首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We found that putative metabolites of docosahexaenoic acid (DHA) are strong PPARgamma activators and potential antidiabetic agents. We designed DHA derivatives based on the crystal structure of PPARgamma, synthesized them and evaluated their activities in vitro and in vivo. The efficacy of 5E-4-hydroxy-DHA 2a as a PPARgamma activator was about fourfold stronger than that of pioglitazone. Furthermore, the 4-keto derivative (10b) showed antidiabetic activity in animal models without producing undesirable effects such as obesity and hepatotoxicity.  相似文献   

2.
To develop novel PPARgamma ligands, we synthesized thirteen 3-{4-(2-aminoethoxy)phenyl}propanoic acid derivatives, which are designed based on the structures of rosiglitazone and 15d-PGJ2. Among these compounds, compound 9 was found to be as potent as rosiglitazone in a binding assay and a preadipocyte differentiation test. Molecular modeling suggested that the nonyl group of 9 interacted with hydrophobic amino acid residues constructing the hydrophobic region of PPARgamma protein where the alkyl chain of 15d-PGJ2 is expected to be located.  相似文献   

3.
N-(6-Substituted-1,3-benzothiazol-2-yl)benzenesulfonamide derivatives 1–8 were synthesized and evaluated for their in vivo antidiabetic activity in a non-insulin-dependent diabetes mellitus rat model. Several compounds synthesized showed significant lowering of plasma glucose level in this model. As a possible mode of action, the compounds were in vitro evaluated as 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors. The most active compounds (3 and 4) were docked into the crystal structure of 11β-HSD1. Docking results indicate potential hydrogen bond interactions with catalytic amino acid residues.  相似文献   

4.
5.
A series of 1,3-dicarbonyl compounds having 2(3H)-benzazolonic heterocycles has been synthesized and tested for PPARgamma agonist activity. SAR were developed and revealed that 6-acyl-2(3H)-benzothiazolone derivatives with 1,3-dicarbonyl group were the most potent. IP administration of compound 22 exhibited comparable levels of glucose and triglyceride correction to PO administration of rosiglitazone in the ob/ob mouse studies.  相似文献   

6.
Fang XK  Gao J  Zhu DN 《Life sciences》2008,82(11-12):615-622
Euonymus alatus as a folk medicine in China has been clinically used to treat type 2 diabetes for many years, and also exerts beneficial effects on hyperglycemia of diabetic animals. Our previous studies have isolated kaempferol and quercetin from the extract of E. alatus. In the present study, we investigated the possible mechanism of antidiabetic activity of these compounds. Kaempferol and quercetin could significantly improve insulin-stimulated glucose uptake in mature 3T3-L1 adipocytes. In addition, further experiments showed that kaempferol and quercetin served as weak partial agonists in the peroxisome proliferator-agonist receptor gamma (PPARgamma) reporter gene assay. Kaempferol and quercetin could not induce differentiation of 3T3-L1 preadipocytes as traditional PPARgamma agonist. When added together with the PPARgamma agonist rosiglitazone to 3T3-L1 preadipocytes, they could inhibit 3T3-L1 differentiation in a dose-dependent manner. Competitive ligand-binding assay confirmed that kaempferol and quercetin could compete with rosiglitazone at the same binding pocket site as PPARgamma. Kaempferol and quercetin showed significant inhibitory effects on NO production in response to lipopolysaccharide treatment in macrophage cells in which the PPARgamma was overexpressed; rosiglitazone was less potent than kaempferol and quercetin. These observations suggest that kaempferol and quercetin potentially act at multiple targets to ameliorate hyperglycemia, including by acting as partial agonists of PPARgamma.  相似文献   

7.
Well-known as an important regulator of lipid metabolism and adipocyte differentiation, the peroxisome proliferator-activated receptor gamma (PPARgamma) also has potential use as a target for antitumor therapy in certain cancers. To develop agents for radionuclide imaging PPARgamma in vivo, we synthesized fluorine, bromine, and iodine-substituted analogs (1-3) of a high-affinity benzophenone-tyrosine PPARgamma ligand; all three analogs retain very high affinity for the PPARgamma receptor. In preparation for the synthesis of these PPARgamma ligands in radiolabeled form, we have synthesized two types of precursors: (a) an aryltributylstannane (9), from which the bromine and iodine-substituted analogs (2 and 3) can readily be prepared by electrophilic destannylation, and (b) three diaryliodonium tosylate derivatives (12a-c), precursors for nucleophilic aromatic fluorination using fluoride ion. Conditions were developed whereby the thiophenyliodonium tosylate (12c) underwent nucleophilic aromatic substitution with fluoride ion, efficiently and in short reaction times, to produce the desired fluorine-substituted target compound 1. These reactions laid the groundwork for producing these three PPARgamma ligands in radiolabeled form; in addition, our use of diaryliodonium ion precursors for aromatic fluorination in this series provides an example that should encourage application of this approach for radiofluorination of more complicated radiopharmaceuticals.  相似文献   

8.
New N3-benzylidene (substituted)-2-phenyl-N4-(thiazol-2-yl)-quinazoline-3,4-(4H)-diamine derivatives were design and synthesized by a sequence of reactions starting from appropriate 6-methyl anthranilic acid. The title compounds were screened for in vitro dipeptidyl peptidase IV (DPP-4) inhibitory activity and diphenyl-2-picryl-hydrazyl (DPPH) assay and results showed significant to good activity in compared to Linagliptin for antidiabetic activity and Ascorbic acid for antioxidant activity. Compound 7g (IC50 = 0.76 nM) exhibited most promising DPP-4 inhibitory activity and also showed good antioxid and result. Docking study was also performed to provide an insight about the binding mode into binding sites of DPP-4 enzyme. Hopefully in future, compound 7g could be used as a lead compound for developing new antidiabetic agent with good antioxidant property.  相似文献   

9.
Mycophenolic acid (MPA, 1), an inhibitor of IMP-dehydrogenase (IMPDH) and a latent PPARgamma agonist, is used as an effective immunosuppressant for clinical transplantation and recently entered clinical trials in advanced multiple myeloma patients. On the other hand, suberoylanilide hydroxamic acid (SAHA), a non-specific histone deacetylase (HDAC) inhibitor, has been approved for treating cutaneous T-cell lymphoma. MPA seemed to bear a cap, a linker, and a weak metal-binding site as a latent inhibitor of HDAC. Therefore, the hydroxamic acid derivatives of mycophenolic acid having an effective metal-binding site, mycophenolic hydroxamic acid (MPHA, 2), 7-O-acetyl mycophenolic acid (7-O-Ac MPHA, 3), and 7-O-lauroyl mycophenolic hydroxamic acid (7-O-L MPHA, 4) were designed and synthesized. All these compounds inhibited histone deacetylase with IC50 values of 1, 0.9 and 0.5 microM, and cell proliferation at concentrations of 2, 1.5 and 1 microM, respectively.  相似文献   

10.
Adiponectin, the adipose-derived cytokine, plays an important role in preventing metabolic syndromes. To develop new adiponectin inducers, eight species of ferulic esters and amides, and five related compounds were synthesized and tested on the stimulation of adiponectin production in mouse 3T3-L1 and normal human preadipocytes. The ferulamides with an aromatic ring in the N-substituent are very active in inducing adiponectin as compared with the known active compounds, curcumin, [6]-gingerol, and capsaicin, and furthermore the activities of these ferulamides are remarkably stronger than those of the corresponding esters or the straight chain octylamide. The most active compound, N-(2-phenylethyl)ferulamide (7), was found to activate the PPAR (peroxisome proliferator-activated receptor) gamma-RXR (retinoid X receptor) alpha heterodimeric complex in the PPRE (PPAR-responsive element)-driven luciferase reporter assay. The adiponectin production by 7 is synergistically enhanced by coaddition of a PPARgamma-specific agonist, pioglitazone (PGZ), or another PPARgamma agonist, docosahexaenoic acid (DHA), in cultured preadipocytes. The compound 7 alone did not show a statistically significant effect on the plasma adiponectin level in KK-A(y)/Ta mice, while 1% 7 in the diets significantly lowered the blood glucose and triglyceride levels and 0.3% 7 mixed with DHA oil in the diets significantly increased the adiponectin level as compared with the control. These results suggest that the present ferulamides would be useful lead compounds in developing more potent agents for treatment of metabolic syndromes through promoting the endogenous adiponectin production, and that such an activity is possibly enhanced by the coadministration with DHA.  相似文献   

11.
12.
MCSS and LeapFrog, two de novo drug design programs, were used for the novel indole-based PPARgamma ligands' study. The designed compounds were synthesized and tested for the PPARgamma protein binding activities in vitro. Out of the compounds that were synthesized, two molecules (compounds 14d and 7d) possessed potent PPARgamma protein binding activity close to rosiglitazone in vitro.  相似文献   

13.
A series of bromophenol derivatives were synthesized and evaluated as protein tyrosine phosphatase 1B (PTP1B) inhibitors in vitro and in vivo based on bromophenol 4e (IC(50)=2.42 μmol/L), which was isolated from red algae Rhodomela confervoides. The results showed that all of the synthesized compounds displayed weak to good PTP1B inhibition at tested concentration. Among them, highly brominated compound 4g exhibited promising inhibitory activity against PTP1B with IC(50) 0.68 μmol/L, which was approximately fourfold more potent than lead compound 4e. Further, compound 4g demonstrated high selectivity against other PTPs (TCPTP, LAR, SHP-1 and SHP-2). More importantly, in vivo antidiabetic activities investigations of compound 4g also demonstrated inspiring results.  相似文献   

14.
A novel class of insulin-sensitizing agents, the thiazolidinedines (TZDs), has proven effective in the treatment of type 2 diabetes. These compounds, as well as a subclass of non-TZD insulin-sensitizing agents, have been shown to be peroxisome proliferator-activated receptor (PPAR) gamma agonists. PPARgamma plays a critical role in adipogenesis and PPARgamma agonists have been shown to induce adipocyte differentiation. Here, PPARgamma ligand activity has been assessed in murine 3T3-L1 cells, a commonly used in vitro model of adipogenesis, by measuring their ability to induce adipocyte fatty acid-binding protein (aP2) mRNA expression. In order to perform this task, we have developed a novel, multiwell assay for the direct detection of aP2 mRNA in cell lysates that is based on hybridization of mRNA to target-specific oligonucleotides. These oligonucleotide probes are conjugated to enzymes that efficiently process unique chemical substrates into robust fluorescent products. Ribosomal protein 36B4 mRNA, a gene whose expression is unaffected by adipogenesis, serves as the control in the assay. Two assay formats have been developed, a single analyte assay in which aP2 and 36B4 mRNA expression are assayed in separate lysate aliquots and a dual analyte assay which can measure aP2 and 36B4 mRNA simultaneously. Both forms of the assay have been used to quantify attomole levels of aP2 and 36B4 mRNAs in differentiating 3T3-L1 preadipocytes treated with PPARgamma agonists. The potencies of PPARgamma agonists determined by this novel methodology showed good correlation with those derived from aP2 mRNA slot-blot analysis and PPARgamma transactivation assays. We conclude that the aP2 single and dual analyte assays both provide specific and sensitive measurements of endogenous aP2 mRNA levels that can be used to assess the activity of PPARgamma ligands in 3T3-L1 cells. Since the assay obviates the need for RNA isolation and is performed in an automatable multiwell format, it can serve as a high-throughput, cell-based screen for the identification and characterization of PPARgamma modulators.  相似文献   

15.
16.
Peroxisome proliferator-activated receptor (PPARgamma) is a nuclear receptor that is activated by fatty acids and derivatives and the antidiabetic glitazones, which plays a role in the control of lipid and glucose homeostasis. In the present work, we tested the hypothesis that PPARgamma plays a role in reproductive tissues by studying its expression and function in the hypothalamo-pituitary-ovary axis in the sheep. PPARgamma 1 and PPARgamma 2 proteins and mRNAs were detected in whole ovine pituitary and ovary but not in hypothalamic extracts. In situ hybridization on ovarian section localized PPARgamma mRNA in the granulosa layer of follicles. Interestingly, PPARgamma expression was higher in small antral (1-3 mm diameter) than in preovulatory follicles (>5 mm diameter) (P < 0.001) and was not correlated with healthy status. To assess the biological activity of ovarian PPARgamma, ovine granulosa cells were transfected with a reporter construct driven by PPARgamma-responsive elements. Addition of rosiglitazone, a PPARgamma ligand, stimulated reporter gene expression, showing that endogenous PPARgamma is functional in ovine granulosa cells in vitro. Moreover, rosiglitazone inhibited granulosa cell proliferation (P < 0.05) and increased the secretion of progesterone in vitro (P < 0.05). This stimulation effect was stronger in granulosa cells from small than from large follicles. In contrast, rosiglitazone had no effect on LH, FSH, prolactin and growth hormone secretion by ovine pituitary cells in vitro. Overall, these data suggest that PPARgamma ligands might stimulate follicular differentiation in vivo likely through a direct action on granulosa cells rather than by modulating pituitary hormone secretion.  相似文献   

17.
alpha1-Acid glycoprotein (alpha1-AGP) is an acute phase protein that can potentiate cytokine secretion by mononuclear cells and may induce thrombosis by stabilizing the inhibitory activity of plasminogen activator inhibitor-1. Thus, alpha1-AGP may promote pathobiologies associated with type 2 diabetes mellitus (T2DM) including insulin resistance and cardiovascular disease. Here, we demonstrate that antidiabetic peroxisome proliferator-activated receptor gamma (PPARgamma) agonists inhibited expression of 3T3-L1 adipocyte alpha1-AGP in a concentration- and time-dependent manner via an apparent PPARgamma-mediated mechanism. As a result, synthesis and secretion of the glycoprotein was reduced. While PPARgamma agonist regulation of genes with functional peroxisome proliferator response elements in their promoter such as phosphoenolpyruvate carboxykinase were unaffected when cellular protein synthesis was inhibited, downregulation of alpha1-AGP mRNA was ablated thereby supporting the proposition that PPARgamma activation inhibits alpha1-AGP expression indirectly. These results suggest a potential novel adipocytic mechanism by which PPARgamma agonists may ameliorate T2DM-associated insulin resistance and cardiovascular disease.  相似文献   

18.
The n‐3 polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), exert hypolipidemic effects and prevent development of obesity and insulin resistance in animals fed high‐fat diets. We sought to determine the efficacy of α‐substituted DHA derivatives as lipid‐lowering, antiobesity, and antidiabetic agents. C57BL/6 mice were given a corn oil‐based high‐fat (35% weight/weight) diet (cHF), or cHF with 1.5% of lipids replaced with α‐methyl DHA ethyl ester (Substance 1), α‐ethyl DHA ethyl ester (Substance 2), α,α‐di‐methyl DHA ethyl ester (Substance 3), or α‐thioethyl DHA ethyl ester (Substance 4) for 4 months. Plasma markers of glucose and lipid metabolism, glucose tolerance, morphology, tissue lipid content, and gene regulation were characterized. The cHF induced obesity, hyperlipidemia, impairment of glucose homeostasis, and adipose tissue inflammation. Except for Substance 3, all other substances prevented weight gain and Substance 2 exerted the strongest effect (63% of cHF‐controls). Glucose intolerance was significantly prevented (~67% of cHF) by both Substance 1 and Substance 2. Moreover, Substance 2 lowered fasting glycemia, plasma insulin, triacylglycerols, and nonesterified fatty acids (73, 9, 47, and 81% of cHF‐controls, respectively). Substance 2 reduced accumulation of lipids in liver and skeletal muscle, as well as adipose tissue inflammation associated with obesity. Substance 2 also induced weight loss in dietary obese mice. In contrast to DHA administered either alone or as a component of the EPA/DHA concentrate (replacing 15% of dietary lipids), Substance 2 also reversed established glucose intolerance in obese mice. Thus, Substance 2 represents a novel compound with a promising potential in the treatment of obesity and associated metabolic disturbances.  相似文献   

19.
A series of pyrimidinone derivatives of thiazolidinediones were synthesized. Their biological activity were evaluated in insulin resistant, hyperglycemic and obese db/db mice. In vitro PPARgamma transactivation assay was performed in HEK 293T cells. PMT13 showed the best biological activity in this series. PMT13 (5-[4-[2-[2-ethyl-4-methyl-6-oxo-1,6-dihydro-1-pyrimidinyl]ethoxy]phenylmethyl]thiazolidine-2,4-dione) showed better plasma glucose, triglyceride and insulin-lowering activity in db/db mice than rosiglitazone and pioglitazone. PMT13 showed better PPARgamma transactivation than the standard compounds. Pharmacokinetic study in Wistar rats showed good systemic exposure of PMT13. Twenty-eight day oral toxicity study in Wistar rats did not show any treatment-related adverse effects.  相似文献   

20.
The synthesis and structure-activity relationships of a novel series of indole 5-carboxylic acids that bind and activate peroxisome proliferator-activated receptor gamma (PPARgamma) are reported. These new analogs are selective for PPARgamma vs the other PPAR subtypes, and the most potent compounds in this series are comparable to in vitro potencies at PPARgamma reported for the thiazolidinedione-based antidiabetic drugs currently in clinical use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号