共查询到20条相似文献,搜索用时 15 毫秒
1.
Relationship of Dihydropyridine Binding Sites with Calcium-Dependent Neurotransmitter Release in Synaptosomes 总被引:1,自引:1,他引:1
In the present work, we have studied the effect of ruthenium red (RuR), La3+ and 4-aminopyridine (4-AP) on the specific binding of (+)-[3H]PN200-110 to synaptosomes, as well as the effect of nitrendipine, nifedipine, and BAY K 8644 on gamma-[3H]aminobutyric acid [( 3H]GABA) release induced by potassium depolarization and by 4-AP in synaptosomes. Scatchard plots indicated that neither RuR nor 4-AP modifies the KD and Bmax of [3H]PN200-110 specific binding, whereas La3+ decreased the Bmax by about 25%; when the effect of the drugs on the total binding of PN200-110 was studied, a similar inhibition by La3+ was found. The calcium antagonists, nitrendipine and nifedipine, did not affect at all the potassium-stimulated release of [3H]GABA nor its release induced by 4-AP. The calcium agonist BAY K 8644 failed to affect both the spontaneous and the potassium-stimulated GABA release. Our results suggest that the binding sites of dihydropyridines in presynaptic membranes are not related to the calcium channels involved in neurotransmitter release with which RuR, La3+, and 4-AP interact. 相似文献
2.
Release of Endogenous Taurine and γ-Aminobutyric Acid from Brain Slices from the Adult and Developing Mouse 总被引:1,自引:1,他引:0
The spontaneous and potassium-stimulated release of endogenous taurine and gamma-aminobutyric acid (GABA) from cerebral cortex and cerebellum slices from adult and developing mice was studied in a superfusion system. The spontaneous release of GABA was of the same magnitude in slices from adult and developing mice, but the spontaneous release of taurine was considerably greater in the adults. The potassium-stimulated release of GABA from cerebral cortex slices was about five times greater in adult than in 3-day-old mice, but the potassium-stimulated release of taurine was more than six times greater in 3-day-old than in adult mice. In cerebellar slices from 7-day-old mice, potassium stimulation also evoked a massive release of taurine, whereas the evoked release from slices from adult mice was rather negligible. Also in cerebellar slices the potassium-stimulated release of GABA exhibited the opposite quantitative pattern. The stimulated release of both GABA and taurine was partially calcium dependent. The results suggest that taurine may be an important regulator of excitability in the developing brain. 相似文献
3.
γ-Aminobutyric Acid Release from Synaptosomes Prepared from Rats Treated with Isonicotinic Acid Hydrazide and Gabaculine 总被引:1,自引:0,他引:1
The potassium-stimulated release of gamma-aminobutyric acid (GABA) from synaptosomes was determined in preparations from control rats and from rats treated with a convulsant agent [isonicotinic acid hydrazide (INH)] and an anticonvulsant agent (gabaculine). INH treatment brought about a significant decrease in Ca2+-dependent release of GABA with no effect on Ca2+-independent release, whereas gabaculine caused an increase in Ca2+-independent release with no effect on Ca2+-dependent release of GABA. Thus, the anticonvulsant action of gabaculine was not a simple reversal of the effects of INH on GABA release. The results indicate that there are at least two pools of GABA in nerve endings and support the hypothesis that exogenous GABA is taken up first into a pool that supplies GABA for Ca2+-independent release and then is transferred to a second pool (Ca2+-dependent releasable), where it mixes with newly synthesized GABA. 相似文献
4.
Exposure to high hydrostatic pressure produces neurological changes referred to as the high-pressure nervous syndrome (HPNS). Manifestations of HPNS include tremor, EEG changes, and convulsions. These symptoms suggest an alteration in synaptic transmission, particularly with inhibitory neural pathways. Because spinal cord transmission has been implicated in HPNS, this study investigated inhibitory neurotransmitter function in the cord at high pressure. Guinea pig spinal cord synaptosome preparations were used to study the effect of compression to 67.7 atmospheres absolute on [3H]glycine and [3H]gamma-aminobutyric acid ([3H]GABA) release. Pressure was found to exert a significant suppressive effect on the depolarization-induced calcium-dependent release of glycine and GABA by these spinal cord presynaptic nerve terminals. This study suggests that decreased tonic inhibitory regulation at the level of the spinal cord contributes to the hyperexcitability observed in animals with compression to high pressure. 相似文献
5.
Ismail A. Shalaby Sathapana Kongsamut Richard J. Miller 《Journal of neurochemistry》1986,46(4):1161-1165
The potent marine toxin, maitotoxin, induced the release of gamma-[3H]aminobutyric acid (GABA) from reaggregate cultures of striatal neurons in a dose-dependent manner. Maitotoxin-induced release occurred following a lag period of several minutes and was persistent. Release induced by 70 mM K+ on the other hand was immediate and transient in nature. Co2+ (3 mM) and Cd2+ (1 mM) inhibited maitotoxin-induced release of GABA as did removal of extracellular Ca2+. However, the organic calcium antagonists nisoldipine, nitrendipine, and D-600 at concentrations of 10(-6) M did not block maitotoxin-induced or 70 mM K+-induced release. High concentrations of D-600 (10(-4) M) partially blocked both maitotoxin- and 70 mM K+-induced release. The dihydropyridine calcium agonist BAY K8644 (10(-6) M) did not enhance maitotoxin-induced or 70 mM K+-induced release. Replacement of Na+ in the incubation medium with choline led to an increased basal output of GABA and an apparent inhibition of the effect of maitotoxin. These data are discussed with reference to the hypothesis that maitotoxin can directly activate voltage-sensitive calcium channels. 相似文献
6.
The effect of depolarizing concentrations of potassium (56 mM) on the release of [3H]taurine was examined in two types of cultured neurons from mouse brain: cerebral cortex neurons, which are largely GABAergic, and cerebellar neurons, which after treatment with kainate consist almost entirely of glutamatergic granule cells. The release of [3H]taurine was compared to that of gamma-[3H]aminobutyric acid [( 3H]GABA) in cortical neurons and to that of D-[3H]aspartate in granule cells. Cortical neurons responded to potassium stimulation (1 min or continuously) by an immediate increase in [3H]GABA efflux of more than six times over the basal efflux, followed by a sharp decline despite the persistence of the stimulatory agent. The potassium-induced release of [3H]GABA was largely calcium-dependent. The release of [3H]taurine was considerably less in magnitude, only doubling after the stimulus, with a time course delayed in both onset and decline. The release of [3H]taurine was partially calcium-dependent and was also decreased in low-chloride solutions. In cerebellar granule cells, exposure to potassium resulted in a large (sixfold) and prompt release of D-[3H]aspartate, largely calcium-dependent. A totally different pattern was observed for the release of [3H]taurine. A stimulatory effect occurred only when cells were exposed continuously to potassium. Taurine efflux was very delayed, with a broad stimulus plateau reached after 15-20 min of stimulation. Taurine release was unaffected by omission of calcium, but it was abolished in a low-chloride medium. These results suggest that taurine is released from cells handling other neuroactive amino acids as neurotransmitters.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
7.
The release of gamma-aminobutyric acid (GABA) was studied in slices of the head of the rabbit caudate nucleus. The slices were preincubated with [3H]GABA and then superfused. Aminooxyacetic acid was present throughout. Both the tritium in the slices and that in the superfusate consisted practically entirely of [3H]GABA. Stimulation for 2 min by electrical field pulses of 3 ms width and 9 V/cm voltage drop (36 mA current strength) at 5 or 20 Hz elicited an overflow of [3H]GABA that amounted to 0.23 or 0.47% of the tritium content of the tissue, respectively, and was diminished by 85% in the presence of tetrodotoxin. At higher current strength, less of the stimulation-evoked overflow was tetrodotoxin-sensitive. cis-1,3-Aminocyclohexane carboxylic acid diminished the uptake of [3H]GABA into the tissue but did not change the percentage released by electrical stimulation. Ca2+ withdrawal greatly accelerated basal [3H]GABA efflux and almost abolished the response to stimulation. Nipecotic acid 10-1,000 microM enhanced both the basal and (up to eightfold) the stimulation-evoked overflow. The method described allows us to elicit electrically a quasiphysiological, i.e., Ca2+-dependent and tetrodotoxin-sensitive, neuronal release of [3H]GABA. Nipecotic acid diverts released [3H]GABA from reuptake to overflow. 相似文献
8.
The effects of gamma-aminobutyric acid (GABA) on the release of [3H]acetylcholine ([3H]ACh) were studied in synaptosomes prepared from rat hippocampus, cerebral cortex, hypothalamus, and striatum and prelabelled with [3H]choline. When synaptosomes were exposed in superfusion to exogenous GABA (0.01-0.3 mM) the basal release of newly synthesized [3H]ACh was increased in a concentration-dependent way in hippocampus, cortex, and hypothalamus nerve endings. In contrast, the release of [3H]ACh was not significantly affected by GABA in striatal synaptosomes. The effect of GABA was not antagonized significantly by bicuculline or picrotoxin. Muscimol caused only a slight not significant increase of [3H]ACh release when tested at 0.3 mM whereas, at this concentration, (-)-baclofen was totally inactive. The GABA-induced release of [3H]ACh was counteracted by SKF 89976A, SKF 100561, and SKF 100330A, three strong and selective GABA uptake inhibitors. The data suggest that, in selective areas of the rat brain, GABA causes release of [3H]ACh following penetration into cholinergic nerve terminals through a GABA transport system. 相似文献
9.
G. L. Collingridge P. A. Thompson† J. Davies J. Mellanby† 《Journal of neurochemistry》1981,37(4):1039-1041
Abstract Ca2+ -dependent K+ -stimulated γ-aminobutyric acid release from rat hippocampal slices was reduced about 30% by pre-incubation of the slices with 104 mouse LD50 /ml tetanus toxin for 3 h at 37°C. 相似文献
10.
Jean Antoine Girault Luis Barbeito Umberto Spampinato Henri Gozlan Jacques Glowinski Marie-Jo Besson 《Journal of neurochemistry》1986,47(1):98-106
By means of the push-pull cannula method, the outflow of endogenous amino acids was studied in the striatum of halothane-anesthetized rats. Addition of K+ ions (30 mM for 4 min) to the superfusion fluid increased the release of aspartate (+116%), glutamate (+217%), taurine (+109%), and gamma-aminobutyric acid (GABA) (+429%) whereas a prolonged decrease in the outflow of glutamine (-28%) and a delayed reduction in the efflux of tyrosine (-25%) were observed. In the absence of Ca2+, the K+-induced release of aspartate, glutamate, and GABA was blocked whereas the K+-induced release of taurine was still present. Under these conditions, the decrease in glutamine efflux was reduced and that of tyrosine was abolished. Local application of tetrodotoxin (5 microM) decreased only the outflow of glutamate (-25%). One week following lesion of the ipsilateral sensorimotor cortex the spontaneous outflow of glutamine and of tyrosine was enhanced. Despite the lack of change in their spontaneous outflow, the K+-evoked release of aspartate and glutamate was less pronounced in lesioned than in control animals, whereas the K+-evoked changes in GABA and glutamine efflux were not modified. Our data indicate that the push-pull cannula method is a reliable approach for the study of the in vivo release of endogenous amino acids. In addition, they provide further evidence for a role for glutamate and aspartate as neurotransmitters of corticostriatal neurons. 相似文献
11.
Peter S. Whitton Russell A. Nicholson Robin H. C. Strang 《Journal of neurochemistry》1988,50(6):1743-1746
The effect of taurine (2-aminoethanesulphonic acid) on 45Ca2+ accumulation in resting and depolarised synaptosomes obtained from the locust Schistocerca americana gregaria was studied. Taurine reduced 45Ca2+ accumulation in resting synaptosomes, and this effect was more pronounced when synaptosomes were depolarised with either high [K+] or veratridine. Veratridine-induced 45Ca2+ accumulation was not affected by either gamma-aminobutyric acid or leucine, but was reduced by both verapamil and tetrodotoxin. 相似文献
12.
D. K. Bosman N. E. P. Deutz M. A. W. Maas H. M. H. van EijkJ. J. H. Smit J. G. de Haan R. A. F. M. Chamuleau 《Journal of neurochemistry》1992,59(2):591-599
Both increased gamma-aminobutyric acid (GABA)-ergic and decreased glutamatergic neurotransmission have been suggested relative to the pathophysiology of hepatic encephalopathy. This proposed disturbance in neurotransmitter balance, however, is based mainly on brain tissue analysis. Because the approach of whole tissue analysis is of limited value with regard to in vivo neurotransmission, we have studied the extracellular concentrations in the cerebral cortex of several neuroactive amino acids by application of the in vivo microdialysis technique. During acute hepatic encephalopathy induced in rats by complete liver ischemia, increased extracellular concentrations of the neuroactive amino acids glutamate, taurine, and glycine were observed, whereas extracellular concentrations of aspartate and GABA were unaltered and glutamine decreased. It is therefore suggested that hepatic encephalopathy is associated with glycine potentiated glutamate neurotoxicity rather than with a shortage of the neurotransmitter glutamate. In addition, increased extracellular concentration of taurine might contribute to the disturbed neurotransmitter balance. The observation of decreasing glutamine concentrations, after an initial increase, points to a possible astrocytic dysfunction involved in the pathophysiology of hepatic encephalopathy. 相似文献
13.
Phorbol Esters Induce Neurotransmitter Release in Cholinergic Synaptosomes from Torpedo Electric Organ 总被引:2,自引:2,他引:0
The effect of phorbol esters and so the involvement of Ca2+/phospholipid-dependent protein kinase (protein kinase C;PKC) in the release of acetylcholine (ACh) was studied using Torpedo electric organ synaptosomes. 12-O-Tetradecanoylphorbol 13-acetate (TPA), a known activator of PKC, induced neurotransmitter release in a concentration-dependent manner and increased the potassium-evoked release of ACh. The effect of TPA was shown to be independent of the extrasynaptosomal calcium concentration. TPA-induced ACh release was reversed by H-7, an inhibitor of PKC activity. This drug showed no effect on potassium-evoked ACh release. Botulinum toxin, a strong blocker of potassium-induced ACh release in that synaptosomal preparation, showed no inhibitory effect on the TPA-induced ACh release. Our results suggest that activation of PKC potentiates the release of an ACh pool that is not releasable by potassium depolarization, independently of the extracellular calcium concentration. 相似文献
14.
When astroglial cells are exposed to beta-adrenergic agonists for long periods of time (greater than 20 min), transient increases in taurine release and intracellular cyclic AMP (cAMP) are observed. Three phases of taurine release can be distinguished: activation, inactivation, and an elevated steady state. In this article, we present data describing the relationship between intracellular cAMP levels and inactivation of taurine release. To do this, we compared the apparent first-order rate constants for the inactivation of taurine release (ktau) with the apparent first-order rate constant for the decline of intracellular cAMP (kcAMP). We also measured ktau under experimental conditions that were chosen to provide a wide range of intracellular cAMP concentrations or to stimulate release without the involvement of the beta-adrenergic receptor and adenylate cyclase. When taurine release was stimulated with a saturating concentration of isoproterenol, the inactivation of release was significantly faster than the decline of intracellular cAMP. Furthermore, there were no significant differences in ktau measured under any of the experimental conditions used. Thus, inactivation of taurine release does not involve changes in the activity of the beta-adrenergic receptor and adenylate cyclase, i.e., desensitization, and appears to be independent of the intracellular concentration of cAMP. These results indicate that cAMP-mediated events can be regulated by mechanism(s) in addition to those that control receptor-adenylate cyclase interactions and the synthesis of cAMP.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
15.
Bulk-isolated astrocytes from rats with early hepatogenic encephalopathy (HE) induced with thioacetamide responded to the increase of potassium in the incubation medium from 5 mM to 75 mM with a markedly enhanced release of previously taken up [14C]gamma-aminobutyric acid ([14C]GABA). The process was not affected by omission of calcium and/or addition of EGTA to the incubation medium. Only a slight stimulation of GABA release by high potassium was observed in astrocytes from control rats. In contrast, histamine and histidine were vigorously released from control astrocytes in high-potassium medium, and their release was not enhanced by HE, indicating that the observed phenomenon is specific for GABA. 相似文献
16.
The transport kinetics of gamma-aminobutyric acid (GABA), taurine, and beta-alanine in addition to the mutual inhibition patterns of these compounds were investigated in cultures of neurons and astrocytes derived from mouse cerebral cortex. A high-affinity uptake system for each amino acid was demonstrated both in neurons (Km GABA = 24.9 +/- 1.7 microM; Km Tau = 20.0 +/- 3.3 microM; Km beta-Ala = 73.0 +/- 3.6 microM) and astrocytes (Km GABA = 31.4 +/- 2.9 microM, Km Tau = 24.7 +/- 1.3 microM; Km beta-Ala = 70.8 +/- 3.6 microM). The maximal uptake rates (Vmax) determined were such that, in neurons, Vmax GABA greater than Vmax beta-Ala = Vmax Tau, whereas in astrocytes, Vmax beta-Ala greater than Vmax Tau = Vmax GABA. Taurine was found to inhibit beta-alanine uptake into neurons and astrocytes in a competitive manner, with Ki values of 217 microM in neurons and 24 microM in astrocytes. beta-Alanine was shown to inhibit taurine uptake in neurons and astrocytes, also in a competitive manner, with Ki values of 72 microM in neurons and 71 microM in astrocytes. However, beta-alanine was found to be a weak noncompetitive inhibitor of neuronal and astrocytic GABA uptake, whereas in reverse experiments, GABA displayed weak noncompetitive inhibition of neuronal and astrocytic uptake of beta-alanine. Likewise, taurine was a weak noncompetitive inhibitor of GABA uptake in neurons and similarly, GABA was a weak noncompetitive inhibitor of taurine uptake into neurons.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
17.
Differential Calcium Dependence of γ-Aminobutyric Acid and Acetylcholine Release in Mouse Brain Synaptosomes 总被引:1,自引:3,他引:1
The dependence of gamma-aminobutyric acid (GABA) and acetylcholine (ACh) release on Ca2+ was comparatively studied in synaptosomes from mouse brain, by correlating the influx of 45Ca2+ with the release of the transmitters. It was observed that exposure of synaptosomes to a Na+-free medium notably increases Ca2+ entry, and this condition was used, in addition to K+ depolarization and the Ca2+ ionophore A23187, to stimulate the influx of Ca2+ and the release of labeled GABA and ACh. The effect of ruthenium red (RuR) on these parameters was also investigated. Of the three experimental conditions used, the absence of Na+ in the medium proved to be the most efficient in increasing Ca2+ entry. RuR inhibited by 60-70% the influx of Ca2+ stimulated by K+ depolarization but did not affect its basal influx or its influx stimulated by the absence of Na+ or by A23187. The release of ACh was stimulated by K+ depolarization, absence of Na+ in the medium, and A23187 in a strictly Ca2+-dependent manner, whereas the release of GABA was only partially dependent on the presence of Ca2+ in the medium. The extent of stimulation of ACh release was related to the extent of Ca2+ entry, whereas no such correlation was observed for GABA. In the presence of Na+, RuR did not affect the release of the transmitters induced by A23187. In the absence of Na+, paradoxically RuR notably enhanced the release of both ACh and GABA induced by A23187, in a Ca2+-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
18.
Changes in Regional Neurotransmitter Amino Acid Levels in Rat Brain During Seizures Induced by l-Allylglycine, Bicuculline, and Kainic Acid 总被引:1,自引:6,他引:1
Astrid G. Chapman Eva Westerberg Maithri Premachandra Brian S. Meldrum 《Journal of neurochemistry》1984,43(1):62-70
Changes in amino acid concentrations were studied in the cortex, cerebellum, and hippocampus of the rat brain, after 20 min of seizure activity induced by kainic acid, 47 mumol/kg i.v.; L-allylglycine, 2.4 mmol/kg i.v.; or bicuculline, 3.27 mumol/kg i.v. in paralysed, mechanically ventilated animals. Metabolic changes associated with kainic acid seizures predominate in the hippocampus, where there are decreases in aspartate (-26%), glutamate (-45%), taurine (-20%), and glutamine (-32%) concentrations and an increase in gamma-aminobutyric acid (GABA) concentration (+ 26%). L-Allylglycine seizures are associated with generalized decreases in GABA concentrations (-32 to -54%), increases in glutamine concentrations (+10 to +53%), and a decrease in cortical aspartate concentration (-14%). Bicuculline seizures, in fasted rats, are associated with marked increases in the levels of hippocampal GABA (+106%) and taurine (+40%). In the cerebellum, there are increases in glutamine (+50%) and taurine concentrations (+36%). These changes can be explained partially in terms of known biochemical and neurophysiological mechanisms, but uncertainties remain, particularly concerning the cerebellar changes and the effects of kainic acid on dicarboxylic amino acid metabolism. 相似文献
19.
Rat brain synaptosomes exhibit calcium-dependent transglutaminase activity. This activity, measured in detergent-treated or sonicated preparations, was six- to sevenfold lower than that in the liver. The synaptosomal transglutaminase was inhibited by various amines and alpha-difluoromethylornithine, compounds known to inhibit activity of this enzyme in other tissues. The inhibitors of transglutaminase induced release of catecholamines, but not of gamma-aminobutyric acid, from synaptosomes both under basal and K+-stimulated conditions. The concentrations of the agents that caused stimulation of catecholamine release were approximately the same as those that inhibited the activity of transglutaminase. Stimulation of release was largely reduced by the withdrawal of calcium from the incubation medium. Inhibitors of transglutaminase had little effect either on the uptakes of neurotransmitters or the amounts of deaminated products of catecholamine degradation released into the medium. It is suggested that a synaptosomal transglutaminase is involved in suppressing vesicular release of catecholamines by resting (nondepolarized) neurons and that this action may also be a part of negative feedback control which prevents excessive transmitter release at the synapse during increased neuronal activity. 相似文献
20.
Diacylglycerol-Induced Stimulation of Neurotransmitter Release from Rat Brain Striatal Synaptosomes 总被引:3,自引:2,他引:1
These studies were undertaken to test the hypothesis that alterations in phosphatidylinositol metabolism can modulate neurotransmitter release in the central nervous system. The effects of 1,2-diacylglycerols (DAGs) on dopamine release in the rat central nervous system were determined by measuring dopamine release from rat striatal synaptosomes in response to two DAGs (sn-1,2-dioctanoylglycerol and 1-oleoyl-2-acetylglycerol) that can activate protein kinase C and one DAG (deoxydioctanoylglycerol) that does not activate this kinase. Dioctanoylglycerol and 1-oleoyl-2-acetylglycerol, at a concentration of 50 micrograms/ml, stimulated the release of labeled dopamine from striatal synaptosomes by 35-50 and 17%, respectively. Dioctanoylglycerol-induced release was also demonstrated for endogenous dopamine. In contrast, deoxydioctanoylglycerol (50 micrograms/ml) did not stimulate dopamine release. Dioctanoylglycerol-induced dopamine release was independent of external calcium concentration, indicating a utilization of internal calcium stores. Dioctanoylglycerol (50 micrograms/ml) also produced a 38% increase in labeled serotonin release from striatal synaptosomes. The addition of dioctanoylglycerol to the striatal supernatant fraction increased protein kinase C activity. These results are consistent with the concept that an increase in phosphatidylinositol metabolism can stimulate neurotransmitter release in the central nervous system via an increase in DAG concentration. The data suggest an involvement of protein kinase C in the DAG-induced release, but other sites for DAG action are also possible. 相似文献