共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for the measurement of reactive oxygen species (ROS) in human hepatic tissue has been developed. The method is based on the EPR detection of the nitroxide radical produced by reaction of the hydroxylamine spin-probe bis(1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)decandioate with ROS generated under pseudo-physiologic conditions in fine needle biopsies of healthy (10 controls) and diseased (22 patients) human liver. Measures of malonaldehyde in 9 liver biopsies (3 controls and 6 patients) have also been obtained by high pressure liquid chromatography and values parallel those obtained by the spin-probe technique. The amount of ROS found in healthy human liver (median = 1.8 x 10(-11) mol/mg) was significantly lower than values found in liver affected by hepatitis B (median=5.8 x 10(-10) mol/mg; p < 0.02) or by hepatitis C (median = 2.7 x 10(-9) mol/mg; p < 0.003) as well as compared to some other non-viral liver diseases (NVLD): autoimmune hepatitis, primary biliary cirrhosis, primary schlerosing cholangitis (median = 9.8 x 10(-9) mol/mg; p < 0.005). NVLD also showed significantly higher ROS levels compared to hepatitis B (p < 0.04) and hepatitis C (p < 0.04). The mechanism, potentiality and limitations of our method are discussed. 相似文献
2.
Luca Valgimigli Marco Valgimigli Stefano Gaiani Gian Franco Pedulli Luigi Bolondi 《Free radical research》2013,47(2):167-178
A method for the measurement of reactive oxygen species (ROS) in human hepatic tissue has been developed. The method is based on the EPR detection of the nitroxide radical produced by reaction of the hydroxylamine spin-probe bis(1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)decandioate with ROS generated under pseudo-physiologic conditions in fine needle biopsies of healthy (10 controls) and diseased (22 patients) human liver. Measures of malonaldehyde in 9 liver biopsies (3 controls and 6 patients) have also been obtained by high pressure liquid chromatography and values parallel those obtained by the spin-probe technique. The amount of ROS found in healthy human liver (median = 1.8 × 10-11 mol/mg) was significantly lower than values found in liver affected by hepatitis B (median = 5.8 × 10-10 mol/mg; p < 0.02) or by hepatitis C (median = 2.7 × 10-9 mol/mg; p < 0.003) as well as compared to some other non-viral liver diseases (NVLD): autoimmune hepatitis, primary biliary cirrhosis, primary schlerosing cholangitis (median = 9.8 × 10-9 mol/mg; p < 0.005). NVLD also showed significantly higher ROS levels compared to hepatitis B (p < 0.04) and hepatitis C (p < 0.04).The mechanism, potentiality and limitations of our method are discussed. 相似文献
3.
Valgimigli M Valgimigli L Trerè D Gaiani S Pedulli GF Gramantieri L Bolondi L 《Free radical research》2002,36(9):939-948
The role of reactive oxygen species (ROS) in liver disease is controversial. This mostly reflects the difficulties to quantify ROS in vivo, particularly in humans. We aimed to measure the presence of ROS in diseased human liver and identify possible relations between ROS levels and etiology, histology and hepatocyte proliferation. Liver biopsy specimens from 102 individuals: 18 healthy controls and 84 patients (42 HCV chronic hepatitis (CHC), 19 HBV chronic hepatitis (CHB), 7 PBC, 4 PSC, 4 HCV relapsing hepatitis after liver transplantation, 3 autoimmune hepatitis, 3 hepatocellular carcinoma, 2 alcoholic hepatitis) underwent analysis by radical-probe electron paramagnetic resonance (EPR). ROS in patients (median = 5 x 10(-6) mmol/mg) were higher than in controls (median = 3 x 10(-11) mmol/mg) (p < 0.001). Progressively increasing levels of ROS were recorded passing from control values to CHB (median = 4 x 10(-7) mmol/mg), CHC (median = 3 x 10(-6) mmol/mg) and PBC (median = 2 x 10(-5) mmol/mg), the differences being significant (p < 0.001). ROS in CHC positively correlated with histological disease activity (r = 0.92; p < 0.001). No correlation was found between ROS and hepatocyte proliferation rate, presence/degree of steatosis, serum ferritin levels and aminotransferases. ROS overproduction in liver appears to be a common thread linking different pathologic conditions and seems to be influenced by diseases' etiologies. 相似文献
4.
Vigorous exercise is associated with oxidative stress, a state that involves modifications to bodily molecules due to release of pro-oxidant species. Assessment of such modifications provides non-specific measures of oxidative stress in human tissues and blood, including circulating lymphocytes. Lymphocytes are a very heterogeneous group of white blood cells, consisting of subtypes that have different functions in immunity. Importantly, exercise drastically changes the lymphocyte composition in blood by increasing the numbers of some subsets, while leaving other cells unaffected. This fact may imply that observed changes in oxidative stress markers are confounded by changes in lymphocyte composition. For example, lymphocyte subsets may differ in exposure to oxidative stress because of subset differences in cell division and the acquisition of cytotoxic effector functions. The aim of the present review is to raise awareness of interpretational issues related to the assessment of oxidative stress in lymphocytes with exercise and to address the relevance of lymphocyte subset phenotyping in these contexts. 相似文献
5.
Assessment of oxidative stress status (OSS) in human tissues is still troublesome. Using an innovative EPR-radical-probe we successfully measured the instantaneous concentration of ROS directly in peripheral blood of athletes and normally active workers during 60 min controlled exercise. The probe employed was bis(1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)decandioate, which quantitatively and instantaneously reacts with oxygen-centered radicals (including superoxide) to yield the parent nitroxide, which is sufficiently persistent to be measured by EPR. Our measurements suggest that while at rest normally active individuals may benefit more from antioxidant supplementation than athletes; conversely, during exercise athletes may benefit more from supplementation. Our method allows reliable, quick, and non-invasive quantitative determination of OSS in human peripheral blood. 相似文献
6.
Ochi H Cheng RZ Kantha SS Takeuchi M Ramarathnam N 《BioFactors (Oxford, England)》2000,13(1-4):195-203
It is widely accepted that oxidative stress (OS) is a major causative factor for many of the age-related dysfunctions and specific diseases. Since the oxidative stress state (OSS) of an individual depends on hereditary, dietary, and environmental factors, there is a large heterogeneity in the population that may be related to disease incidence and longevity. Hence there is a need to assess how well an individual is coping against OS. The Japan Institute for the Control of Aging (JaICA) and Genox have jointly developed a profiling technique to measure the "Oxidative Stress Profiles (JaICA-Genox OSP)" of individuals and laboratory test animals. The JaICA-Genox OSP consists of about 45 different assays measuring the levels of oxidative damage in lipids and nucleic acids, and the antioxidant defenses in the serum. In addition, several bio-markers for cardiovascular disease risk are also measured, and assays to measure specific age- and sex-related hormones in the serum and urine, and race elements in serum, urine, and drinking water are also undertaken. This overview discusses the designing of the JaICA-Genox OSP and its application in the testing of human subjects. 相似文献
7.
Weis M Kopáni M Michalka P Biró C Celec P Danisovic L Jakubovský J 《Journal of biochemical and biophysical methods》2005,65(2-3):81-87
The role of biological membranes as a target in biological radiation damage is still unclear. Recently much attention has been paid to the dynamic behaviour of the cell membrane. Maxwell displacement current technique (MDC) provides new possibility of conformation study of the membrane models. Oxidative stress can impair macromolecules in the cell on a molecular level. MDC technique enables to study the changes in molecular orientations and/or conformations of cell membranes. The combination of different methods in structural biology can clarify membrane chemical and physical properties. 相似文献
8.
Pedrosa RC De Bem AF Locatelli C Pedrosa RC Geremias R Wilhelm Filho D 《Redox report : communications in free radical research》2001,6(4):265-270
Benznidazole (BZN) is a nitroimidazole derivative which has a notable trypanocide activity, and it is the only drug used in Brazil and Argentina for the treatment of Chagas' disease. The drug in current use is thought to act, at least in part, by inducing oxidative stress within the parasite. Imidazolic compounds are involved in the production of reactive oxygen species (ROS). In order to evaluate the effect of BZN on ROS production and on the antioxidant status of the host, male rats were treated for different periods of time (2, 4, 6, 10 and 30 days) with 40 mg BZN/kg body weight. After treatment, biomarkers of oxidative stress such as the activities of catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST) and glutathione reductase (GR), and also thiobarbituric acid reactive species (TBARS), reduced glutathione (GSH), total glutathione (TG) and oxidized glutathione (GSSG) concentrations, were measured in crude hepatic homogenates. Our results revealed that BZN is able to cause tissue damage as shown by increased TBARS content, inhibition of some antioxidants and induction of other antioxidants in a concentration- and time-dependent manner. The tissue damage measured as TBARS increased up to the 10th day of treatment. GST activity was inhibited during the BZN treatment. On the other hand, CAT and GR showed similar increased activities at the beginning, followed by decreased activities at the end of the treatment. After 30 days of treatment, GR activity remained low while CAT activity was high, compared to controls. The SOD activities remained unchanged throughout the experimental period. GSH showed lower values at the beginning of BZN treatment but the hepatic concentrations were enhanced at the end of the experimental period. Total glutathione showed a similar profile, and oxidized glutathione showed higher values in rats treated with BZN. In conclusion, these results indicate that, at therapeutic doses, BZN treatment elicits an oxidative stress in rat hepatocytes. 相似文献
9.
M Ahotupa V Bussacchini-Griot J C Béréziat A M Camus H Bartsch 《Biochemical and biophysical research communications》1987,146(3):1047-1054
We have investigated the generation of prooxidant state shortly after administration of N-nitrosamines (NA) to rats. N-Nitrosodimethylamine (NDMA) was found to increase ethane exhalation (EE) rapidly in a dose-related manner. EE remained elevated for several days after single doses of NDMA. Similarly, lipid peroxidation (LP) in the liver (measured by four methods) increased rapidly showing a peak 20 min after NDMA dose. The increase of LP was preceded by a decrease in retinol concentration in the liver. N-Nitrosodiethanolamine, too, increased EE and LP in the liver, whereas N-nitrosomethylbenzylamine had no effect. Thus, hepatocarcinogenic NA induced LP in their target tissue, and the LP enhancing effects of NA were not related to their acute toxic effects. 相似文献
10.
《Redox report : communications in free radical research》2013,18(4):265-270
AbstractBenznidazole (BZN) is a nitroimidazole derivative which has a notable trypanocide activity, and it is the only drug used in Brazil and Argentina for the treatment of Chagas' disease. The drug in current use is thought to act, at least in part, by inducing oxidative stress within the parasite. Imidazolic compounds are involved in the production of reactive oxygen species (ROS). In order to evaluate the effect of BZN on ROS production and on the antioxidant status of the host, male rats were treated for different periods of time (2, 4, 6, 10 and 30 days) with 40 mg BZN/kg body weight. After treatment, biomarkers of oxidative stress such as the activities of catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST) and glutathione reductase (GR), and also thiobarbituric acid reactive species (TBARS), reduced glutathione (GSH), total glutathione (TG) and oxidized glutathione (GSSG) concentrations, were measured in crude hepatic homogenates. Our results revealed that BZN is able to cause tissue damage as shown by increased TBARS content, inhibition of some antioxidants and induction of other antioxidants in a concentration- and time-dependent manner. The tissue damage measured as TBARS increased up to the 10th day of treatment. GST activity was inhibited during the BZN treatment. On the other hand, CAT and GR showed similar increased activities at the beginning, followed by decreased activities at the end of the treatment. After 30 days of treatment, GR activity remained low while CAT activity was high, compared to controls. The SOD activities remained unchanged throughout the experimental period. GSH showed lower values at the beginning of BZN treatment but the hepatic concentrations were enhanced at the end of the experimental period. Total glutathione showed a similar profile, and oxidized glutathione showed higher values in rats treated with BZN. In conclusion, these results indicate that, at therapeutic doses, BZN treatment elicits an oxidative stress in rat hepatocytes. 相似文献
11.
Various nutritional, behavioral, and pharmacological interventions have been previously shown to extend life span in diverse model organisms, including Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, mice, and rats, as well as possibly monkeys and humans. This review aims to summarize published evidence that several longevity-promoting interventions may converge by causing an activation of mitochondrial oxygen consumption to promote increased formation of reactive oxygen species (ROS). These serve as molecular signals to exert downstream effects to ultimately induce endogenous defense mechanisms culminating in increased stress resistance and longevity, an adaptive response more specifically named mitochondrial hormesis or mitohormesis. Consistently, we here summarize findings that antioxidant supplements that prevent these ROS signals interfere with the health-promoting and life-span-extending capabilities of calorie restriction and physical exercise. Taken together and consistent with ample published evidence, the findings summarized here question Harman's Free Radical Theory of Aging and rather suggest that ROS act as essential signaling molecules to promote metabolic health and longevity. 相似文献
12.
Salicylic acid is a widely used nonsteroidal anti-inflammatory drug (NSAID). But it is known to cause serious liver damage occasionally. Mitochondrial dysfunction and oxidative stress are predicted to be the major factors of salicylic acid-induced liver injury. We investigated the influence of salicylic acid on ATP contents, oxygen consumption and lipid peroxidation in the presence of the same concentration of salicylic acid. Leakage of lactate dehydrogenase (LDH) was significantly higher in the presence of 5 mM salicylic acid than in its absence. Salicylic acid-induced thiobarbituric acid-reactive substance (TBARS) formation and spontaneous chemiluminescence (CL) in rat hepatocytes, whereas antioxidants, such as promethazine (PMZ) and N,N-diphenylphenylenediamine (DPPD), suppressed both TBARS formation and LDH leakage. TBARS formation in rat liver microsomes was suppressed by diethyldithiocarbamate (a specific inhibitor of cytochrome P450 (CYP)2E1) and diclofenac (a specific inhibitor of CYP2C11). These results suggest that salicylic acid-induced lipid peroxidation was related to oxidative metabolism mediated by CYP2E1 and CYP2C11.On the other hand, 5 mM salicylic acid induced a drastic decrease of ATP contents in rat isolated hepatocytes. Furthermore, mitochondrial respiration control ratio (RC ratio), calculated by State 3/State 4 also decreased with the increase of salicylic acid concentration. These findings suggest that salicylic acid would trigger mitochondrial dysfunction and cause ATP decrease, leading to lethal liver cell injury by lipid peroxidation, although this hypothesis remains to be elucidated in vivo. 相似文献
13.
Koshy L Dwarakanath BS Raj HG Chandra R Mathew TL 《Indian journal of experimental biology》2003,41(11):1273-1278
Well known antioxidants-coumarins (7,8-dihydroxy-4-methyl coumarin-DHMC and 7,8-diacetoxy-4-methyl coumarin-DAMC) and flavonoids (quercetin-Q and quercetin penta-acetate-QPA) were investigated for their pro-oxidant effects in two human tumor cell lines. The breast carcinoma cell line (MDA-MB-468) was found to be more sensitive to treatment by the drugs-DAMC, Q and QPA at 10 microM than the glioma cell line (U-87MG), while DHMC was non toxic in both cell lines at this concentration. In MDA-MB-468 distinct growth inhibition was observed by 48 hr post treatment. Paradoxically, an increase in the formazan production was revealed by MTT assay at this time indicating an increase in the production of free radicals. An increase in the levels of reactive oxygen species (ROS) was also confirmed by DCFH-DA assay. In cells treated with DAMC, Q and QPA an increase in the percentage of cells with the hypodiploid DNA content was suggestive of apoptotic cell death. Taken together, these results suggest that an increase in oxidative stress caused by the pro-oxidant action of these drugs is responsible for cell death. 相似文献
14.
Triggering and modulation of apoptosis by oxidative stress 总被引:40,自引:0,他引:40
Cell survival requires multiple factors, including appropriate proportions of molecular oxygen and various antioxidants. Although most oxidative insults can be overcome by the cell's natural defenses, sustained perturbation of this balance may result in either apoptotic or necrotic cell death. Numerous, recent studies have shown that the mode of cell death that occurs depends on the severity of the insult. Oxidants and antioxidants can not only determine cell fate, but can also modulate the mode of cell death. Effects of oxidative stress on components of the apoptotic machinery may mediate this modulation. This review will address some of the current paradigms for oxidative stress and apoptosis, and discuss the potential mechanisms by which oxidants can modulate the apoptotic pathway. 相似文献
15.
Regulation of the Arabidopsis transcriptome by oxidative stress 总被引:34,自引:0,他引:34
16.
《Free radical biology & medicine》1999,26(3-4):463-471
Up to 2% of the oxygen consumed by the mitochondrial respiratory chain undergoes one electron reduction, typically by the semiquinone form of coenzyme Q, to generate the superoxide radical, and subsequently other reactive oxygen species such as hydrogen peroxide and the hydroxyl radical. Under conditions in which mitochondrial generation of reactive oxygen species is increased (such as in the presence of Ca2+ ions or when the mitochondrial antioxidant defense mechanisms are compromised), these reactive oxygen species may lead to irreversible damage of mitochondrial DNA, membrane lipids and proteins, resulting in mitochondrial dysfunction and ultimately cell death. The nature of this damage and the cellular conditions in which it occurs are discussed in this review article. 相似文献
17.
The SMN complex is essential for the biogenesis of small nuclear ribonucleoproteins (snRNPs), the major constituents of the spliceosome. Deficiency in functional SMN protein causes spinal muscular atrophy, a common motor neuron degenerative disease of severity commensurate with SMN levels and, correspondingly, snRNP assembly decreases. We developed a high-throughput screen for snRNP assembly modifiers and discovered that reactive oxygen species (ROS) inhibit SMN-complex activity in a dose-dependent manner. ROS-generating compounds, e.g., the environmental toxins menadione and beta-lapachone (in vivo IC(50) = 0.45 muM) also cause intermolecular disulfide crosslinking of SMN. Both the oxidative inactivation and SMN crosslinking can be reversed by reductants. We identified two cysteines that form SMN-SMN disulfide crosslinks, defining specific contact points in oligomeric SMN. Thus, the SMN complex is a redox-sensitive assemblyosome and an ROS target, suggesting that it may play a role in oxidative stress pathophysiology, which is associated with many degenerative diseases. 相似文献
18.
Consumption of a meal containing oxidized and oxidizable lipids gives rise to an increased plasma concentration of lipid hydroperoxides, detectable by a sensitive chemiluminescence procedure. This is associated with increased susceptibility of LDL to oxidation, apparently due a structural perturbation at the particle surface brought about by lipid oxidation products. The postprandial modification of LDL is at least partially accounted for by an increase of LDL-, a subfraction containing lipid oxidation products where apoprotein-B-100 (apoB-100) is denatured. Consuming the meal with a suitable source of antioxidants, such as those found in red wine, minimizes this postprandial oxidative stress. The inhibition of peroxidation of lipids present in the meal during digestion is a possible mechanism for the observed protection of LDL. The in vivo oxidatively modified LDL- has numerous features that correspond to the atherogenic minimally modified LDL produced in vitro. These modified particles could account for a relevant link between nutrition and early biological processes that foster the development of atherosclerosis. 相似文献
19.
Alcohol-induced oxidative stress 总被引:3,自引:0,他引:3
Alcohol-induced oxidative stress is linked to the metabolism of ethanol involving both microsomal and mitochondrial systems. Ethanol metabolism is directly involved in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). These form an environment favourable to oxidative stress. Ethanol treatment results in the depletion of GSH levels and decreases antioxidant activity. It elevates malondialdehyde (MDA), hydroxyethyl radical (HER), and hydroxynonenal (HNE) protein adducts. These cause the modification of all biological structures and consequently result in serious malfunction of cells and tissues. 相似文献
20.
Free radicals have been theorized to play a causative role in the normal aging process. To date, methods used to detect oxidative stress in aged experimental animals have only detected 2- to 3-fold differences or less between young and aged animals. Measurement of F(2)-isoprostanes has emerged as probably the most reliable approach to assess oxidative stress status in vivo. Therefore, we measured levels of F(2)-isoprostanes free in plasma and levels esterified in plasma lipids in young rats (3-4 months of age) and aged rats (22-24 months of age). Plasma concentrations of free F(2)-isoprostanes were increased dramatically by a mean of 20.3-fold (range 4.3 to 42.9-fold) and levels esterified in plasma lipids were also strikingly increased by a mean of 29.9-fold (range 15.8 to 50.0-fold). These findings unveil profound oxidative stress in aged rats which adds considerable support for the free radical theory of aging. 相似文献