首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Simian virus 40 (SV 40) stimulated a host cell antigen in the centriolar region after infection of African green monkey kidney (AGMK) cells. The addition of puromycin and actinomycin D to cells infected with SV40 within 5 h after infection inhibited the stimulation of the host cell antigen, indicating that de novo protein and RNA syntheses that occurred within the first 5 h after infection were essential for the stimulation. Early viable deletion mutants of SV40 with deletions mapping between 0.54 and 0.59 map units on the SV40 genome, dl2000, dl2001, dl2003, dl2004, dl2005, dl2006, and dl2007, did not stimulate the centriolar antigen above the level of uninfected cells. This indicated that an intact, functional small-t protein was essential for the SV40-mediated stimulation of the host cell antigen. Our studies, using cells infected with nondefective adenovirus-SV40 hybrid viruses that lack the small-t gene region of SV40 (Ad2+ND1, Ad2+ND2, Ad2+ND3, Ad2+ND4, and Ad2+ND5), revealed that the lack of small-t gene function of SV40 could be complemented by a gene function of the adenovirus-SV40 hybrid viruses for the centriolar antigen stimulation. Thus, adenovirus 2 has a gene(s) that is analogous to the small-t gene of SV40 for the stimulation of the host cell antigen in AGMK cells.  相似文献   

3.
The Ad2+ND4 virus is an adenovirus type 2 (Ad2)-simian virus 40 (SV40) recombination. The Ad2 genome of this recombinant has a rearrangement within early region 3; Ad2 DNA sequences between map positions 81.3 and 85.5 have been deleted, and the SV40 DNA sequences between map positions 0.11 and 0.626 have been inserted into the deletion in an 81.3-0.626 orientation. Nonhybrid Ad2 is defective in monkey cells; however, the Ad2+ND4 virus can replicate in monkey cells due to the expression of the SV40-enhancing function encoded by the DNA insert. Stocks of the Ad2+ND4 hybrid were produced in primary monkey cells by using the progeny of a three-step plaque purification procedure and were considered to be homogeneous populations of Ad2+ND4 virions because they induced plaques in primary monkey cells by first-order kinetics. By studying the kinetics of plaque induction in continuous lines (BSC-1 and CV-1) of monkey cells, we have found that stocks (prepared with virions before and after plaque purification) of Ad2+ND4 are actually heterogeneous populations of Ad2+ND4 virions and Ad2+ND4 deletion variants that lack SV40 and frequently Ad2 DNA sequences at the left Ad2-SV40 junction. Due to the defectiveness of the Ad2+ND4 virus, the production of progeny in BSC-1 and CV-1 cells requires complementation between the Ad2+ND4 genome and the genome of an Ad2+ND4 deletion variant. Since the deletion variants that have been obtained from Ad2+ND4 stocks do not express the SV40-enhancing function in that they cannot produce progeny in monkey cells, we conclude that they are providing an Ad2 component that is essential for the production of Ad2+ND4 progeny. These data imply that the Ad2+ND4 virus is incapable of replicating in singly infected primary monkey cells without generating deletion variants that are missing various amounts of DNA around the left Ad2-SV40 junction in the hybrid genome. As the deletion variants that arise from the Ad2+ND4 virus are created by nonhomologous DNA recombination, the generation of deletion variants in monkey cells infected with Ad2+ND4 may be a useful model for studying this process.  相似文献   

4.
Four new nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid viruses have been isolated. Although these viruses (designated Ad2(+)ND(2), Ad2(+)ND(3), Ad2(+)ND(4), and Ad2(+)ND(5)) were clonal derivatives of the same Ad2-SV40 hybrid population, they differ significantly from each other and from the previously isolated nondefective hybrid, Ad2(+)ND(1), in their biological properties or in the amount of SV40-specific RNA induced during lytic infection.Like Ad2(+)ND(1), Ad2(+)ND(2), and Ad2(+)ND(4) pass serially in both human embryonic kidney (HEK) and primary African green monkey kidney cells. In contrast, Ad2(+)ND(3) and Ad2(+)ND(5) pass serially only in HEK cells. Ad2(+)ND(2) is like Ad2(+)ND(1) in that it induces the SV40 U antigen, but not SV40 T antigen; however, in contrast to the perinuclear SV40 antigen induced by Ad2(+)ND(1), the SV40 antigen induced by Ad2(+)ND(2) is located peripherally in the cytoplasm as well as in the perinuclear region of infected cells. Ad2(+)ND(4) induces both the SV40 T and U antigens. Ad2(+)ND(3) and Ad2(+)ND(5) do not induce serologically detectable SV40 antigens and are distinguished from each other on the basis of the relative quantities of SV40-specific RNA which they induce. The induction of different SV40-specific functions suggests the incorporation of different segments of SV40 DNA within the genomes of the respective hybrid viruses.  相似文献   

5.
The nondefective adenovirus type 2 (Ad2)-simian virus 40 (SV40) hybrid viruses, Ad2+ND2 and Ad2+ND4, have been used to determine which regions of the SV40 genome coding for the large tumor (T) antigen are involved in specific and nonspecific DNA binding. Ad2+ND2 encodes 45,000 M4 (45K) and 56,000 Mr (56K) T antigen-related polypeptides. The 45K polypeptide did not bind to DNA, but the 56K polypeptide bound nonspecifically to calf thymus DNA, Ad2+ND4 encodes 50,000 Mr (60K), 66,000 Mr (66K), 70,000 Mr (70K), 74,000 Mr (74K), and 90,000 Mr (90K) T antigen-related polypeptides, all of which bound nonspecifically to calf thymus DNA. However, in more stringent assays, where tight binding to viral origin sequences was tested, only the 90K protein specified by Ad2A+ND4 showed specific high affinity for sequences at the viral origin of replication. From these results and previously published experiments describing the SV40 DNA integrated into these hybrid viruses, it was concluded that SV40 early gene sequences located between 0.39 and 0.44 SV40 map units contribute to nonspecific DNA binding, whereas sequences located between 0.50 and 0.63 SV40 map units are necessary for specific binding to the viral origin of replication.  相似文献   

6.
Mapping of Simian Virus 40 Early Functions on the Viral Chromosome   总被引:40,自引:35,他引:5       下载免费PDF全文
The simian virus 40 (SV40) DNA segment in the nondefective adenovirus 2-SV40 hybrid, Ad2(+)ND(4), is colinear with the segment between 0.11 and 0.59 SV40 fractional length from the site at which the R(1) restriction endonuclease cleaves SV40 DNA. This specifies the region of the SV40 DNA molecule which induces the early SV40 antigens: U antigen, tumor specific transplantation antigen, and T antigen. A variant of Ad2(+)ND(4), called Ad2(+)ND(4del), was found which has a deletion of the DNA segment between 0.50 and 0.57 SV40 fractional length from the R(1) endonuclease cleavage point.  相似文献   

7.
The synthesis of simian virus 40 (SV40)-specific proteins in HeLa cells infected with the nondefective adenovirus 2 (Ad2)-SV40 hybrid viruses, Ad2+ND2, Ad2+ND3, Ad2+ND4, and Ad2+ND5, was investigated. Infected-cell proteins were labeled with radioactive amino acids late after infection, when host protein synthesis was shut off, and analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. All polypeptides normally seen in Ad2-infected cells were found in cells infected by the hybrid viruses. In addition to the Ad2-specific proteins, cells infected with Ad2+ND2 contain two SV40-specific proteins with apparent molecular weights of 42,000 and 56,000, cells infected with Ad2+ND4 contain one protein with an apparent molecular weight of 56,000, and cells infected with Ad2+ND5 contain one protein with an apparent molecular weight of 42,000. Cells infected with Ad2+ND3 do not contain detectable amounts of proteins not seen during Ad2 infection. Pulse-chase experiments demonstrate that the SV40-specific proteins induced by Ad2+ND2, Ad2+ND4, and Ad2+ND5 are metabolically unstable. These proteins are not present in purified virions. Two nonstructural Ad2-specific proteins have been demonstrated in Ad2 and hybrid virus-infected cells which have a smaller apparent molecular weight after a short pulse than after a pulse followed by a chase. The molecular weight increase during the chase may be caused by the addition of carbohydrate to a polypeptide backbone.  相似文献   

8.
The nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid virus, Ad2(+)ND(1), does not induce heat-labile SV40 T antigen but does induce a previously uncharacterized heat-stable SV40 antigen-the SV40 "U" antigen. This antigen is detectable by both immunofluorescence and complement fixation by using sera from hamsters with SV40 tumors. Sera from hamsters bearing SV40 tumors can be divided into two groups, those that react with both SV40 T and U antigens (T(+)U(+) sera) and those that react with SV40 T antigen only (T(+)U(-) sera). SV40 U-specific sera from monkeys immunized with Ad2(+)ND(1)-infected cells do not react with SV40 T antigen by immunofluorescence but do react with an antigen in the nucleus of SV40-transformed cells and with an early, cytosine arabinoside-resistant antigen present in the nucleus of SV40-infected cells. A heat-stable SV40 antigen detectable by complement fixation with T(+)U(+) hamster sera is present in extracts of SV40-induced hamster tumors and in cell packs of SV40-infected or -transformed cells. SV40 U-antigen synthesis by Ad2(+)ND(1) virus is partially sensitive to inhibitors of deoxyribonucleic acid synthesis, whereas U-antigen synthesis by SV40 virus is an early cytosine arabinoside-resistant event. As an early SV40 antigen differing from SV40 T antigen, U antigen may play a role in malignant transformation mediated by SV40.  相似文献   

9.
To sort out possible influences of protein sequences and fatty acid acylation on the plasma membrane association of simian virus 40 large T-antigen, we have analyzed the membrane interactions of carboxy-terminal fragments of large T-antigen, encoded by the adenovirus type 2 (Ad2+)-simian virus 40 hybrid viruses Ad2+ND1 and Ad2+ND2. The 28,000 (28K)-molecular-weight protein of Ad2+ND1 as well as the 42K and 56K proteins of Ad2+ND2 associate preferentially with membranous structures and were found in association with the membrane system of the endoplasmic reticulum and with plasma membranes. Neither the endoplasmic reticulum membrane- nor the plasma membrane-associated 28K protein of Ad2+ND1 is fatty acid acylated. We, therefore, conclude that fatty acid acylation is not necessary for membrane association of this protein and suggest that an amino acid sequence in this protein is responsible for its membrane interaction. In contrast, the 42K and 56K proteins of Ad2+ND2 in plasma membrane fractions contain fatty acid. However, the interaction of these proteins with the plasma membrane differs from that of the 28K protein of Ad2+ND1: whereas the 28K protein of Ad2+ND1 interacts stably with Nonidet P-40-soluble constituents of the plasma membrane, the 42K and 56K proteins of Ad2+ND2 are tightly bound to the Nonidet P-40-insoluble plasma membrane lamina. Thus, an amino acid sequence in the amino-terminal region of the 28K protein confers membrane affinity to these proteins, whereas a region between the amino-terminal end of the 42K protein of Ad2+ND2 and the amino-terminal end of the 28K protein of Ad2+ND1 contains a reactive site for fatty acid acylation. This posttranslational modification correlates with the stable association of the 42K and 56K proteins with the plasma membrane lamina. We suggest that the same sequences also mediate the proper plasma membrane association of large T-antigen in simian virus 40-transformed cells.  相似文献   

10.
The distribution of simian virus 40 (SV40)-specific proteins in nuclear subfractions of pulse-chase-labeled HeLa cells infected with nondefective adenovirus type 2 (Ad2)-SV40 hybrid viruses was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The SV40-specific proteins of Ad2+ND1, Ad2+ND2, and Ad2+ND5 specifically associate with the nuclear matrix and are virtually absent from the high-salt nuclear extract. In Ad2+ND4-infected HeLa cells, the SV40-specific proteins with molecular weights of 64,000 (64K) and lower also specifically associate with the nuclear matrix. The SV40-specific 72K, 74K, and 95K proteins were found both in the nuclear matrix and in the high-salt nuclear extract. Analyses of the nuclear matrices isolated from hybrid virus-infected cells by immunofluorescence microscopy showed that SV40 U-antigen-positive sera from SV40 tumor-bearing hamsters react with SV40-specific proteins integrated into nuclear matrices of HeLa cells infected by Ad2+ND1, Ad2+ND2, and Ad2+ND4, but not with nuclear matrices of HeLa cells infected by Ad2+ND5. This suggests that SV40-specific proteins of Ad2+ND1, Ad2+ND2, and Ad2+ND4 integrated into the nuclear matrix carry SV40 U-antigen determinants. The apparent discrepancy in the subcellular localization of SV40-specific proteins in hybrid virus-infected cells when analyzed by biochemical cell fractionation procedures and when analyzed by immunofluorescence staining is discussed.  相似文献   

11.
HeLa cells infected with the nondefective adenovirus type 2-simian virus 40 hybrid viruses Ad2+ND1 or Ad2+ND2 were analyzed for cell surface location of the SV40-specific hybrid virus proteins by indirect immunofluorescence microscopy. Two different batches of sera from SV40 tumor-bearing hamsters, serum from SV40 tumor-bearing mice, or two different antisera prepared against purified sodium dodecyl sulfate-denatured SV40 T-antigen, respectively, were used. All sera were shown to exhibit comparable T- and U-antibody titers and to specifically immunoprecipitate the SV40-specific proteins from cell extracts of Ad2+ND2-infected cells. Whereas analysis of living, hybrid virus-infected HeLa cells did not yield conclusive results, analysis of Formalin-fixed cells resulted in positive cell surface fluorescence with both Ad2+ND1- and Ad2+ND2-infected HeLa cells when antisera prepared against sodium dodecyl sulfate-denatured SV40 T-antigen were used as first antibody. In contrast, sera from SV40 tumor-bearing animals were not or only very weakly able to stain the surfaces of these cells. The fact that the tumor sera had comparable or even higher T- and U-antibody titers than the antisera against sodium dodecyl sulfate-denatured T-antigen but were not able to recognize SV40-specific proteins on the cell surface suggests that SV40 tumor-specific transplantation antigen may be an antigenic entity different from T- or U-antigen.  相似文献   

12.
HeLa cells infected with adenovirus type 2 (Ad2)-simian virus 40 (SV40) hybrid viruses produce several SV40-specific proteins. These include the previously reported 28,000-dalton protein of Ad2+ND1, and 42,000- and 56,000-dalton proteins of Ad2+ND2, the 56,000-dalton protein of Ad2+ND4, and the 42,000-dalton protein of Ad2+ND5. In this report, we extend the list of SV40-specific proteins induced by Ad2+ND4 to include proteins of apparent molecular weights of 28,000 42,000, 60,000, 64,000, 72,000, 74,000, and a doublet of 95,000. Cell fractionation studies demonstrate that the SV40-specific proteins are detectable in the nuclear, cytoplasmic, and plasma membrane fractions. By pulse-chase and cell fractionation experiments, three classes of SV40-specific proteins can be distinguished with regard to metabolic stability: (i) unstable in the cytoplasmic but stable in the nuclear and plasma membrane fractions; (ii) stable in the nuclear, cytoplasmic, and plasma membrane fractions; and (iii) unstable in all subcellular fractions. Immunoprecipitation of infected cell extracts demonstrates that most of the above proteins share antigenic determinants with proteins expressed in hamsters bearing SV40-induced tumors. Only the 42,000-dalton protein of Ad2+ND5 is not immunoprecipitable.  相似文献   

13.
Human adenoviruses fail to multiply effectively in monkey cells. The block to the replication of these viruses can be overcome by coinfection with simian virus 40 (SV40) or when part of the SV40 genome is integrated into and expressed as part of the adenovirus type 2 (Ad2) genome, as occurs in several Ad2+SV40 hybrid viruses, such as Ad2+ND1, Ad2+ND2, and Ad2+ND4. The SV40 helper-defective Ad2+SV40 hybrid viruses Ad2+ND5 and Ad2+ND4del were analyzed to determine why they are unable to grow efficiently in monkey cells even though they contain the appropriate SV40 genetic information. Characterization of the Ad2+ND5-SV40-specific 42,000-molecular-weight (42K) protein revealed that this protein is closely related, but not identical, to the SV40-specific 42K protein of the SV40 helper-competent Ad2+ND2 hybrid virus. Although the minor differences between these proteins may be sufficient to account for the poor growth of Ad2+ND5 in monkey cells, the most striking difference between helper-competent Ad2+ND2 and helper-defective Ad2+ND5 is in the production of the SV40-specific protein after infection of monkey cells. Whereas synthesis of the SV40-specific proteins of Ad2+ND2 is very similar in human and in monkey cells, production of the 42K protein of Ad2+ND5 is dramatically reduced in monkey cells compared with human cells. Similarly, the synthesis of the SV40-specific proteins of Ad2+ND4del is markedly reduced in monkey cells. Thus, it is likely that both Ad2+ND5 and Ad2+ND4del are helper defective because of a block in the production of their SV40-specific proteins rather than because their SV40-specific proteins are nonfunctional. This block, like the block to adenovirus fiber synthesis, is overcome by coinfection with SV40, with helper-competent hybrid viruses, or with host range mutants of adenoviruses. This suggests that the synthesis of fiber and the synthesis of SV40-specific proteins are similarly regulated in Ad2+SV40 hybrid viruses.  相似文献   

14.
Ad2+ND4del is an adenovirus type 2-simian virus 40 hybrid virus nondefective for growth in human cells. The virus was first observed when stocks of Ad2+ND4, a hybrid isolated from primary monkey kidney cells, were propagated in human cells. This paper describes the DNA sequence at two sites of DNA recombination, the site of the left adenovirus type 2-simian virus 40 junction and the site of a deletion of internal simian virus 40 sequences. Since the deletion was observed when the virus was switched from monkey to human cells, an analysis of gene expression in the region of DNA rearrangement may prove useful for the elucidation of molecular events that accompany virus growth in different hosts.  相似文献   

15.
16.
A series of viable recombinants between adenovirus 2 (Ad2) and simian virus 40 (SV40) (nondefective Ad2-SV40 hybrids) have been isolated. The members of this series (designated Ad2(+)ND(1) through Ad2(+)ND(5)) differ from one another in the early SV40-specific antigens and the SV40-specific RNA species which they induce in infected cells. They also contain different amounts of SV40 DNA as shown by RNA-DNA hybridization techniques. We have examined the structure of the DNA molecules from these hybrids, using electron microscope heteroduplex mapping techniques. Each hybrid was found to contain a single segment of SV40 DNA of characteristic size covalently inserted at a unique location in the adenovirus 2 DNA molecule. The SV40 segments of the various hybrids formed an overlapping series with a common end point. When the results of the electron microscopic study were combined with data on antigen induction, it was found that a self-consistent map could be constructed which related specific regions of the SV40 genome to the induction of specific antigens. The order of these early SV40 antigen inducing regions in the SV40 DNA segments contained in the nondefective hybrids is: U antigen, tumor specific transplantation antigen, and T antigen with the U antigen region being nearest the common end point.  相似文献   

17.
Two of the five nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrids induce SV40 transplantation resistance in immunized hamsters. These two hybrids, Ad2(+)ND(2) and Ad2(+)ND(4), contain 32 and 43% of the SV40 genome, respectively. The pattern of induction of SV40 transplantation antigen (TSTA) by the various hybrids differentiates TSTA from both SV40 U and T antigens. Since the SV40 RNA induced by both these hybrids is early SV40 RNA, these findings confirm that TSTA is an early SV40 function. By combining available data on SV40 antigen induction by these hybrids with electron microscopy heteroduplex mapping studies, the DNA segment responsible for the induction of SV40 TSTA can be inferred to lie in the region between 0.17 and 0.43 SV40 units from the site on the SV40 chromosome cleaved by E. coli R(1) restriction endonuclease.  相似文献   

18.
Simian virus 40 (SV40)-transformed cells and cells infected by the nondefective adenovirus 2(Ad2)-SV40 hybrid viruses Ad2+ND1 and Ad2+ND2 were analyzed for SV40 T- and U-antigens, respectively, using individual hamster SV40 tumor sera or serum for which U-antibodies were removd by absorption. These studies showed that (i) T- and U-antigens can be defined by separate classes of antigenic determinants and (ii) the U-antigenic determinants in SV40-transformed cells and in hybrid virus-infected cells are similar. The apparent discrepancy in the subcellular location of U-antigen in SV40-transformed cells (nuclear location) and in hybrid virus-infected cells (perinuclear location) as determined by immunofluorescence staining of methanol/acetone-fixed cells could be resolved by treating hybrid virus-infected cells with a hypotonic KCl solution before fixation. Upon this treatment hybrid virus-infected cells also showed nuclear U-antigen staining. The possibility of an association of T- and U-antigens with different nuclear subfractions in SV40-transformed cells was investigated. Detergent-cleaned nuclei of SV40-transformed cells were fractionated into nuclear matrices and a DNase-treated, high-salt nuclear extract. Analysis of the nuclear matrices by immunofluorescence microscopy with T+U+ and T+U- hamster SV40 tumor serum revealed that U-antigen remained associated with the nuclear matrices, whereas T-antigen could not be detected in this nuclear subfraction. T-antigen, however, could be immunoprecipitated from nuclear extracts of the SV40-transformed cells.  相似文献   

19.
The genomes of the two nondefective adenovirus 2/simian virus 40 (Ad2/SV 40) hybrid viruses, nondefective Ad2/SV 40 hybrid virus 1 (Ad2+ND1) and nondefective hybrid virus 3 (Ad2+ND3), WERE FORMED BY A DELETION OF ABOUT 5% OF Ad2 DNA and insertion of part of the SV40 genome. We have compared the cytoplasmic RNA synthesized during both the early and late stages of lytic infection of human cells by these hybrid viruses to that expressed in Ad2-infected and SV40-infected cells. Separated strands of the six fragments of 32P-labeled Ad2 DNA produced by cleavage with the restriction endonuclease EcoRI (isolated from Escherichia coli) and the four fragments of 32P-labeled SV40 DNA produced by cleavage with both a restriction nuclease isolated from Haemophilus parainfluenzae, Hpa1, and EcoRI were prepared by electrophoresis of denatured DNA in agarose gels. The fraction of each fragment strand expressed as cytoplasmic RNA was determined by annealing fragmented 32P-labeled strands to an excess of cellular RNA extracted from infected cells. The segment of Ad2 DNA deleted from both hybrid virus genomes is transcribed into cytoplasmic mRNA during the early phase of Ad2 infection. Hence, we suggest that Ad2 codes for at least one "early" gene product which is nonessential for virus growth in cell culture. In both early Ad2+ND1 and Ad2+ND3-infected cells, 1,000 bases of Ad2 DNA adjacent to the integrated SV40 sequences are expressed as cytoplasmic RNA but are not similarly expressed in early Ad2-infected cells. The 3' termini of this early hybrid virus RNA maps in the vicinity of 0.18 on the conventional SV40 map and probably terminates at the same position as early lytic SV40 cytoplasmic RNA. Therefore, the base sequence in this region of SV40 DNA specifies the 3' termini of early messenger RNA present in both hybrid virus and SV40-infected cells.  相似文献   

20.
Cell surface T antigen, detected by a radioimmune assay that uses 125I-labeled Staphylococcus aureus protein A and antibodies against either authentic T antigen or D2 hybrid T antigen, was found in simian virus 40-transformed and -infected cells and in cells infected with an adenovirus-simian virus 40 hybrid, Ad2+D2. In simian virus 40 lytic infection, the surface T antigen appeared at the same time as the nuclear T antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号