首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Type III interferons (IFNs) (interleukin-28/29 or lambda interferon [IFN-lambda]) are cytokines with IFN-like activities. Here we show that several classes of viruses induce expression of IFN-lambda1 and -lambda2/3 in similar patterns. The IFN-lambdas were-unlike alpha/beta interferon (IFN-alpha/beta)-induced directly by stimulation with IFN-alpha or -lambda, thus identifying type III IFNs as IFN-stimulated genes. In vitro assays revealed that IFN-lambdas have appreciable antiviral activity against encephalomyocarditis virus (EMCV) but limited activity against herpes simplex virus type 2 (HSV-2), whereas IFN-alpha potently restricted both viruses. Using three murine models for generalized virus infections, we found that while recombinant IFN-alpha reduced the viral load after infection with EMCV, lymphocytic choriomeningitis virus (LCMV), and HSV-2, treatment with recombinant IFN-lambda in vivo did not affect viral load after infection with EMCV or LCMV but did reduce the hepatic viral titer of HSV-2. In a model for a localized HSV-2 infection, we further found that IFN-lambda completely blocked virus replication in the vaginal mucosa and totally prevented development of disease, in contrast to IFN-alpha, which had a more modest antiviral activity. Finally, pretreatment with IFN-lambda enhanced the levels of IFN-gamma in serum after HSV-2 infection. Thus, type III IFNs are expressed in response to most viruses and display potent antiviral activity in vivo against select viruses. The discrepancy between the observed antiviral activity in vitro and in vivo may suggest that IFN-lambda exerts a significant portion of its antiviral activity in vivo via stimulation of the immune system rather than through induction of the antiviral state.  相似文献   

3.
The P/C mRNA of Sendai virus (SeV) encodes a nested set of accessory proteins, C', C, Y1, and Y2, referred to collectively as C proteins, using the +1 frame relative to the open reading frame of phospho (P) protein and initiation codons at different positions. The C proteins appear to be basically nonstructural proteins as they are found abundantly in infected cells but greatly underrepresented in the virions. We previously created a 4C(-) SeV, which expresses none of the four C proteins, and concluded that the C proteins are categorically nonessential gene products but greatly contribute to viral full replication and infectivity (A. Kurotani et al., Genes Cells 3:111-124, 1998). Here, we further characterized the 4C(-) virus multiplication in cultured cells. The viral protein and mRNA synthesis was enhanced with the mutant virus relative to the parental wild-type (WT) SeV. However, the viral yields were greatly reduced. In addition, the 4C(-) virions appeared to be highly anomalous in size, shape, and sedimentation profile in a sucrose gradient and exhibited the ratios of infectivity to hemagglutination units significantly lower than those of the WT. In the WT infected cells, C proteins appeared to colocalize almost perfectly with the matrix (M) proteins, pretty well with an external envelope glycoprotein (hemagglutinin-neuraminidase [HN]), and very poorly with the internal P protein. In the absence of C proteins, there was a significant delay of the incorporation of M protein and both of the envelope proteins, HN and fusion (F) proteins, into progeny virions. These results strongly suggest that the accessory and basically nonstructural C proteins are critically required in the SeV assembly process. This role of C proteins was further found to be independent of their recently discovered function to counteract the antiviral action of interferon-alpha/beta. SeV C proteins thus appear to be quite versatile.  相似文献   

4.
The Sendai virus C proteins, C', C, Y1, and Y2, are a nested set of independently initiated carboxy-coterminal proteins translated from a reading frame overlapping the P frame on the P mRNA. The C proteins are extremely versatile and have been shown to counteract the antiviral action of interferons (IFNs), to down-regulate viral RNA synthesis, and to promote virus assembly. Using the stable cell lines expressing the C, Y1, Y2, or truncated C protein, we investigated the region responsible for anti-IFN action and for down-regulating viral RNA synthesis. Truncation from the amino terminus to the middle of the C protein maintained the inhibition of the signal transduction of IFNs, the formation of IFN-stimulated gene factor 3 (ISGF3) complex, the generation of the anti-vesicular stomatitis virus state, and the synthesis of viral RNA, but further truncation resulted in the simultaneous loss of all of these inhibitory activities. A relatively small truncation from the carboxy terminus also abolished all of these inhibitory activities. These data indicated that the activities of the C protein to counteract the antiviral action of IFNs and to down-regulate viral RNA synthesis were not encoded within a region of at least 98 amino acids in its amino-terminal half.  相似文献   

5.
Ebola virus (EBOV) infection blocks cellular production of alpha/beta interferon (IFN-alpha/beta) and the ability of cells to respond to IFN-alpha/beta or IFN-gamma. The EBOV VP35 protein has previously been identified as an EBOV-encoded inhibitor of IFN-alpha/beta production. However, the mechanism by which EBOV infection inhibits responses to IFNs has not previously been defined. Here we demonstrate that the EBOV VP24 protein functions as an inhibitor of IFN-alpha/beta and IFN-gamma signaling. Expression of VP24 results in an inhibition of IFN-induced gene expression and an inability of IFNs to induce an antiviral state. The VP24-mediated inhibition of cellular responses to IFNs correlates with the impaired nuclear accumulation of tyrosine-phosphorylated STAT1 (PY-STAT1), a key step in both IFN-alpha/beta and IFN-gamma signaling. Consistent with this proposed function for VP24, infection of cells with EBOV also confers a block to the IFN-induced nuclear accumulation of PY-STAT1. Further, VP24 is found to specifically interact with karyopherin alpha1, the nuclear localization signal receptor for PY-STAT1, but not with karyopherin alpha2, alpha3, or alpha4. Overexpression of VP24 results in a loss of karyopherin alpha1-PY-STAT1 interaction, indicating that the VP24-karyopherin alpha1 interaction contributes to the block to IFN signaling. These data suggest that VP24 is likely to be an important virulence determinant that allows EBOV to evade the antiviral effects of IFNs.  相似文献   

6.
7.
A direct comparison of the inhibitory effects of alpha, beta, and gamma interferons (IFNs) on replication of a hepatitis C virus subgenomic replicon in a hepatoma cell line revealed similarities in antiviral potency. However, alternate IFN-induced antiviral mechanisms were suggested following observations of striking differences between IFN-gamma and IFN-alpha/beta with respect to strength and durability of the antiviral response and the magnitude and pattern of IFN-mediated gene expression.  相似文献   

8.
9.
The finding that interferon-gamma (IFN-gamma) may require two rounds of protein synthesis to induce the antiviral state raises the possibility that this IFN may not be directly antiviral. We, therefore, examined the possibility that IFN-gamma induces one or both of the other IFNs (alpha and/or beta) which in turn induce the antiviral state. Evidence is presented showing that under certain conditions a large portion of IFN-gamma's antiviral activity in mouse L-929 cells is mediated by its induction of IFN-alpha based on the findings that: 1) the antiviral activity of IFN-gamma in cells at low densities can be blocked by poly and monoclonal antibody to IFN-alpha and, 2) IFN-alpha can be demonstrated in the supernatant fluids of IFN-gamma treated cells. This report raises the possibility that a major antiviral mechanism of IFN-gamma is via induction of IFN-alpha in the mouse system. If the majority of the antiviral activity of IFN-gamma is via induction of other IFNs, then the role and mechanism of IFN-gamma might have to be reevaluated.  相似文献   

10.
11.
The cell surface Ly-6E antigen, known to play a role in T cell activation, is up-regulated by IFNs. In the present study, we investigated the possible interactions between IFNs and other cytokines in this regulation. As a model system, we used the YAC T cell lymphoma, in which Ly-6E is normally absent but can be highly induced both at the mRNA and surface protein levels by IFN-gamma or IFN-alpha/beta. The combination of the two IFNs was found to result in markedly synergistic Ly-6E induction in this cell line. Moreover, mutants of YAC cells were isolated that did not respond to the Ly-6E-inducing action of IFN-gamma or IFN-alpha/beta alone but did respond to their combination. Such a synergistic interaction is consistent with the notion that the two IFN types utilize different intracellular mechanisms to induce Ly-6E expression. Ly-6E induction mediated by IFN-gamma or IFN-alpha/beta was also enhanced by cotreatment with TNF-alpha or IL-1 alpha, which by themselves had no detectable Ly-6E-inducing effect. These two cytokines similarly synergized with IFNs to trigger a response in several Ly-6E-induction-deficient mutants. However, their action could be dissociated in one mutant (B54) where the response to IFN-alpha/beta was enhanced by TNF-alpha, but not by IL-1 alpha. Altogether, these data indicate that Ly-6E antigen expression is regulated by the interaction of several inflammatory cytokines, which may provide a mechanism for the local modulation of T cell activation. The YAC cell mutants described here should facilitate further analysis of the molecular bases of Ly-6E regulation.  相似文献   

12.
The interferon (IFN)-related cytokine interleukin (IL)-29 (also known as IFN-lambda1) inhibits virus replication by inducing a cellular antiviral response similar to that activated by IFN-alpha/beta. However, because it binds to a unique receptor, this cytokine may function cooperatively with IFN-alpha/beta or IFN-gamma during natural infections to inhibit virus replication, and might also be useful therapeutically in combination with other cytokines to treat chronic viral infections such as hepatitis C (HCV). We therefore investigated the ability of IL-29 and IFN-alpha or IFN-gamma to cooperatively inhibit virus replication and induce antiviral gene expression. Compared with the individual cytokines alone, the combination of IL-29 with IFN-alpha or IFN-gamma was more effective at blocking vesicular stomatitis virus and HCV replication, and this cooperative antiviral activity correlated with the magnitude of induced antiviral gene expression. Although the combined effects of IL-29 and IFN-alpha were primarily additive, the IL-29/IFN-gamma combination synergistically induced multiple genes and had the greatest antiviral activity. Two different mechanisms contributed to the enhanced gene expression induced by the cytokine combinations: increased activation of ISRE promoter elements and simultaneous activation of both ISRE and GAS elements within the same promoter. These findings provide new insight into the coregulation of a critical innate immune response by functionally distinct cytokine families.  相似文献   

13.
The interferon system of teleost fish   总被引:4,自引:0,他引:4  
Interferons (IFNs) are secreted proteins, which induce vertebrate cells into an antiviral state. In mammals, three families of IFNs (type I IFN, type II IFN and IFN-lambda) can be distinguished on the basis of gene structure, protein structure and functional properties. Type I IFNs, which include IFN-alpha and IFN-beta, are encoded by intron lacking genes and have a major role in the first line of defense against viruses. The human IFN-lambdas have similar biological properties as type I IFNs, but are encoded by intron containing genes. Type II IFN is identical to IFN-gamma, which is produced by T helper 1 cells in response to mitogens and antigens and has a key role in adaptive cell mediated immunity. IFNs, which show structural and functional properties similar to mammalian type I IFNs, have recently been cloned from Atlantic salmon, channel catfish, pufferfish, and zebrafish. Teleost fish appear to have at least two type I IFN genes. Phylogenetic sequence analysis shows that the fish type I IFNs form a group separated from the avian type I IFNs and the mammalian IFN-alpha, -beta and -lambda groups. Interestingly, the fish IFNs possess the same exon/intron structure as the IFN-lambdas, but show most sequence similarity to IFN-alpha. Recently, IFN-gamma genes have also been cloned from several fish species and shown to have the same exon/intron structure as mammalian IFN-gamma genes. The antiviral effect of mammalian type I IFN is exerted through binding to the IFN-alpha/beta-receptor, which triggers signal transduction through the JAK-STAT signal transduction pathway resulting in expression of Mx and other antiviral proteins. Putative IFN receptor genes have been identified in pufferfish. Several interferon regulatory factors and members of the JAK-STAT pathway have also been identified in various fish species. Moreover, Mx and several other interferon stimulated genes have been cloned and studied in fish. Furthermore, antiviral activity of Mx protein from Atlantic salmon and Japanese flounder has recently been demonstrated.  相似文献   

14.
15.
16.
Human parainfluenza type 2 virus (hPIV-2)-infected HeLa (HeLa-CA) cells and hPIV-2 V-expressing HeLa (HeLa-V) cells show high resistance to alpha/beta interferons (IFN-alpha/beta) irrespective of whether vesicular stomatitis virus or Sindbis virus is used as a challenge virus. When Sindbis virus is used, these cells show high susceptibility to human IFN-gamma. Furthermore, the multiplication of HeLa-V cells is not inhibited by IFN-alpha/beta. HeLa cells expressing the N-terminally truncated V protein show resistance to IFN-alpha/beta, showing that the IFN resistance determinant maps to the cysteine-rich V-specific domain. A complete defect of Stat2 is found in HeLa-CA and HeLa-V cells, whereas the levels of Stat1 expression are not significantly different among HeLa, HeLa-CA, HeLa-P, and HeLa-V cells, indicating that IFN-alpha/beta resistance of HeLa-CA and HeLa-V cells is due to a defect of Stat2. HeLa-SV41V cells show high resistance to all IFNs, and no expression of Stat1 can be detected. Stat2 mRNA is fully detected in HeLa-V cells. Stat2 was scarcely pulse-labeled in the HeLa-V cells, indicating that synthesis of Stat2 is suppressed or Stat2 is very rapidly degraded in HeLa-V cells. The V protein suppresses the in vitro translation of Stat2 mRNA more extensively than that of Stat1 mRNA. An extremely small amount of Stat2 can be detected in HeLa-V cells treated with proteasome inhibitors. The half-life of Stat2 is approximately 3.5 and 2 h in uninfected and hPIV-2-infected HeLa cells, respectively. This study shows that synthesis of Stat2 may be suppressed and Stat2 degradation is also enhanced in hPIV-2-infected HeLa and HeLa-V cells.  相似文献   

17.
Sendai virus (SeV) infection of interferon (IFN)-competent cells is one of the most efficient ways of inducing IFN production. Virus replication is nevertheless largely unaffected, since SeV infection also interfers with IFN action, a prerequisite for the establishment of an antiviral state. This property has been mapped by reverse genetics to the viral C gene, which is also known to act as a promoter-specific inhibitor of viral RNA synthesis. Using luciferase reporter plasmids containing IFN-responsive promoters, we have found that all four C proteins effectively interdict IFN signaling when expressed independently of SeV infection. The C proteins must therefore interact directly with cellular components to carry this out. The C gene in the context of an SeV infection was also found to induce STAT1 instability in some cells, whereas in other cells it apparently acts to prevent the synthesis of STAT1 in response to the virus infection or IFN treatment. The SeV C proteins appear to act in at least two ways to counteract the IFN induced by SeV infection.  相似文献   

18.
Virus infection stimulates potent antiviral responses; specifically, Epstein-Barr virus (EBV) infection induces and activates interferon regulatory factor 7 (IRF-7), which is essential for production of alpha/beta interferons (IFN-alpha/beta) and upregulates expression of Tap-2. Here we present evidence that during cytolytic viral replication the immediate-early EBV protein BZLF-1 counteracts effects of IRF-7 that are central to host antiviral responses. We initiated these studies by examining IRF-7 protein expression in vivo in lesions of hairy leukoplakia (HLP) in which there is abundant EBV replication but the expected inflammatory infiltrate is absent. This absence might predict that factors involved in the antiviral response are absent or inactive. First, we detected significant levels of IRF-7 in the nucleus, as well as in the cytoplasm, of cells in HLP lesions. IRF-7 activity in cell lines during cytolytic viral replication was examined by assay of the IRF-7-responsive promoters, IFN-alpha4, IFN-beta, and Tap-2, as well as of an IFN-stimulated response element (ISRE)-containing reporter construct. These reporter constructs showed consistent reduction of activity during lytic replication. Both endogenous and transiently expressed IRF-7 and EBV BZLF-1 proteins physically associate in cell culture, although BZLF-1 had no effect on the nuclear localization of IRF-7. However, IRF-7-dependent activity of the IFN-alpha4, IFN-beta, and Tap-2 promoters, as well as an ISRE promoter construct, was inhibited by BZLF-1. This inhibition occurred in the absence of other EBV proteins and was independent of IFN signaling. Expression of BZLF-1 also inhibited activation of IRF-7 by double-stranded RNA, as well as the activity of a constitutively active mutant form of IRF-7. Negative regulation of IRF-7 by BZLF-1 required the activation domain but not the DNA-binding domain of BZLF-1. Thus, EBV may subvert cellular antiviral responses and immune detection by blocking the activation of IFN-alpha4, IFN-beta, and Tap-2 by IRF-7 through the medium of BZLF-1 as a negative regulator.  相似文献   

19.
We have previously shown that alpha/beta interferon (IFN-alpha/beta) and gamma interferon (IFN-gamma) inhibit hepatitis B virus (HBV) replication by eliminating pregenomic RNA containing viral capsids from the hepatocyte. We have also shown that HBV-specific cytotoxic T lymphocytes that induce IFN-gamma and tumor necrosis factor alpha (TNF-alpha) in the liver can inhibit HBV gene expression by destabilizing preformed viral mRNA. In order to further study the antiviral activity of IFN-alpha/beta, IFN-gamma, and TNF-alpha at the molecular level, we sought to reproduce these observations in an in vitro system. Accordingly, hepatocytes were derived from the livers of HBV-transgenic mice that also expressed the constitutively active cytoplasmic domain of the human hepatocyte growth factor receptor (c-Met). Here, we show that the resultant well-differentiated, continuous hepatocyte cell lines (HBV-Met) replicate HBV and that viral replication in these cells is efficiently controlled by IFN-alpha/beta or IFN-gamma, which eliminate pregenomic RNA-containing capsids from the cells as they do in the liver. Furthermore, we demonstrate that IFN-gamma, but not IFN-alpha/beta, is capable of inhibiting HBV gene expression in this system, especially when it acts synergistically with TNF-alpha. These cells should facilitate the analysis of the intracellular signaling pathways and effector mechanisms responsible for these antiviral effects.  相似文献   

20.
The Sendai virus (SeV) C gene codes for a nested set of four C proteins that carry out several functions, including the modulation of viral RNA synthesis and countering of the cellular antiviral response. Using mutant C genes (and in particular a C gene with a deletion of six amino acids present only in the larger pair of C proteins) and recombinant SeV carrying these mutant C genes, we find that the nested set of C proteins carry out a nested set of functions. All of the C proteins interdict interferon (IFN) signaling to IFN-stimulated genes (ISGs) and prevent pY701-Stat1 formation. However, only the larger C proteins can induce STAT1 instability, prevent IFN from inducing an antiviral state, or prevent programmed cell death. Remarkably, interdiction of IFN signaling to ISGs and the absence of pY701-Stat1 formation did not prevent IFN-alpha from inducing an anti-Vesicular stomatitis virus (VSV) state. It is possible that IFN-alpha signaling to induce an anti-VSV state can occur independently of the well-established Jak/Stat/ISGF3 pathway and that it is this parallel pathway that is targeted by the longer C proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号