首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat shock proteins play central roles in ensuring the correct folding and maturation of cellular proteins. Here we show that the heat shock protein Hsp70 has a novel role in prolonging the lifetime of activated protein kinase C. We identified Hsp70 in a screen for binding partners for the carboxyl terminus of protein kinase C. Co-immunoprecipitation experiments revealed that Hsp70 specifically binds the unphosphorylated turn motif (Thr(641) in protein kinase C beta II), one of three priming sites phosphorylated during the maturation of protein kinase C family members. The interaction of Hsp70 with protein kinase C can be abolished in vivo by co-expression of fusion proteins encoding the carboxyl terminus of protein kinase C or the carboxyl terminus of Hsp70. Pulse-chase experiments reveal that Hsp70 does not regulate the maturation of protein kinase C: the rate of processing by phosphorylation is the same in the presence or absence of disrupting constructs. Rather, Hsp70 prolongs the lifetime of mature protein kinase C; disruption of the interaction promotes the accumulation of matured and then dephosphorylated protein kinase C in the detergent-insoluble fraction of cells. Furthermore, studies with K562 cells reveal that disruption of the interaction with Hsp70 slows the protein kinase C beta II-mediated recovery of cells from PMA-induced growth arrest. Last, we show that other members of the AGC superfamily (Akt/protein kinase B and protein kinase A) also bind Hsp70 via their unphosphorylated turn motifs. Our data are consistent with a model in which Hsp70 binds the dephosphorylated carboxyl terminus of mature protein kinase C, thus stabilizing the protein and allowing re-phosphorylation of the enzyme. Disruption of this interaction prevents re-phosphorylation and targets the enzyme for down-regulation.  相似文献   

2.
The life cycle of protein kinase C (PKC) is controlled by multiple phosphorylation and dephosphorylation steps. The maturation of PKC requires three ordered phosphorylations, one at the activation loop and two at COOH-terminal sites, the turn motif and the hydrophobic motif, to yield a stable and signaling-competent enzyme. Dephosphorylation of the enzyme leads to protein degradation. We have recently discovered a novel family of protein phosphatases named PH domain leucine-rich repeat protein phosphatase (PHLPP) whose members terminate Akt signaling by dephosphorylating the hydrophobic motif on Akt. Here we show that the two PHLPP isoforms, PHLPP1 and PHLPP2, also dephosphorylate the hydrophobic motif on PKC betaII, an event that shunts PKC to the detergent-insoluble fraction, effectively terminating its life cycle. Deletion mutagenesis reveals that the PH domain is necessary for the effective dephosphorylation of PKC betaII by PHLPP in cells, whereas the PDZ-binding motif, required for Akt regulation, is dispensable. The phorbol ester-mediated dephosphorylation of the hydrophobic site, but not the turn motif or activation loop, is insensitive to okadaic acid, consistent with PHLPP, a PP2C family member, controlling the hydrophobic site. In addition, knockdown of PHLPP expression reduces the rate of phorbol ester-triggered dephosphorylation of the hydrophobic motif, but not turn motif, of PKC alpha. Last, we show that depletion of PHLPP in colon cancer and normal breast epithelial cells results in an increase in conventional and novel PKC levels. These data reveal that PHLPP controls the cellular levels of PKC by specifically dephosphorylating the hydrophobic motif, thus destabilizing the enzyme and promoting its degradation.  相似文献   

3.
Although alterations in stimulus-induced degradation of PKC have been implicated in disease, mechanistic understanding of this process remains limited. Evidence supports the existence of both proteasomal and lysosomal mechanisms of PKC processing. An established pathway involves rate-limiting priming site dephosphorylation of the activated enzyme and proteasomal clearance of the dephosphorylated protein. However, here we show that agonists promote down-regulation of endogenous PKCα with minimal accumulation of a nonphosphorylated species in multiple cell types. Furthermore, proteasome and lysosome inhibitors predominantly protect fully phosphorylated PKCα, pointing to this form as a substrate for degradation. Failure to detect substantive dephosphorylation of activated PKCα was not due to rephosphorylation because inhibition of Hsp70/Hsc70, which is required for re-priming, had only a minor effect on agonist-induced accumulation of nonphosphorylated protein. Thus, PKC degradation can occur in the absence of dephosphorylation. Further analysis revealed novel functions for Hsp70/Hsc70 and Hsp90 in the control of agonist-induced PKCα processing. These chaperones help to maintain phosphorylation of activated PKCα but have opposing effects on degradation of the phosphorylated protein; Hsp90 is protective, whereas Hsp70/Hsc70 activity is required for proteasomal processing of this species. Notably, down-regulation of nonphosphorylated PKCα shows little Hsp70/Hsc70 dependence, arguing that phosphorylated and nonphosphorylated species are differentially targeted for proteasomal degradation. Finally, lysosomal processing of activated PKCα is not regulated by phosphorylation or Hsps. Collectively, these data demonstrate that phosphorylated PKCα is a direct target for agonist-induced proteasomal degradation via an Hsp-regulated mechanism, and highlight the existence of a novel pathway of PKC desensitization in cells.  相似文献   

4.
70-kDa heat shock protein family is a molecular chaperone that binds to a variety of client proteins and peptides in the cytoplasm. Several studies have revealed binding motifs between 70-kDa heat shock protein family and cytoplasmic proteins by conventional techniques such as phage display library screening. However, little is known about the binding motif based on kinetic parameters determined by surface plasmon resonance analysis. We investigated the major inducible cytosolic 70-kDa heat shock protein (Hsp70)-binding motif with the human leukocyte antigen B*2702-derived peptide Bw4 (RENLRIALRY) by using a Biacore system based on surface plasmon resonance analysis. The K(D) value of Hsp70-Bw4 interaction was 1.8 x 10(-6) m. Analyses with truncated Bw4 variant peptides showed the binding motif of Hsp70 to be seven residues, LRIALRY. To further study the characteristics of this motif, 126 peptides derived from Bw4, each with single amino acid substitution, were synthesized and analyzed for Hsp70 binding affinity. Interestingly, the Hsp70 binding affinity was abrogated when the residues were substituted for by acidic (Asp and Glu) ones at any position. In contrast, if the substitute residue was aromatic (Trp, Tyr, and Phe) or an Arg residue at any position, Hsp70 binding affinity was maintained. Thus, this study presents a new binding motif between Hsp70 and peptides derived from the natural protein human leukocyte antigen B*2702 and may also elucidate some characteristics of the Hsp70 binding characteristic, enhancing our understanding of Hsp70-binding determinants that may influence diverse cellular and physiological processes.  相似文献   

5.
Conformational changes acutely control protein kinase C (PKC). We have previously shown that the autoinhibitory pseudosubstrate must be removed from the active site in order for 1) PKC to be phosphorylated by its upstream kinase phosphoinositide-dependent kinase 1 (PDK-1), 2) the mature enzyme to bind and phosphorylate substrates, and 3) the mature enzyme to be dephosphorylated by phosphatases. Here we show an additional level of conformational control; binding of active site inhibitors locks PKC in a conformation in which the priming phosphorylation sites are resistant to dephosphorylation. Using homogeneously pure PKC, we show that the active site inhibitor Gö 6983 prevents the dephosphorylation by pure protein phosphatase 1 (PP1) or the hydrophobic motif phosphatase, pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP). Consistent with results using pure proteins, treatment of cells with the competitive inhibitors Gö 6983 or bisindolylmaleimide I, but not the uncompetitive inhibitor bisindolylmaleimide IV, prevents the dephosphorylation and down-regulation of PKC induced by phorbol esters. Pulse-chase analyses reveal that active site inhibitors do not affect the net rate of priming phosphorylations of PKC; rather, they inhibit the dephosphorylation triggered by phorbol esters. These data provide a molecular explanation for the recent studies showing that active site inhibitors stabilize the phosphorylation state of protein kinases B/Akt and C.  相似文献   

6.
Protein kinase C (PKC) plays important roles in diverse cellular processes. PKC has been implicated in regulating Fas-associated protein with death domain (FADD), an important adaptor protein involved in regulating death receptor-mediated apoptosis. FADD also plays an important role in non-apoptosis processes. The functional interaction of PKC and FADD in non-apoptotic processes has not been examined. In this study, we show that FADD is involved in maintaining the phosphorylation of the turn motif and hydrophobic motif in the activated conventional PKC (cPKC). A phosphoryl-mimicking mutation (S191D) in FADD (FADD-D) abolished the function of FADD in the facilitation of the turn motif and hydrophobic motif dephosphorylation of cPKC, suggesting that phosphorylation of Ser-191 negatively regulates FADD. We show that FADD interacts with PP2A, which is a major phosphatase involved in dephosphorylation of activated cPKC and FADD deficiency abolished PP2A mediated dephosphorylation of cPKC. We show that FADD deficiency leads to increased stability and activity of cPKC, which, in turn, promotes cytoskeleton reorganization, cell motility, and chemotaxis. Collectively, these results reveal a novel function of FADD in a non-apoptotic process by modulating cPKC dephosphorylation, stability, and signaling termination.  相似文献   

7.
The down-regulation or cellular depletion of protein kinase C (PKC) attendant to prolonged activation by phorbol esters is a widely described property of this key family of signaling enzymes. However, neither the mechanism of down-regulation nor whether this mechanism occurs following stimulation by physiological agonists is known. Here we show that the peptidyl-prolyl isomerase Pin1 provides a timer for the lifetime of conventional PKC isozymes, converting the enzymes into a species that can be dephosphorylated and ubiquitinated following activation induced by either phorbol esters or natural agonists. The regulation by Pin1 requires both the catalytic activity of the isomerase and the presence of a Pro immediately following the phosphorylated Thr of the turn motif phosphorylation site, one of two C-terminal sites that is phosphorylated during the maturation of PKC isozymes. Furthermore, the second C-terminal phosphorylation site, the hydrophobic motif, docks Pin1 to PKC. Our data are consistent with a model in which Pin1 binds the hydrophobic motif of conventional PKC isozymes to catalyze the isomerization of the phospho-Thr-Pro peptide bond at the turn motif, thus converting these PKC isozymes into species that can be efficiently down-regulated following activation.  相似文献   

8.
BACKGROUND: A growing number of kinases are now known to be controlled by two phosphorylation switches, one on a loop near the entrance to the active site and a second on the carboxyl terminus. For the protein kinase C (PKC) family of enzymes, phosphorylation at the activation loop is mediated by another kinase but the mechanism for carboxy-terminal phosphorylation is still unclear. The latter switch contains two phosphorylation sites - one on a 'turn' motif and the second on a conserved hydrophobic phosphorylation motif - that are found separately or together in a number of other kinases. RESULTS: Here, we investigated whether the carboxy-terminal phosphorylation sites of a conventional PKC are controlled by autophosphorylation or by another kinase. First, kinetic analyses revealed that a purified construct of the kinase domain of PKC betaII autophosphorylated on the Ser660 residue of the hydrophobic phosphorylation motif in an apparently concentration-independent manner. Second, kinase-inactive mutants of PKC did not incorporate phosphate at either of the carboxy-terminal sites, Thr641 or Ser660, when expressed in COS-7 cells. The inability to incorporate phosphate on the hydrophobic site was unrelated to the phosphorylation state of the other key phosphorylation sites: kinase-inactive mutants with negative charge at Thr641 and/or the activation-loop position were also not phosphorylated in vivo. CONCLUSIONS: PKC betaII autophosphorylates at its conserved carboxy-terminal hydrophobic phosphorylation site by an apparently intramolecular mechanism. Expression studies with kinase-inactive mutants revealed that this mechanism is the only one responsible for phosphorylating this motif in vivo. Thus, conventional PKC autoregulates the carboxy-terminal phosphorylation switch following phosphorylation by another kinase at the activation loop switch.  相似文献   

9.
Several missense mutations in the protein kinase Cγ (γPKC) gene have been found to cause spinocerebellar ataxia type 14 (SCA14), an autosomal dominant neurodegenerative disease. We previously demonstrated that the mutant γPKC found in SCA14 is misfolded, susceptible to aggregation and cytotoxic. Molecular chaperones assist the refolding and degradation of misfolded proteins and prevention of the proteins’ aggregation. In the present study, we found that the expression of mutant γPKC-GFP increased the levels of heat-shock protein 70 (Hsp70) in SH-SY5Y cells. To elucidate the role of this elevation, we investigated the effect of siRNA-mediated knockdown of Hsp70 on the aggregation and cytotoxicity of mutant γPKC. Knockdown of Hsp70 exacerbated the aggregation and cytotoxicity of mutant γPKC-GFP by inhibiting this mutant’s degradation. These findings suggest that mutant γPKC increases the level of Hsp70, which protects cells from the mutant’s cytotoxicity by enhancing its degradation.  相似文献   

10.
Previous studies have suggested that protein kinase C (PKC) is involved in heat shock protein (Hsp)-mediated cardioprotection. Therefore, we wanted to determine whether overexpression of Hsps modulates PKC expression, which will give us further insight into understanding the mechanism by which Hsps and PKC interact to protect cells from stress-induced injury. Specifically, we overexpressed the inducible form of Hsp70 (Hsp70i) or Hsp90 in rat neonatal cardiomyocytes and evaluated PKCdelta or PKCepsilon expression by immunoblotting and immunofluorescent confocal microscopy. Western analysis showed that overexpression of Hsp70i or Hsp90 decreased PKCepsilon expression. However, overexpression of Hsp70i or Hsp90 did not modify PKCdelta expression over control levels. Overexpression of constitutively active PKCdelta or PKCepsilon increased Hsp70i expression over control levels. The data suggest that overexpression of Hsps differentially modulates expression of PKC isoforms in rat neonatal cardiomyocytes. Furthermore, PKC may directly play a role in Hsp-mediated cardioprotection by upregulating Hsp70i expression.  相似文献   

11.
Protein dephosphorylation by protein phosphatase 1 (PP1), acting in concert with protein kinase C (PKC) and protein kinase A (PKA), is a pivotal regulatory mechanism of protein phosphorylation. Isolated rat cardiac myofibrils phosphorylated by PKC/PKA and dephosphorylated by PP1 were used in determining dephosphorylation specificities, Ca(2+)-stimulated Mg(2+)ATPase activities, and Ca(2+) sensitivities. In reconstituted troponin (Tn) complex, PP1 displayed distinct substrate specificity in dephosphorylation of TnT preferentially to TnI, in vitro. In situ phosphorylation of cardiomyocytes with calyculin A, a protein phosphatase inhibitor, resulted in an increase in the phosphorylation stiochiometry of TnT (0.3 to 0.5 (67%)), TnI (2.6 to 3.6 (38%)), and MLC2 (0.4 to 1.7 (325%)). These results further confirmed that though MLC2 is the preferred target substrate for protein phosphatase in the thick filament, the Tn complex (TnI and TnT) from thin filament and C-protein in the thick filament are also protein phosphatase substrates. Our in vitro dephosphorylation experiments revealed that while PP1 differentially dephosphorylated within TnT at multiple sites, TnI was uniformly dephosphorylated. Phosphopeptide maps from the in vitro experiments show that TnT phosphopeptides at spots 4A and 4B are much more resistant to PP1 dephosphorylation than other TnT phosphopeptides. Mg(2+)ATPase assays of myofibrils phosphorylated by PKC/PKA and dephosphorylated by PP1 delineated that while PKC and PKA phosphorylation decreased the Ca(2+)-stimulated Mg(2+)ATPase activities, dephosphorylation antagonistically restored it. PKC and PKA phosphorylation decreased Ca(2+) sensitivity to 3.6 microM and 5.0 microM respectively. However, dephosphorylation restored the Mg(2+)ATPase activity of PKC (99%) and PKA (95%), along with the Ca(2+) sensitivities (3.3 microM and 3.0 microM, respectively).  相似文献   

12.
Signal transduction pathways are controlled by desensitization mechanisms, which can affect receptors and/or downstream signal transducers. It has long been recognized that members of the protein kinase C (PKC) family of signal transduction molecules undergo down-regulation in response to activation. Previous reports have indicated that key steps in PKCalpha desensitization include caveolar internalization, priming site dephosphorylation, ubiquitination of the dephosphorylated protein, and degradation by the proteasome. In the current study, comparative analysis of PKCalpha processing induced by the PKC agonists phorbol 12-myristate 13-acetate and bryostatin 1 in IEC-18 rat intestinal epithelial cells demonstrates that: (a) at least two pathways of PKCalpha down-regulation can co-exist within cells, and (b) a single PKC agonist can activate both pathways at the same time. Using a combined biochemical and morphological approach, we identify a novel pathway of PKCalpha desensitization that involves ubiquitination of mature, fully phosphorylated activated enzyme at the plasma membrane and subsequent down-regulation by the proteasome. The phosphatase inhibitors okadaic acid and calyculin A accelerated PKCalpha down-regulation and inhibitors of vesicular trafficking did not prevent degradation of the protein, indicating that neither internalization nor priming site dephosphorylation are requisite intermediate steps in this ubiquitin/proteasome dependent pathway of PKCalpha down-regulation. Instead, caveolar trafficking and dephosphorylation are involved in a second, proteasome-independent mechanism of PKCalpha desensitization in this system. Our findings highlight subcellular distribution and phosphorylation state as critical determinants of PKCalpha desensitization pathways.  相似文献   

13.
A heat stress causes a rapid inhibition of splicing. Exogenous expression of Hsp27 did not prevent that inhibition but enhanced the recovery of splicing afterward. Another small heat shock protein, alphaB-crystallin, had no effect. Hsp27, but not alphaB-crystallin, also hastened rephosphorylation of SRp38-dephosphorylated a potent inhibitor of splicing-after a heat shock, although it did not prevent dephosphorylation by a heat shock. The effect of Hsp27 on rephosphorylation of SRp38 required phosphorylatable Hsp27. A Hsp90 client protein was required for the effect of Hsp27 on recovery of spicing and on rephosphorylation of SRp38. Raising the Hsp70 level by either a pre-heat shock or by exogenous expression had no effect on either dephosphorylation of SRp38 during heat shock or rephosphorylation after heat shock. The phosphatase inhibitor calyculin A prevented dephosphorylation of SRp38 during a heat shock and caused complete rephosphorylation of SRp38 after a heat shock, indicating that cells recovering from a heat shock are not deficient in kinase activity. Together our data show that the activity of Hsp27 in restoring splicing is not due to a general thermoprotective effect of Hsp27, but that Hsp27 is an active participant in the (de)phosphorylation cascade controlling the activity of the splicing regulator SRp38.  相似文献   

14.
Li J  Wu Y  Qian X  Sha B 《The Biochemical journal》2006,398(3):353-360
Heat shock protein (Hsp) 40 facilitates the critical role of Hsp70 in a number of cellular processes such as protein folding, assembly, degradation and translocation in vivo. Hsp40 and Hsp70 stay in close contact to achieve these diverse functions. The conserved C-terminal EEVD motif in Hsp70 has been shown to regulate Hsp40-Hsp70 interaction by an unknown mechanism. Here, we provide a structural basis for this regulation by determining the crystal structure of yeast Hsp40 Sis1 peptide-binding fragment complexed with the Hsp70 Ssa1 C-terminal. The Ssa1 extreme C-terminal eight residues, G634PTVEEVD641, form a beta-strand with the domain I of Sis1 peptide-binding fragment. Surprisingly, the Ssa1 C-terminal binds Sis1 at the site where Sis1 interacts with the non-native polypeptides. The negatively charged residues within the EEVD motif in Ssa1 C-terminal form extensive charge-charge interactions with the positively charged residues in Sis1. The structure-based mutagenesis data support the structural observations.  相似文献   

15.
Stimulation of intestinal fructose absorption by phorbol 12-myristate 13-acetate (PMA) results from rapid insertion of GLUT2 into the brush-border membrane and correlates with protein kinase C (PKC) betaII activation. We have therefore investigated the role of phosphatidylinositol 3 (PI3)-kinase and mammalian target of rapamycin in the regulation of fructose absorption by PKC betaII phosphorylation. In isolated jejunal loops, stimulation of fructose absorption by PMA was inhibited by preperfusion with wortmannin or rapamycin, which blocked GLUT2 activation and insertion into the brush-border membrane. Antibodies to the last 18 and last 10 residues of the C-terminal region of PKC betaII recognized several species differentially in Western blots. Extensive cleavage of native enzyme (80/78 kDa) to a catalytic domain product of 49 kDa occurred. PMA and sugars provoked turnover and degradation of PKC betaII by dephosphorylation to a 42-kDa species, which was converted to polyubiquitylated species detected at 180 and 250+ kDa. PMA increased the level of the PKC betaII 49-kDa species, which correlates with the GLUT2 level; wortmannin and rapamycin blocked these effects of PMA. Rapamycin and wortmannin inhibited PKC betaII turnover. PI3-kinase, PDK-1, and protein kinase B were present in the brush-border membrane, where their levels were increased by PMA and blocked by the inhibitors. We conclude that GLUT2-mediated fructose absorption is regulated through PI3-kinase and mammalian target of rapamycin-dependent pathways, which control phosphorylation of PKC betaII and its substrate-induced turnover and ubiquitin-dependent degradation. These findings suggest possible mechanisms for short term control of intestinal sugar absorption by insulin and amino acids.  相似文献   

16.
Location is a critical determinant in dictating the cellular function of protein kinase C (PKC). Scaffold proteins contribute to localization by poising PKC at specific intracellular sites. Using a yeast two-hybrid screen, we identified the centrosomal protein pericentrin as a scaffold that tethers PKC betaII to centrosomes. Co-immunoprecipitation studies reveal that the native proteins interact in cells. Co-overexpression studies show that the interaction is mediated by the C1A domain of PKC and a segment of pericentrin within residues 494-593. Immunofluorescence analysis reveals that endogenous PKC betaII colocalizes with pericentrin at centrosomes. Disruption of this interaction by expression of the interacting region of pericentrin results in release of PKC from the centrosome, microtubule disorganization, and cytokinesis failure. Overexpression of this disrupting fragment has no effect in cells lacking PKC betaII, indicating a specific regulatory role of this isozyme in centrosome function. These results reveal a novel role for PKC betaII in cytokinesis and indicate that this function is mediated by an interaction with pericentrin at centrosomes.  相似文献   

17.
Wang X  Lu XA  Song X  Zhuo W  Jia L  Jiang Y  Luo Y 《The Biochemical journal》2012,441(1):387-397
Hsp90 (heat-shock protein 90) is one of the most important molecular chaperones in eukaryotes. Hsp90 facilitates the maturation, activation or degradation of its client proteins. It is now well accepted that both ATP binding and co-chaperone association are involved in regulating the Hsp90 chaperone machinery. However, other factors such as post-translational modifications are becoming increasingly recognized as being involved in this process. Recent studies have reported that phosphorylation of Hsp90 plays an unanticipated role in this process. In the present study, we systematically investigated the impact of phosphorylation of a single residue (Thr90) of Hsp90α (pThr90-Hsp90α) on its chaperone machinery. We demonstrate that protein kinase A specifically phosphorylates Hsp90α at Thr90, and that the pThr9090-Hsp90α level is significantly elevated in proliferating cells. Thr90 phosphorylation affects the binding affinity of Hsp90α to ATP. Subsequent examination of the interactions of Hsp90α with co-chaperones reveals that Thr90 phosphorylation specifically regulates the association of a subset of co-chaperones with Hsp90α. The Hsp90α T90E phosphor-mimic mutant exhibits increased association with Aha1 (activator of Hsp90 ATPase homologue 1), p23, PP5 (protein phosphatase 5) and CHIP (C-terminus of Hsp70-interacting protein), and decreased binding affinity with Hsp70, Cdc37 (cell division cycle 37) and Hop [Hsc70 (heat-shock cognate protein 70)/Hsp90-organizing protein], whereas its interaction with FKBP52 (FK506-binding protein 4) is only moderately affected. Moreover, we find that the ability of the T90E mutant to form complexes with its clients, such as Src, Akt or PKCγ (protein kinase Cγ), is dramatically impaired, suggesting that phosphorylation affects its chaperoning activity. Taken together, the results of the present study demonstrate that Thr90 phosphorylation is actively engaged in the regulation of the Hsp90α chaperone machinery and should be a generic determinant for the cycling of Hsp90α chaperone function.  相似文献   

18.
Dual leucine zipper-bearing kinase (DLK) is a mixed-lineage kinase family member that acts as an upstream activator of the c-Jun N-terminal kinases. As opposed to other components of this pathway, very little is currently known regarding the mechanisms by which DLK is regulated in mammalian cells. Here we identify the stress-inducible heat shock protein 70 (Hsp70) as a negative regulator of DLK expression and activity. Support for this notion derives from data showing that Hsp70 induces the proteasomal degradation of DLK when both proteins are co-expressed in COS-7 cells. Hsp70-mediated degradation occurs with expression of wild-type DLK, which functions as a constitutively activated protein in these cells but not kinase-defective DLK. Interestingly, the Hsp70 co-chaperone CHIP, an E3 ubiquitin ligase, seems to be indispensable for this process since Hsp70 failed to induce DLK degradation in COS-7 cells expressing a CHIP mutant unable to catalyze ubiquitination or in immortalized fibroblasts derived from CHIP knock-out mice. Consistent with these data, we have found that endogenous DLK becomes sensitive to CHIP-dependent proteasomal degradation when it is activated by okadaic acid and that down-regulation of Hsp70 levels with an Hsp70 antisense attenuates this sensitivity. Therefore, our studies suggest that Hsp70 contributes to the regulation of activated DLK by promoting its CHIP-dependent proteasomal degradation.  相似文献   

19.
Volloch V  Gabai VL  Rits S  Sherman MY 《FEBS letters》1999,461(1-2):73-76
A major inducible heat shock protein, Hsp72, has previously been found to stimulate dephosphorylation (inactivation) of stress kinase JNK in heat-shocked cells and protect them from apoptosis. Using Rat-1 fibroblasts with constitutive expression of a human Hsp72 or its deletion mutant lacking an ATPase domain (C-terminal fragment (CTF)), we tested whether ATPase activity of Hsp72 is necessary for these effects. We found that expression of CTF markedly increased, similarly to the intact protein, JNK dephosphorylation in heat-shocked cells. As a result, JNK inactivation following heat shock occurred much faster in cells expressing either full-length or mutant Hsp72 than in parental cells and this was accompanied by suppression of heat-induced apoptosis. Thus, protein refolding activity of Hsp72 appears to be dispensable for its effect on JNK inactivation and apoptosis.  相似文献   

20.
Promoting the degradation of Hsp90 client proteins by inhibiting Hsp90, an important protein chaperone, has been shown to be a promising new anticancer strategy. In this study, we show that an oxazoline analogue of apratoxin A (oz-apraA), a cyclodepsipeptide isolated from a marine cyanobacterium, promotes the degradation of Hsp90 clients through chaperone-mediated autophagy (CMA). We identify a KFERQ-like motif as a conserved pentapeptide sequence in the kinase domain of epidermal growth factor receptor (EGFR) necessary for recognition as a CMA substrate. Mutation of this motif prevents EGFR degradation by CMA and promotes the degradation of EGFR through the proteasomal pathway in oz-apraA–treated cells. Oz-apraA binds to Hsc70/Hsp70. We propose that apratoxin A inhibits Hsp90 function by stabilizing the interaction of Hsp90 client proteins with Hsc70/Hsp70 and thus prevents their interactions with Hsp90. Our study provides the first examples for the ability of CMA to mediate degradation of membrane receptors and cross talks of CMA and proteasomal degradation mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号