首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A differential equation model of vegetative growth of the soyabean plant (Glycine max (L.) Merrill cv. ‘Ransom’)was developed to account for plant growth in a phytotron systemunder variation of root temperature and nitrogen concentrationin nutrient solution. The model was tested by comparing modeloutputs with data from four different experiments. Model predictionsagreed fairly well with measured plant performance over a widerange of root temperatures and over a range of nitrogen concentrationsin nutrient solution between 0.5 and 10.0 mmol in the phytotron environment. Sensitivity analyses revealedthat the model was most sensitive to changes in parameters relatingto carbohydrate concentration in the plant and nitrogen uptakerate. Key words: Glycine max (L.) Merrill, dry matter, nitrogen uptake, partitioning, photosynthesis, respiration, sensitivity analysis  相似文献   

2.
The removal of both cotyledons from soya bean seedlings 10 daysafter sowing, when the primary leaves were unfolded, reducedtheir stem height, branching, leaf production and dry weightat flowering by a similar proportion whether they were nodulatedor nitrate-dependent. Nitrogen assimilation by the shoots ofnitrate-dependent plants was increased by the removal of onecotyledon and reduced by the removal of both cotyledons althoughthese effects were not significant. Both these treatments significantlyincreased the amount of nitrogen in the shoots of nodulatedplants at flowering, mainly by more than doubling the nitrogencontent of their leaves. In contrast, the proportion of thetotal plant nitrogen in the leaves of nitrate-dependent plantswas almost constant. These results suggest that the cotyledonsmarkedly inhibit nitrogen assimilation by nodulated plants butdo not appreciably affect nitrogen assimilation by plants dependentsolely on inorganic nitrogen for their nitrogen supply. Glycine mux (L) Merr., soya bean, cotyledons, nitrogen assimilation, growth  相似文献   

3.
The effects of high (15 mM) and low (0.75 mM) solution nitratelevels on nitrogen metabolism in three genotypes (IL 7A, IL13 and IL 21) of winged beans [Psophocarpus tetragonolobus (L.)DC.] and one genotype (Williams) of soya bean [Glycine max (L.)Merrill] were investigated. Plants were grown for 42 days ina greenhouse in solution culture prior to sampling. The 15 mM nitrate treatment resulted in greater growth of allplant parts except roots. Growth of soya beans was more responsiveto nitrate level than was growth of winged beans. The high nitratelevel inhibited nodulation in all plants. The IL 13 and IL 21winged bean genotypes had similar nitrogenase activity (acetylenereduction per plant) as the soya bean and IL 7A winged beangenotype had lower activity. However, the IL 13 winged beangenotype had higher nitrogenase activity (acetylene reductionper unit nodule mass) than the other three genotypes which allhad similar activity. The 15 mM solution nitrate level stimulatedleaf and root nitrate reductase (NR) activity for all plants.All winged bean genotypes had higher leaf NR activity and higherpercentage reduced- and nitrate-nitrogen contents of leavesand stems compared with soya beans. However, total protein (reducednitrogen) was greater in soya beans when sampled indicatingthat more nitrate had been metabolized by soya beans than bywinged beans during the 42-day growth period. Psophocarpus tetragonolobus (L.) DC., winged bean, Glycine max (L.) Merrill, Soya bean, nitrate reductase, nitrogen fixation, nitrogenase activity, nodulation  相似文献   

4.
STREETER  J. G. 《Annals of botany》1981,48(4):441-450
The concentration of carbohydrates in tap root nodules fromfield-grown soya bean [Glycine max (L.) Merr.] plants was verysimilar to the concentration of compounds previously reportedin greenhouse-grown nodules during vegetative growth of seedlings.The concentration of D-pinitol, sucrose and starch in nodulesdeclined during rapid fruit growth, but the concentration ofother compounds did not decline. The availability of carbohydratein nodules during fruit growth did not seem likely to be thecause of the decline in nitrogen-fixing activity of noduleswhich has been reported by others. All compounds except glucoseand , -trehalose declined to concentrations near zero duringa 10-day period of nodule decay. However, the decline in carbohydratedid not appear to cause nodule senescence because it did notprecede the period of decay and because decayed nodules containedsubstantial quantities of glucose and , -trehalose. Seasonalmean concentrations (72 samples from 24 dates) of compounds,in mg carbohydrate per g f. wt of nodule, were: sucrose, 2.84;D-pinitol, 1.14; D-chiro-inositol, 1.27; glucose, 1.40; , -trehalose,1.34; myo-inositol, 0.65; maltose, 0.31; and fructose, 0.21. Quantities of sugars and cyclitols in stem exudate collectedin the field on 13 dates were small (< 10 percent) relativeto the quantity of nitrogenous compounds transported from rootsto shoots. The seasonal pattern of pinitol transport in thexylem was very similar to the seasonal pinitol concentrationin nodules. A large increase in sugar concentration in stemexudate subsequent to 80 days after planting supports the viewthat lack of carbohydrate was not a cause of nodule senescence. Glycine max (L.) Merr, soya bean, cyclitols, , -trehalose, starch, D-pinitol, carbohydrates, root nodules, senescence  相似文献   

5.
YAMAGUCHI  T.; STREET  H. E. 《Annals of botany》1977,41(6):1129-1133
Excised root cultures of soya bean cultured at 30 °C inWhite's medium (1943) supplemented with 0•1 per cent yeastextract have been serially sub-cultured over 13 culture passagesof 7 days although a decline in the linear growth and lateralformation begins in the third passage and the roots are devoidof laterals from the 8th passage onwards. Applications of abscisicacid within the concentration range 0•01–0•001mg l–1 and during the first two culture passages enhancedthe linear growth of the main axis, the number of emergent lateralsand the total length of laterals. This effect has been shownfor two cultivars, with roots derived from seed in both itsfirst and second year of storage and under different conditionsof culture and culture pH.  相似文献   

6.
Maize(Zea mays L.) plants were grown in a greenhouse with differentlevels of nitrate-N (2 to 20 millimolar). Nitrogen nutritionhad dramatic effects on plant growth and photosynthetic characteristicsof mature leaves. Increasing nitrogen resulted in greater biomassproduction, shoot/root ratios, and rates of leaf expansion duringthe day. The elongating zone of high-N plants had higher activities(per gram fresh weight) of sucrose synthase and neutral invertasethan low-N plants, suggesting that increased leaf growth wasrelated to a greater biochemical capacity for sucrose metabolism. Mature leaves of high-N plants had higher rates of photosynthesisand assimilate export (sucrose formation), and partitioned morecarbon into sucrose relative to starch. Increased photosyntheticrates (leaf area basis) were associated with higher levels ofribulose-l,5-bisphosphate carboxylase, phosphoenolpyruvate carboxylaseand pyruvate, phosphate dikinase (determined immunochemically).In addition, N-nutrition affected the functional organizationof chlorophyll in the leaves. Large increases in the numberof PS I reaction centers were observed which fully accountedfor increases in leaf chlorophyll content with increasing nitratesupply. Collectively, the results suggest that increased growth of maizeplants at high light and optimal nitrogen nutrition is relatedto greater capacity for photosynthesis and translocation inmature leaves, and possibly increased capacity for sucrose metabolismin expanding leaves. (Received May 22, 1989; Accepted August 28, 1989)  相似文献   

7.
8.
Some Effects of Alternating Temperature on the Growth of French Bean Plants   总被引:1,自引:0,他引:1  
DALE  J. E. 《Annals of botany》1964,28(1):127-135
In the main experiment described plant dry weight and leaf area,relative growth-rate, net assimilation rate (on an area basis),leaf-weight ratio and leafarea ratio were studied for plantsgrown under a range of temperature régimes and in 12-hourdays. Comparisons under conditions where the mean temperaturewas the same showed that final dry weight and leaf area weregreatest at constant temperature and least where the temperaturefluctuated about the mean value. These findings are discussedin relation to the concept of thermoperiodism, and in relationto the significant effects of day and night temperature uponthe development of leaf area.  相似文献   

9.
The effect of nitrogen source on methane-oxidizing bacteria with respect to cellular growth and trichloroethylene (TCE) degradation ability were examined. One mixed chemostat culture and two pure type II methane-oxidizing strains, Methylosinus trichosporium OB3b and strain CAC-2, which was isolated from the chemostat culture, were used in this study. All cultures were able to grow with each of three different nitrogen sources: ammonia, nitrate, and molecular nitrogen. Both M. trichosporium OB3b and strain CAC-2 showed slightly lower net cellular growth rates and cell yields but exhibited higher methane uptake rates, levels of poly-β-hydroxybutyrate (PHB) production, and naphthalene oxidation rates when grown under nitrogen-fixing conditions. The TCE-degrading ability of each culture was measured in terms of initial TCE oxidation rates and TCE transformation capacities (mass of TCE degraded/biomass inactivated), measured both with and without external energy sources. Higher initial TCE oxidation rates and TCE transformation capacities were observed in nitrogen-fixing mixed, M. trichosporium OB3b, and CAC-2 cultures than in nitrate- or ammonia-supplied cells. TCE transformation capacities were found to correlate with cellular PHB content in all three cultures. The results of this study suggest that the nitrogen-fixing capabilities of methane-oxidizing bacteria can be used to select for high-activity TCE degraders for the enhancement of bioremediation in fixed-nitrogen-limited environments.  相似文献   

10.
The plastochron index (PI) has been compared with leaf growthand biomass accumulation in young soya bean plants of severalcultivars that were grown in controlled environments with differentirradiance levels and durations, temperatures, and nitrogen(N) regimes. Increasing the photoperiod from 10 to 16 h day–1 increasedthe plastochron rate (PR) and the proportion of axillary growth.Doubling the photosynthetic photon flux density (PPFD) to 1000µmol m–2S–1, increased PR and the proportionof roots to total plant weight, but decreased the proportionof stems plus petioles to total. In a series of experiments,the plants were grown in an 8 h photoperiod at constant temperaturesof 17, 20, 26 or 32 °C. As temperature increased, PR increased,but the duration of leaf expansion decreased. Leaves were largestat 20 and progressively smaller at 26, 32 and 17 °C. Biomasswas greatest for a given PI at 20 °C and decreased in theorder of 26, 32, and 17 °C. The proportion of axillary growthalso was greatest at 20 °C. When plants were grown in a15 h photoperiod at temperatures from 17.1 to 26.6 °C, leafsize continued to increase up to the highest temperature. At17 °C, the PR in the 15 h photoperiod (PPFD 390 µmol;m–2S–1) was about threefold greater than in 8 h(500 µmol m–2 S–1); biomass accumulation perday was about fivefold greater. Increasing N from 3 to 36 mMincreased PR about 10 per cent, altered biomass partitioningamong plant parts, and increased the biomass of the plants.The NO2 form of N markedly stimulated axillary growth as comparedwith the NH4+ form. Environment or cultivar had little influenceon the duration of leaf expansion in terms of PI. Cultivarsdid not differ consistently in biomass production and allocationin the different environments. Glycine max (L.) Merrill, soybean, soya bean, plastochron index, leaf development, growth analysis, partitioning, light, nitrogen, temperature  相似文献   

11.
去叶对不同生长习性大豆固氮作用的影响   总被引:2,自引:0,他引:2  
生殖生长期开始去叶后 ,(1)有限型、亚有限型和无限型 3种类型的大豆根瘤固氮酶活性都降低 ,而根瘤中酰脲含量则不同程度地增加 ;(2 )有限型大豆幼茎中酰脲含量明显增加 ,但亚有限型和无限型大豆变化不大 ;(3) 3种类型大豆幼茎中硝态氮含量增加明显  相似文献   

12.
Arthrobacter sp. strain JBH1 was isolated from nitroglycerin-contaminated soil by selective enrichment. Detection of transient intermediates and simultaneous adaptation studies with potential intermediates indicated that the degradation pathway involves the conversion of nitroglycerin to glycerol via 1,2-dinitroglycerin and 1-mononitroglycerin, with concomitant release of nitrite. Glycerol then serves as the source of carbon and energy.Nitroglycerin (NG) is manufactured widely for use as an explosive and a pharmaceutical vasodilator. It has been found as a contaminant in soil and groundwater (7, 9). Due to NG''s health effects as well as its highly explosive nature, NG contamination in soils and groundwater poses a concern that requires remedial action (3). Natural attenuation and in situ bioremediation have been used for remediation in soils contaminated with certain other explosives (16), but the mineralization of NG in soil and groundwater has not been reported.To date, no pure cultures able to grow on NG as the sole carbon, energy, and nitrogen source have been isolated. Accashian et al. (1) observed growth associated with the degradation of NG under aerobic conditions by a mixed culture originating from activated sludge. The use of NG as a source of nitrogen has been studied in mixed and pure cultures during growth on alternative sources of carbon and energy (3, 9, 11, 20). Under such conditions, NG undergoes a sequential denitration pathway in which NG is transformed to 1,2-dinitroglycerin (1,2DNG) or 1,3DNG followed by 1-mononitroglycerin (1MNG) or 2MNG and then glycerol, under both aerobic and anaerobic conditions (3, 6, 9, 11, 20), and the enzymes involved in denitration have been characterized in some detail (4, 8, 15, 21). Pure cultures capable of completely denitrating NG as a source of nitrogen when provided additional sources of carbon include Bacillus thuringiensis/cereus and Enterobacter agglomerans (11) and a Rhodococcus species (8, 9). Cultures capable of incomplete denitration to MNG in the presence of additional carbon sources were identified as Pseudomonas putida, Pseudomonas fluorescens (4), an Arthobacter species, a Klebsiella species (8, 9), and Agrobacterium radiobacter (20).Here we describe the isolation of bacteria able to degrade NG as the sole source of carbon, nitrogen, and energy. The inoculum for selective enrichment was soil historically contaminated with NG obtained at a facility that formerly manufactured explosives located in the northeastern United States. The enrichment medium consisted of minimal medium prepared as previously described (17) supplemented with NG (0.26 mM), which was synthesized as previously described (18). During enrichment, samples of the inoculum (optical density at 600 nm [OD600] ∼ 0.03) were diluted 1/16 in fresh enrichment medium every 2 to 3 weeks. Isolates were obtained by dilution to extinction in NG-supplemented minimal medium. Cultures were grown under aerobic conditions in minimal medium at pH 7.2 and 23°C or in tryptic soy agar (TSA; 1/4 strength).Early stages of enrichment cultures required extended incubation with lag phases of over 200 h and exhibited slow degradation of NG (less than 1 μmol substrate/mg protein/h). After a number of transfers over 8 months, the degradation rates increased substantially (2.2 μmol substrate/mg protein/h). A pure culture capable of growth on NG was identified based on 16S rRNA gene analysis (504 bp) as an Arthrobacter species with 99.5% similarity to Arthrobacter pascens (GenBank accession no. GU246730). Purity of the cultures was confirmed microscopically and by formation of a single colony type on TSA plates. 16S gene sequencing and identification were done by MIDI Labs (Newark, DE) and SeqWright DNA Technology Services (Houston, TX). The Arthrobacter cells stained primarily as Gram-negative rods with a small number of Gram-positive cocci (data not shown); Gram variability is also a characteristic of the closely related Arthrobacter globiformis (2, 19). The optimum growth temperature is 30°C, and the optimum pH is 7.2. Higher pH values were not investigated because NG begins to undergo hydrolysis above pH 7.5 (data not shown). The isolated culture can grow on glycerol, acetate, succinate, citrate, and lactate, with nitrite as the nitrogen source. Previous authors described an Arthrobacter species able to use NG as a nitrogen source in the presence of additional sources of carbon. However, only dinitroesters were formed, and complete mineralization was not achieved (9).To determine the degradation pathway, cultures of the isolated strain (5 ml of inoculum grown on NG to an OD600 of 0.3) were grown in minimal medium (100 ml) supplemented with NG at a final concentration of 0.27 mM. Inoculated bottles and abiotic controls were continuously mixed, and NG, 1,2DNG, 1,3DNG, 1MNG, 2MNG, nitrite, nitrate, CO2, total protein, and optical density were measured at appropriate intervals. Nitroesters were analyzed with an Agilent high-performance liquid chromatograph (HPLC) equipped with an LC-18 column (250 by 4.6 mm, 5 μm; Supelco) and a UV detector at a wavelength of 214 nm (13). Methanol-water (50%, vol/vol) was used as the mobile phase at a flow rate of 1 ml/min. Nitrite and nitrate were analyzed with an ion chromatograph (IC) equipped with an IonPac AS14A anion-exchange column (Dionex, CA) at a flow rate of 1 ml/min. Carbon dioxide production was measured with a Micro Oxymax respirometer (Columbus Instruments, OH), and total protein was quantified using the Micro BCA protein assay kit (Pierce Biotechnology, IL) according to manufacturer''s instructions. During the degradation of NG the 1,2DNG concentration was relatively high at 46 and 72 h (Fig. (Fig.1).1). 1,3DNG, detected only at time zero, resulted from trace impurities in the NG stock solution. Trace amounts of 1MNG appeared transiently, and trace amounts of 2MNG accumulated and did not disappear. Traces of nitrite at time zero were from the inoculum. The concentration of NG in the abiotic control did not change during the experiment (data not shown).Open in a separate windowFIG. 1.Growth of strain JBH1 on NG. ×, NG; ▵, 1,2DNG; ⋄, 1MNG; □, 2MNG; ○, protein.Results from the experiment described above were used to calculate nitrogen and carbon mass balances (Tables (Tables11 and and2).2). Nitrogen content in protein was approximated using the formula C5H7O2N (14). Because all nitrogen was accounted for throughout, we conclude that the only nitrogen-containing intermediate compounds are 1,2DNG and 1MNG, which is consistent with previous studies (6, 9, 20). The fact that most of the nitrogen was released as nitrite is consistent with previous reports of denitration catalyzed by reductase enzymes (4, 8, 21). The minor amounts of nitrate observed could be from abiotic hydrolysis (5, 12) or from oxidation of nitrite. Cultures supplemented with glycerol or other carbon sources assimilated all of the nitrite (data not shown).

TABLE 1.

Nitrogen mass balance
Time (h)% of total initial nitrogen by mass recovered ina:
Total recovery (%)
1MNG2MNG1,2DNG1,3DNGNGProteinNitriteNitrate
0NDbND0.9 ± 0.70.8 ± 0.682 ± 5.20.8 ± 0.214 ± 0.70.8 ± 0.3100 ± 5.3
460.1 ± 0.00.8 ± 0.27.9 ± 0.4ND35 ± 3.62.0 ± 0.549 ± 1.11.7 ± 0.096 ± 4.2
720.1 ± 0.00.9 ± 0.24.3 ± 4.2ND5.0 ± 0.43.3 ± 0.281 ± 4.23.9 ± 1.998 ± 6.8
94ND0.6 ± 0.4NDND0.6 ± 0.43.2 ± 0.095 ± 102.6 ± 1.6102 ± 10
Open in a separate windowaData represent averages of four replicates ± standard deviations.bND, not detected.

TABLE 2.

Carbon mass balance
Time (h)% of total initial carbon by mass recovered in:
Total recovery (%)
1MNGa2MNGa1,2DNGa1,3DNGaNGaProteinaCO2b
0NDcND1.6 ± 1.21.9 ± 0.492 ± 5.84.4 ± 0.9100 ± 8.4
460.5 ± 0.22.6 ± 0.613 ± 0.7ND39 ± 3.913 ± 3.028 ± 5.796 ± 14.1
720.4 ± 0.02.9 ± 0.77.3 ± 7.0ND5.6 ± 0.422 ± 1.259 ± 8.397 ± 17.6
94ND2.8 ± 0.3NDND0.8 ± 0.518 ± 0.371 ± 4.593 ± 5.6
Open in a separate windowaData represent averages of four replicates ± standard deviations.bData represent averages of duplicates ± standard deviations.cND, not detected.In a separate experiment cells grown on NG were added to minimal media containing 1,3DNG, 1,2DNG, 1MNG, or 2MNG and degradation over time was measured. 1,2DNG, 1,3DNG, and 1MNG were degraded at rates of 6.5, 3.8, and 8 μmol substrate/mg protein/hour. No degradation of 2MNG was detected (after 250 h), which indicates that 2MNG is not an intermediate in a productive degradation pathway. Because 1,3DNG was not observed at any point during the degradation of NG and its degradation rate is approximately one-half the degradation rate of 1,2DNG, it also seems not to be part of the main NG degradation pathway used by Arthrobacter sp. strain JBH1. The above observations indicate that the degradation pathway involves a sequential denitration of NG to 1,2DNG, 1MNG, and then glycerol, which serves as the source of carbon and energy (Fig. (Fig.2).2). The productive degradation pathway differs from that observed by previous authors using both mixed (1, 3, 6) and pure cultures (4, 9, 11, 20), in which both 1,3- and 1,2DNG were intermediates during NG transformation. Additionally, in previous studies both MNG isomers were produced regardless of the ratio of 1,2DNG to 1,3DNG (3, 4, 6, 9, 20). Our results indicate that the enzymes involved in denitration of NG in strain JBH1 are highly specific and catalyze sequential denitrations that do not involve 1,3DNG or 2MNG. Determination of how the specificity avoids misrouting of intermediates will require purification and characterization of the enzyme(s) involved.Open in a separate windowFIG. 2.Proposed NG degradation pathway.Mass balances of carbon and nitrogen were used to determine the following stoichiometric equation that describes NG mineralization by Arthrobacter sp. strain JBH1: 0.26C3H5(ONO2)3 + 0.33O2 → 0.03C5H7O2N + 0.63CO2 + 0.75NO2 + 0.75H+ + 0.17H2O. The result indicates that most of the NG molecule is being used for energy. The biomass yield is relatively low (0.057 mg protein/mg NG), with an fs (fraction of reducing equivalents of electron donor used for protein synthesis) of 0.36 (10), which is low compared to the aerobic degradation of other compounds by pure cultures, for which fs ranges between 0.4 and 0.6 (10, 14). The results are consistent with the requirement for relatively large amounts of energy during the initiation of the degradation mechanism (each denitration probably requires 1 mole of NADH or NADPH [21]).Although NG degradation rates were optimal at pH 7.2, they were still substantial at values as low as 5.1. The results suggest that NG degradation is possible even at low pH values typical of the subsurface at sites where explosives were formerly manufactured or sites where nitrite production lowers the pH.NG concentrations above 0.5 mM are inhibitory, but degradation was still observed at 1.2 mM (data not shown). The finding that NG can be inhibitory to bacteria at concentrations that are well below the solubility of the compound is consistent with those of Accashian et al. (1) for a mixed culture.The ability of Arthrobacter sp. strain JBH1 to grow on NG as the carbon and nitrogen source provides the basis for a shift in potential strategies for natural attenuation and bioremediation of NG at contaminated sites. The apparent specificity of the denitration steps raises interesting questions about the evolution of the pathway.  相似文献   

13.
GENT  M. P. N. 《Annals of botany》1983,51(3):317-329
The dry weight of the whole fruit, the pod wall and an enclosedseed of randomly harvested soya beans is estimated from theexternal dimensions of the attached pod. The relations betweendimensions and dry weight are independent of cultivar and growthcondition and can be used on pods from 1 cm in length untilthe seeds reach their maximum fresh weight. Dimensions of tagged pods of three cultivars of field grownsoya beans differing in time to reach maturity were measuredevery 2–3 days from initial pod elongation until maturation.Dry weights for each pod were estimated from the dimensions,and the dry weight accumulation with time was fitted to thelogistic function to find the growth rate that best characterizedthe data for each pod. The final weight, the specific growthrate and the maximum growth rate of the whole fruit, the podwall and a single seed were subjected to analysis of variance. The most significant difference between pods of these cultivarswas the specific growth rate of individual seeds, which decreasedwith increasing maturity group. There were no differences ingrowth of the pod wall. However, most of the variation was betweenindividual pods within a cultivar, where the rate of dry weightaccumulation of the whole fruit, governed largely by the seedgrowth rate times the number of seeds, was highly correlatedwith the earlier growth of the pod wall. This suggests thatthe growth of individual whole fruit was determined early inpod development and was slightly influenced by factors appliedduring the period of rapid seed growth. Glycine max (L.) Merrill, Soya bean, seed growth analysis, specific growth rate  相似文献   

14.
Diurnal temperature fluctuations induced change in soya bean-pod[Glycine max (L.) Merr.] carbon exchange rate (CER, where positiveCER represents CO2 evolution). CER appeared to depend linearlyon temperature. Linear regressions of CER on temperature interceptedthe temperature axis at 5°C (i.e. zero CER at 5°C).Slopes of these regressions (i.e. temperature sensitivity) changedover the season. The CER-temperature sensitivity coefficient,K, (calculated from observed values of CER. pod temperatureand temperature intercept) rose from less than 0·02 mgCO2 h–1 pod–1 °C–1 during early pod-flll,peaked at over 0·04 mg CO2 h–1 pod–1 °C–1at mid pod-fill, and then declined during late pod-fill andmaturation. Glycine max (L.) Merr., Soya bean, carbon exchange rate, temperature  相似文献   

15.
The effects of ambiol, a new growth regulator, on stem growth and morphological features of stem development have been compared in regenerants of potato (Solanum tuberosum L., var. Desire) plants transgenic for a defensin gene and in original potato plants. The original and transgenic plants exhibited differences in shoot development, which were observed both in control settings (no ambiol) and in the presence of various ambiol concentrations. In addition to normal plants of both forms, plant regenerants with morphological deviations were present in ambiol-treated groups. It is suggested that the abnormal shoot development observed in original and transgenic potato plants treated with ambiol is associated with (a) hormonal changes caused by expression of the defensin gene in the transgenic plants and (b) effects of ambiol on the hormonal balance of the plants.  相似文献   

16.
BAJAJ  Y. P. S. 《Annals of botany》1970,34(5):1089-1096
Callus-tissue cultures of Phaseolus vulgaris L. were subjectedto various doses of 60Co gamma-irradiation, and its effect ongrowth, total RNA, soluble protein, and nitrogen contents hasbeen studied. The growth of the tissue cultures was stimulatedby low levels of radiation (0.5 krad). However, from 1 to 10krad, there was a gradual and linear decrease in growth. Thecells exhibited a wide variety of shapes and sizes, mitoticinhibition, degeneration of cytoplasm, browning of the cellwall, and reduced plating efficiency. At 20–30 krad growthwas drastically reduced, followed by severe killing of the cellsand cessation of growth at 40 krad. With increase in dosimetry,RNA, and soluble protein continued to decrease. At lower doses(0.5 and 1 krad) there was no significant difference in totalnitrogen of the control and irradiated cultures, however, from2 krad upwards there was a gradual increase in total nitrogenin terms of µg/mg dry weight of the irradiated callus.The results demonstrate that there is a direct correlation betweengrowth, RNA and protein levels. Gamma-irradiation in generalcaused inhibition of tissue culture growth along with failureof RNA, and subsequently of protein synthesis.  相似文献   

17.
The effect of nitrogen source on methane-oxidizing bacteria with respect to cellular growth and trichloroethylene (TCE) degradation ability were examined. One mixed chemostat culture and two pure type II methane-oxidizing strains, Methylosinus trichosporium OB3b and strain CAC-2, which was isolated from the chemostat culture, were used in this study. All cultures were able to grow with each of three different nitrogen sources: ammonia, nitrate, and molecular nitrogen. Both M. trichosporium OB3b and strain CAC-2 showed slightly lower net cellular growth rates and cell yields but exhibited higher methane uptake rates, levels of poly-β-hydroxybutyrate (PHB) production, and naphthalene oxidation rates when grown under nitrogen-fixing conditions. The TCE-degrading ability of each culture was measured in terms of initial TCE oxidation rates and TCE transformation capacities (mass of TCE degraded/biomass inactivated), measured both with and without external energy sources. Higher initial TCE oxidation rates and TCE transformation capacities were observed in nitrogen-fixing mixed, M. trichosporium OB3b, and CAC-2 cultures than in nitrate- or ammonia-supplied cells. TCE transformation capacities were found to correlate with cellular PHB content in all three cultures. The results of this study suggest that the nitrogen-fixing capabilities of methane-oxidizing bacteria can be used to select for high-activity TCE degraders for the enhancement of bioremediation in fixed-nitrogen-limited environments.

Optimal bioremediation conditions within contaminated aquifers are often found to be limited by the availability of nutrients, including nitrogen. Consequently, microorganisms that are capable of degrading contaminants as well as fixing molecular nitrogen as their sole nitrogen source could have a growth advantage in fixed-nitrogen-deficient environments that would be favorable for promoting in situ bioremediation.Trichloroethylene (TCE) is a major groundwater contaminant of concern in the United States due to its suspected carcinogenity and persistence in subsurface environments (31). However, a number of laboratory (1, 4, 13, 16, 18, 19, 22, 23, 2628, 34) and field studies (3, 15, 24, 25) have shown that TCE can be cometabolically transformed into nontoxic end products (CO2 and Cl) by methane-oxidizing bacteria at the expense of reducing energy in the form of NADH. Many studies have also reported that some methane-oxidizing cultures (type II) are able to utilize different sources of nitrogen (N) for cellular growth (32, 33), including molecular nitrogen at reduced oxygen partial pressures (11, 12, 20, 33). The types of methanotrophs that are capable of nitrogen fixation also produce a type of oxygenase (i.e., soluble methane monooxygenase [sMMO]) which exhibits high activity with respect to the oxidation of TCE.Poly-β-hydroxybutyrate (PHB) is an internal reducing-energy storage polymer that can be used as an alternative reducing-energy source by a number of methane-oxidizing cultures under starvation conditions (9). Recently, a number of studies observed a correlation between TCE transformation capacities (Tc; mass of TCE transformed per mass of cells inactivated) and microbial PHB content (7, 16, 17), suggesting that PHB might be used as an alternative NADH source for TCE oxidation by methane-oxidizing bacteria in the absence of growth substrate. It has also been shown that the synthesis of PHB is stimulated in cells grown under nutrient-limited conditions, including nitrogen-fixing conditions (2, 9, 10, 21). As a result of the characteristics of methane-oxidizing microorganisms described above, it may be possible to select for nitrogen-fixing methane oxidizers in fixed-nitrogen-limited subsurface environments such that the burden of nutrient addition to the subsurface for the sustained growth of these contaminant degraders is diminished while contaminant degradation is enhanced during in situ bioremediation.A recent study conducted by us (7) explored the feasibility of using the nitrogen-fixing capabilities of methane oxidizers for the enhancement of bioremediation. Our results suggested that nitrogen-fixing mixed cultures were able to degrade TCE as effectively as nitrate-supplied cultures. Further, higher Tc and higher cellular PHB contents were observed in nitrogen-fixing cultures. Of particular interest were observations of lower TCE product toxicity, measured in terms of methane uptake rates following TCE exposure, for nitrogen-fixing cultures than for nitrate- or ammonia-supplied cultures. Since that study was conducted with mixed cultures, it was difficult to elucidate the reasons for the enhanced degradation performance of the nitrogen-fixing methane oxidizers. An understanding of the effects of nitrogen source on cell growth and TCE degradation ability will be particularly beneficial for designing, operating, and implementing in situ- or ex situ-engineered bioremediation systems. This study evaluates nitrogen source effects on methane-oxidizing bacteria, using two pure strains and one mixed chemostat culture. Nitrogen source effects are examined with regard to cellular growth, specific methane uptake rates, specific naphthalene oxidation rates, and TCE degradation ability.  相似文献   

18.
Three soya-bean (Glycine max) cell-wall enzymes (ß-glucosidase,pectin methyl esterase and phosphatase) have been found to beglycoproteins. The polyclonal antibodies raised against pectinmethyl esterase and ß-glucosidase lacked specificity,cross-reacted highly with native enzymes and also both reactedwith pure soya-bean phosphatase, horseradish peroxidase andhoneybee venom phospholipase A2. They did not react with eithernon-glycosylated bacterial phosphatase or deglycosylated cell-wallenzymes. The two antisera contained both non-specific anti-glycanantibodies and specific anti-polypeptide antibodies that werequantified. Antiglycan antibodies specific to 1–3 fucoseand ß1–2 xylose were detected in both antiseraand were separated and quantified. The occurrence of terminalfucose (and mannose) was confirmed with specific lectins. Theseresults indicate that most of the common glycan epitopes probablycorrespond to the asparagine-linked complex glycan previouslydetected in several glycoproteins of plants as well as in thoseof molluscs and insects. (Received March 10, 1993; Accepted November 5, 1993)  相似文献   

19.
A method of continuous in vivo measurement of photo-assimilatepartitioning within an intact plant is proposed. The methodis demonstrated by analysis of photo-assimilate movement betweena pea pod to a single ovule and then to solution bathing thesurgically modified seed coat Key words: Photo-assimilate partitioning, partitioning coefficient, seed coat unloading, systems identification  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号