首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Population dynamics of methane-oxidizing bacteria (MOB) was measured for 2 consecutive years for four forest and one savanna sites in seasonally dry tropical regions of India. The soils were nutrient-poor and well drained. These sites differed in vegetational cover and physico-chemical features of soils. There were significant differences in MOB population size during the 2 years (mean 0.40 and 0.48 x 10(5) cells g(-1) dry soil), and at different sites (mean 0.38-0.59 x 10(5) cells g(-1) dry soil). The mean population size of MOB was higher (P<0.05) in dry seasons than in the rainy season at all the sites. There was a significant season and site interaction, indicating that the effect of different seasons differed across the sites. There was a positive relation between soil moisture and MOB population size during summer (the driest period) and a negative relation during the rest of the year. The number of MOB was consistently higher for the Kotwa hill base site than rest of the sites having higher soil organic C and total N. The results suggested that in seasonally dry tropical forests the moisture, C and N status of the soil regulates the population size of MOB (methanotrophs) in the long term.  相似文献   

2.
Seasonal dynamics of N-mineralization and the size of the viable community of nitrifying bacteria were studied for a forest site and an adjoining cropland site. The forest site was dominated by Boswellia serrata and Acacia catechu in the tree layer, and by Nyctanthes arbortristis and Zizyphus glaberrima in the shrub layer. Crop sequence on the cropland site was Oryza sativa/Lens culinaris. The soil type in both the sites was ultisol (USDA). The cropland soil had significantly higher bulk density, and clay content but lower organic C, total N and total P than forest soil. The soil moisture content, numbers of ammonia-and nitrite oxidizing bacteria and N-mineralization rates were highest in the wet season and lowest in the dry season, while the size of mineral N and P pools showed a reverse trend in both sites. The numbers of free-living cells of ammonia-and nitrite oxidizing bacteria were significantly related with each other as well as with the soil moisture content and N-mineralization rates. In N-mineralization, NO 3 was the dominating form in the forest site during rainy season, while in other seasons in this site and in all the seasons in the cropland site, NH 4 + -N was predominant. The N-mineralization rate and the number of viable nitrifying cells were consistently higher for the forest soil compared to the clay-rich cropland soil. The combination of low soil organic matter and high clay content suppressed the number of free-living cells of nitrifying bacteria and N-mineralization rates in the cropland site.  相似文献   

3.
Abstract. Temporal variations in the spatial distribution of fine-root mass and nutrient concentrations were studied in recently harvested and mature bamboo savanna sites in the dry tropical Vindhyan region in India. The soil block method and root-free-soil cages were used to investigate fine-root dynamics. The mean annual fine-root biomass was 596 and 690 g/m2 in harvested and mature sites, respectively. The fine-root net production calculated by different methods ranged from 486 to 749 g m-2 yr-1 in the harvested site and 485 to 875 g m-2 yr1 in the mature site. All fine-root mass fractions decreased with increase in distance from the base of bamboo clumps, and the herb root mass showed the reverse trend. Bamboo fine roots were better developed in the 10 - 20 cm soil depth and those of herbs in the upper 10 cm. The ingrowth of fine roots in root-free-soil cages showed maximum biomass accumulation during the rainy season (64.2 - 69.9 g m-2 mo-1) and minimum in the summer (4.5 - 7.5 g m-2 mo-1). The fine-root nutrient concentrations were strongly related to their diameter. The fine-root nutrient concentrations varied considerably in different seasons. The highest nutrient concentrations in all categories were recorded in summer followed by winter and rainy seasons. Nutrient concentrations in live roots were always greater than those found in dead roots in different diameter classes. We suggest the occurrence of nutrient retranslocation from senescent roots to surviving roots in bamboo savanna. Fine roots in the bamboo savanna increased as a function of N-mineralization and nitrification rates. This tendency further increased after the harvest of bamboo, suggesting the crucial role of fine roots in the bamboo savanna after the harvesting of bamboo culms.  相似文献   

4.
5.
The occurrence of heterotrophic and autotrophic nitrifiers in Pahokee muck and the role of these organisms in the ecosystem were assessed by surveying their population densities under different field conditions and by observing the relationship of these populations with aerobic bacteria and soil moisture. Heterotrophic nitrifier populations varied from 2.0 × 105 to 3.8 × 106 bacteria per cm3 of muck in surface fallow (bare) Pahokee muck during the annual cycle. This population decreased 40-fold between the surface and the 60- to 70-cm depths of soil. Similar variations were noted with autotrophic nitrifier populations. Significant correlations were found between heterotrophic nitrifiers and both soil moisture and aerobic bacteria. These relationships did not exist for the autotrophic nitrifiers. In soil that had been heated to kill the autotrophic nitrifiers, while preserving a population of the heterotrophs, and then amended with sodium acetate or ammonium sulfate or both, no nitrate or nitrite accumulated, although significant increases in heterotrophic nitrifiers were detected. In unheated control soil, nitrate plus nitrite-N increased from 14.3 to 181 μg/g of wet soil, and 48 μg of nitrite-N per g was produced. These data suggest that the autotrophic nitrifiers were the sole population responsible for nitrification in Pahokee muck.  相似文献   

6.
Abstract The role of autotrophic and heterotrophic nitrifying microorganisms in the oxidation of atmospheric ammonium in two acid and one calcareous location of a Dutch woodland area was investigated. In soil slurries nitrate formation was completely inhibited by acetylene, a specific inhibitor of autotrophic ammonium-oxidizing bacteria. A survey of nitrifiers in the forest soils showed that both autotrophic ammonium- and nitrite-oxidizing bacteria were present in high numbers and evidence was obtained that autotrophic bacteria are able to nitrify below pH 4. These results show that autotrophic nitrifying bacteria may account for most of the nitrification in the examined soils. To assess the contribution of heterotrophic nitrifiers, about 200 strains of heterotrophic bacteria and 21 morphologically distinct fungal strains were isolated from the acid soil locations and tested for their ability to nitrify. Only one Penicillium strain produced nitrate in test media, but its nitrate formation when added to acid soils was poor. These findings indicate that in the investigated soil heterotrophs are of minor importance in the oxidation of atmospheric ammonium.  相似文献   

7.
This study determined nitrification activity and nitrifier community composition in soils under stands of red alder (Alnus rubra) and Douglas fir (Pseudotsuga menziesii) at two sites in Oregon. The H.J. Andrews Experimental Forest, located in the Cascade Mountains of Oregon, has low net N mineralization and gross nitrification rates. Cascade Head Experimental Forest, in the Coast Range, has higher net N mineralization and nitrification rates and soil pH is lower. Communities of putative bacterial [ammonia-oxidizing bacteria (AOB)] and archaeal [ammonia-oxidizing archaea (AOA)] ammonia oxidizers were examined by targeting the gene amoA, which codes for subunit A of ammonia monooxygenase. Nitrification potential was significantly higher in red alder compared with Douglas-fir soil and greater at Cascade Head than H.J. Andrews. Ammonia-oxidizing bacteria amoA genes were amplified from all soils, but AOA amoA genes could only be amplified at Cascade Head. Gene copy numbers of AOB and AOA amoA were similar at Cascade Head regardless of tree type (2.3-6.0 x 10(6)amoA gene copies g(-1) of soil). DNA sequences of amoA revealed that AOB were members of Nitrosospira clusters 1, 2 and 4. Ammonia-oxidizing bacteria community composition, determined by terminal restriction fragment length polymorphism (T-RFLP) profiles, varied among sites and between tree types. Many of the AOA amoA sequences clustered with environmental clones previously obtained from soil; however, several sequences were more similar to clones previously recovered from marine and estuarine sediments. As with AOB, the AOA community composition differed between red alder and Douglas-fir soils.  相似文献   

8.
研究了温度、水分和演替阶段及其交互作用对中亚热带丘陵红壤区森林土壤氮素矿化过程及其矿化速率的影响.结果表明:温度和演替阶段对土壤氨化速率影响显著,其中12 ℃<24℃<36 ℃,灌丛林和马尾松(Pinus massoniana)林低于常绿阔叶林(P<0.05);而水分的影响不显著.水分和演替阶段对土壤硝化速率有显著影响,土壤半饱和含水量高于自然含水量及饱和含水量,且马尾松林高于灌丛林(P<0.05);而温度的影响不显著.温度、水分和演替阶段对土壤氮净矿化速率的影响均显著,其中12 ℃<24 ℃<36 ℃,土壤半饱和含水量高于自然含水量和饱和含水量,灌丛林<马尾松林<常绿阔叶林(P<0.05).温度升高有利于提高土壤氨化速率和净矿化速率,温度过高则抑制土壤硝化速率;土壤含水量适中有利于土壤氮素矿化过程;顺行演替将提高土壤供氮能力,且抑制过强的硝化作用.  相似文献   

9.
Singh  J.S.  Singh  Smita  Raghubanshi  A.S.  Singh  Saranath  Kashyap  A.K.  Reddy  V.S. 《Plant and Soil》1997,196(1):115-121
Methane uptake was measured for two consecutive years for four forest and one savanna sites in a seasonally dry tropical region of India. The soils were nutrient-poor and well drained. These sites differed in vegetational cover and physico-chemical features of the soil. There were significant differences in CH4 consumption rates during the two years (mean 0.43 and 0.49 mg m-2 h-1), and at different sites (mean 0.36 to 0.57 mg m-2 h-1). The mean uptake rate was higher (P < 0.05) in dry seasons than in the rainy season at all the sites. There was a significant season and site interaction, indicating that the effect of different seasons differed across the sites. There was a positive relation between soil moisture and CH4 uptake rates during summer (the driest period) and a negative relation during the rest of the year. The results suggested that seasonally dry tropical forests are a strong sink for CH4, and C and N status of soils regulates the strength of the sink in the long term.  相似文献   

10.
11.
An agricultural soil was treated with dairy-waste compost, ammonium-sulfate fertilizer or no added nitrogen (control) and planted to silage corn for 6 years. The kinetics of nitrification were determined in laboratory-shaken slurry assays with a range of substrate concentrations (0-20 mM NH(4)(+)) over a 24-h period for soils from the three treatments. Determined concentrations of substrate and product were fit to Michaelis-Menten and Haldane models. For all the treatments, the Haldane model was a better fit, suggesting that significant nitrification inhibition may occur in soils under high ammonium conditions similar to those found immediately after fertilization or waste applications. The maximum rate of nitrification (V(max)) was significantly higher for the fertilized and compost-treated soils (1.74 and 1.50 mmol N kg(-1) soil day(-1)) vs. control soil (0.98 mmol kg(-1) soil day(-1)). The K(m) and K(i) values were not significantly different, with average values of 0.02 and 27 mM NH(4)(+), respectively. Our results suggest that both N sources increased nitrifier community size, but did not shift the nitrifier community structure in ways that influenced enzyme affinity or sensitivity to ammonium. The K(m) values are comparable to those determined directly in other soils, but are substantially lower than those from most pure cultures of ammonia-oxidizing bacteria.  相似文献   

12.
Species composition and herbage dynamics in relation to rainfall variability and cattle grazing were studied in permanently protected, grazed, and temporarily fenced treatments on three sites in a seasonally dry tropical savanna. Permanently protected sites, established between 1979 and 1984, were 55–79% similar with each other in species composition, and 14–25% similar with grazed sites during the period 1986–1988. Similarity among grazed sites was only 36–43%. Number of species was greater in the grazed treatment than in the permanently protected treatment. The percentages of annual grasses and non-leguminous forbs were greater in grazed savanna than in permanently protected savanna. Species diversity was higher in grazed savanna than in the corresponding permanently protected savanna. Species the two annual cycles studied, peak live shoot biomass was 614 g m-2 in permanently protected savanna, 109 g m-2 in grazed savanna, and 724 g m-2 in temporarily fenced savanna. Live shoot biomass in temporarily fenced savanna was 18 to 44% greater than in permanently protected savanna. Peak canopy biomass ranged from 342 to 700 g m-2 in permanently protected savanna. It was related with total rainy season rainfall, and was particularly sensitive to late rainy season rainfall. On the other hand, peak canopy biomass in grazed savanna ranged from 59 to 169 g m-2 and was related to grazing intensity rather than either total rainy season rainfall or late rainy season rainfall. Coefficient of variation of green biomass in permanently protected savanna was related with rainfall variability indicating it to be a pulsed system which responds quickly to rainfall events. Biomass of woody species ranged from 2466 to 5298 g m-2 in permanently protected savanna and from 744 to 1433 g m–2 in the grazed savanna. Green foliage biomass was 3.7 to 6.4% of the woody biomass in permanently protected and 5.6 to 5.9% in grazed savanna, and supplements substantially the fodder resource during the dry periods of the year.  相似文献   

13.
Nitrogen mineralization and nitrification were measured using in situ incubations for 12 periods of 1 month in a structurally complex rainforest with basaltic soil, and an adjacent structurally simple rainforest with less fertile soil formed on metamorphic rock. The study was undertaken near Lake Eacham on the Atherton Tableland in northeast Queensland. Cumulative nitrogen mineralization for 1 year did not differ between forests. It amounted to 265 ± 13 μg N g-1 oven dry soil at the upper position (0–7.5 cm) and 122 ± 11 μg N g-1 oven dry soil at the lower position (7.5–15 cm; mean ± s.e. for pooled data). Rates were highest during the wet season but were not strongly correlated with moisture content or temperature. Relative nitrification (cumulative nitrate-nitrogen production expressed as a percentage of cumulative nitrogen mineralization) at the upper position was significantly higher in the complex than the simple forest (100% c.f. 88%). At the lower position it amounted to 100% for cumulative data in both forests. Nitrate was the dominant form of inorganic nitrogen in the complex forest but in the simple forest nitrate and ammonium were of similar importance. The association between forest physiognomic structure and nutrient status at Lake Eacham represents a more general pattern in rainforests of northeast Queensland and further study is needed to ascertain whether results from this study apply more generally.  相似文献   

14.
15.
Nitrification has been believed to be performed only by autotrophic ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) until the recent discovery of ammonia-oxidizing archaea (AOA). Meanwhile, it has been questioned whether AOB are significantly responsible for NH(3) oxidation in acidic forest soils. Here, we investigated nitrifying communities and their activity in highly acidified soils of three subtropical forests in southern China that had received chronic high atmospheric N deposition. Nitrifying communities were analyzed using PCR- and culture (most probable number)-based approaches. Nitrification activity was analyzed by measuring gross soil nitrification rates using a (15) N isotope dilution technique. AOB were not detected in the three forest soils: neither via PCR of 16S rRNA and ammonia monooxygenase (amoA) genes nor via culture-based approaches. In contrast, an extraordinary abundance of the putative archaeal amoA was detected (3.2?×?10(8) -1.2?×?10(9) g?soil(-1) ). Moreover, this abundance was correlated with gross soil nitrification rates. This indicates that amoA-possessing archaea rather than bacteria were predominantly responsible for nitrification of the soils. Furthermore, sequences of the genus Nitrospira, a dominant group of soil NOB, were detected. Thus, nitrification of acidified subtropical forest soils in southern China could be performed by a combination of AOA and NOB.  相似文献   

16.
Summary A study was made of the effects of increasing pH, by addition of varying levels of calcium carbonate, on N-mineralization and nitrification during aerobic incubation (30°C for 12 weeks) of two tea soils (original pH 4.1 and 4.2) from East Pakistan. Mineral-N (NH3- plus NO3-N) accumulation increased with pH in both soils. In the low-flat soil maximum nitrate accumulation occurred at pH 5.0, whilst at the higher pH levels mineral-N accumulated mainly as ammonia-N. In the high-flat soil nitrate accumulation increased considerably with pH; mineralized-N was accounted for largely as ammonia at pH 5.0 or less, and almost entirely as nitrate at higher pH levels. Results are discussed in relation to possible occurrence of heterotrophic nitrification in these soils.  相似文献   

17.
Studies of nitrogen availability were carried out in radiata pine (Pinus radiata D. Don) plantations on former pasture sites in N.S.W. in conjunction with studies of the effects of previous land use on tree form. Sites were selected on previously improved pastures (cleared with introduced legumes) and unimproved pastures (partially cleared without legumes) to form age sequences of stands which had been established for periods of up to fifteen years. Mineral-N pools in soils and forest floor samples were determined monthly for thirteen months and nitrification potentials were determined from periodic laboratory incubations.Nitrate and ammonium pools in 2-, 4-, 6-, 9- and 15-year-old radiata pine stands fluctuated seasonally, peaking in summer and autumn. Maximum total mineral-N concentrations of 20 to 40 g g–1 soil occurred in the youngest, ex-improved pastures with nitrate-N concentrations of up to 25 g g–1. In the 15-year-old stands, nitrate-N was only detected during autumn, at less than 5 g g–1 soil. Net N-mineralization and nitrification potentials were consistently higher in the ex-improved pasture soils compared with the ex-unimproved pastures. N availability decreased with increasing stand age in the ex-improved pasture soils, but the pattern was less clear for the unimproved pasture sites. Suppression of clover by pines and the accumulation of nitrogen in the standing biomass are thought to be the major factors controlling the decline of available N during stand development.  相似文献   

18.
This study outlines the reproduction periods of the African fruit bats Epomops buettikoferi, Epomophorus garnbianus , and Micropteropus pusillus at two West African savanna sites: a wet southern Guinea savanna and a drier southern Sudanese savanna. At both sites the two annual birth periods were timed such that both lactation by only one weaning period coincided with the rainy season peaks in fruit availability. On this basis we propose that lactation rather than weaning was the important determinant of the timing of reproduction. There was no evidence of cycling of testes size in males corresponding with the seasonal mating periods. E. buettikoferi and M. pusillus females mated at six months and gave birth at the age of 12 months. Males of the two species reached puberty by 11 months and seven months, respectively. Growth rates did not differ between cohorts growing through the wet and dry season and E. buettikoferi and M. pusillus grew at rates of 276 mg/day and 116 mg/day, respectively.  相似文献   

19.
Termite mounds by creating patches of increased resource availability (e.g. water and nutrients) are a major source of spatial heterogeneity in savannas. Likewise, mistletoes via input of nutrient-rich litter alter nutrient and water availability increasing environmental heterogeneity in semi-arid savanna. Despite this recognition, the influence of termitaria and mistletoe on soil properties and plant community have not been investigated together. We established eight 100 m2 plots each on termitaria, under mistletoe-infected trees and in the surrounding savanna and examined the soil properties and the structure of Securinega virosa (Euphorbiaceae) and Euclea divinorum (Ebenaceae) in semi-arid savanna, southwest Zimbabwe. Soil properties significantly differed among the sampling sites (p = 0.001) with soils of increasing clay, soil moisture, pH and phosphorus, calcium and ammonium concentrations occurring on termite mounds. Soils under mistletoe-infected trees were associated with silt, organic matter, sodium, potassium, magnesium and nitrate and the surrounding savanna was associated with soils of increasing sand content. Plant structure also differed significantly between sites with greater basal area of both S. virosa and E. divinorum on termitaria relative to mistletoe-infected trees and the surrounding savanna. However, the stem density of S. virosa was greater under mistletoe-infected trees than on termitaria and in the surrounding savanna. Plant structural variables of individuals of the same species were affected by different soil properties across treatments. The major patterns showed that plant structure was influenced positively by soil moisture and nitrate and negatively by phosphorus on termitaria; positively by clay, soil moisture and ammonium and negatively by potassium under mistletoe-infected trees; and by phosphorus and calcium in the surrounding savanna. These findings show that soil properties, plant structure and their relationships differ between termitaria, mistletoe-infected trees and surrounding savanna, and these differences are suggested to increase heterogeneity in soil resources availability and vegetation structure in semi-arid savanna.  相似文献   

20.
Gökçeoğlu  M. 《Oecologia》1988,77(2):242-249
Summary Net nitrogen mineralization of a grassland-, Quercus coccifera shrub- and Pinus brutia forest-site within the Aegean region was investigated continuously through a year by field and standard incubation methods. Seasonal fluctuations resulting from field incubation are marked in grassland and shrub, but less pronounced in the forest. They are mainly associated with the changes in soil moisture being at minimum in the mediterranean summer. The annual yield of N mineralization is high in grassland and shrub (7.5 and 6.6 h·m-1), but low in the forest (2.8 g·m-1), where nitrification is inconspicuous. The reasons for this surprising phenomenon are discussed. N-mineralization is highly elevated in all sites under the favourable conditions of standard incubation (potential mineralization) and the seasonal differences as well as those between the sites are largely diminished.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号