-scrapie (PrP(Sc)). Once initiated, PrP(Sc) is self-replicating and toxic to neuronal cells, but the underlying mechanisms remain unclear. In this report, we demonstrate that PrP(C) binds iron and transforms to a PrP(Sc)-like form (*PrP(Sc)) when human neuroblastoma cells are exposed to an inorganic source of redox iron. The *PrP(Sc) thus generated is itself redox active, and it induces the transformation of additional PrP(C), simulating *PrP(Sc) propagation in the absence of brain-derived PrP(Sc). Moreover, limited depletion of iron from prion disease-affected human and mouse brain homogenates and scrapie-infected mouse neuroblastoma cells results in 4- to 10-fold reduction in proteinase K (PK)-resistant PrP(Sc), implicating redox iron in the generation, propagation, and stability of PK-resistant PrP(Sc). Furthermore, we demonstrate increased redox-active ferrous iron levels in prion disease-affected brains, suggesting that accumulation of PrP(Sc) is modulated by the combined effect of imbalance in brain iron homeostasis and the redox-active nature of PrP(Sc). These data provide information on the mechanism of replication and toxicity by PrP(Sc), and they evoke predictable and therapeutically amenable ways of modulating PrP(Sc) load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号