首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
METABOLISM OF d-[U-14C]RIBOSE IN RAT TISSUES   总被引:1,自引:0,他引:1  
Abstract— d -[U-14C]Ribose injected subcutaneously into the rat enters the blood, liver and brain. At 30 min after injection 40-70 per cent of the radioactivity in the brain was found in amino acids and only 2-6 per cent in free sugars. In contrast, free sugars (mainly glucose) and carboxylic acids accounted for most of the radioactivity in liver and blood. Evidence for the entry of [U-14C]ribose into the brain was obtained by intracarotid or intravenous injection of [U-14C]ribose after interrupting the blood supply to the liver and kidney. Under these conditions the radioactivity in the brain was found in amino acids, carboxylic acids and ribose; no significant amount of [14C]glucose was detected in brain or heart. It is concluded that ribose is metabolized directly in vivo in the brain. d -[U-14C]Ribose was metabolized also by brain slices in vitro to form 14C-labelled amino acids and carboxylic acids; the rate was equivalent to the utilization of 0.65 μ mol of ribose/g/h. The specific radioactivity of glutamine and of γ -aminobutyrate was similar to or higher than that of glutamate in the brain. These results are discussed in the context of metabolic compartments.  相似文献   

2.
Abstract— [2-14C]Propionate injected into rats was metabolized into [14C]glucose and 14C-labelled aspartate, glutamate, glutamine and alanine. The results are consistent with the conversion of propionate into succinate and the oxidation of succinate into oxaloacetate, the precursor of labelled amino acids and the substrate for gluconeogenesis.
The ratio of the specific radioactivity of glutamine to glutamate was greater than 1 during the 30 min period in the brain, indicating that propionate taken up by the brain was metabolized mainly in the 'small glutamate compartment' in the brain. The results, therefore, support the previous conclusion (G aitonde , 1975) that the labelling of amino acids by [14C]propionate formed from [U-14C>]-threonine in thiamin-deficient rats was metabolized in the 'large glutamate compartment' of the brain.
The specific radioactivity ratio of glutamine to glutamate in the liver was less than 1 during the 10 min period but greater than 1 at 30min. These findings which gave evidence against metabolic compartments of glutamate in the liver, were interpreted as indicative of the entry of blood-borne [14C]glutamine synthesized in other tissues, e.g. brain. The labelling of amino acids when compared to that after injection of [U-14C]glucose showed that [2-14C]propionate was quantitatively a better source of amino acids in the liver. The concentration of some amino acids in the brain and liver was less in the adult than in the young rats, except for alanine and glutathione, where the liver content was more than double that in the adult.  相似文献   

3.
Abstract— The characteristics of the uptake of l -[U-14C] glutamate into rat dorsal sensory ganglia were investigated. The uptake was mediated by two distinct kinetic systems, with apparent Km values of the order of 10−3 M (low affinity) and 10−5 m (high affinity). The high affinity uptake system was strongly dependent upon temperature and sodium ion concn, and was depressed by a number of metabolic inhibitors. Following uptake, [14C] glutamate was extensively metabolized, primarily to glutamine, although this was not so with cultured ganglia, where in addition to an increased uptake of [14C] glutamate, the specific radioactivity of glutamate was increased and that of glutamine decreased. The labelled substrates [U-14C]pyruvate and [U-14C] acetate were used to investigate this phenomenon and the results are discussed in relation to current knowledge of metabolic compartmentation in nervous tissue.  相似文献   

4.
Abstract— The incorporation of 14C into amino acids of the brain was determined at different times after injection of [U-14C]glucose and [U-14C]ribose to rats maintained on thiamine-supplemented and thiamine-deficient diets for 22 days.
The 14C-content of amino acids in the brain of thiamine-deficient rats decreased at times 2–10 min after injection of [U-14C]glucose. but it increased at 2 min and decreased at times 5–10 min after injection of [U-14C]ribose.
The results of labelling of amino acids indicated that the activities in vivo of the thiamine pyrophosphate requiring enzymes, pyruvate oxidase, a-oxoglutarate dehydrogenase and transketolase were similar in the two groups. It was suggested that the observed decrease in the labelling of amino acids was due to one or more of the following factors: (i) a decrease in the activities of glycolytic enzymes catalysing the conversion of glucose into triose phosphate; (ii) a decrease in the transport of substrate to the active site of the enzymes; or (iii) altered neurohistopathology of the brain.
Thiamine deficiency in rats showed a 5% decrease in glutamate ( P < 0–05), 46% decrease in threonine (P < 0001) and 16% increase in glycine ( P < 0–01) content of the brain.  相似文献   

5.
Abstract— The distribution of radioactivity among lipids of subcellular membrane fractions was examined after intracerebral injections of [1-14C]oleic and [1-14C]arachidonic acids. Labelled free fatty acids were distributed among the synaptosomal-rich, microsomal, myelin and cytosol fractions at 1 min after injection. However, incorporation of the fatty acids into phospholipids and trïacylglycerols after pulse labelling occurred mainly in the microsomal and synaptosomal-rich fractions. With both types of labelled precursors, there was a higher percentage of radioactivity of diacyl-glycerophosphoryl-inositols in the synaptosomal-rich fraction as compared to the microsomal fraction. Radioactivity of [1-14C]oleic acid was effectively incorporated into the triacylglycerols in the microsomal fraction whereas radioactivity of the [1-14C]arachidonic acid was preferentially incorporated into the diacyl-glycerophosphorylinositols in the synaptosomal-rich fraction. Result of the study indicates that synaptosomal-rich fraction in brain is able to metabolize long chain free fatty acids in vivo and to incorporate these precursors into the membrane phosphoglycerides.  相似文献   

6.
Abstract— [U-14C]Ribose was given by subcutaneous injection to young rats aged 2–56 days. During the first week after birth 14C in the brain was found mainly combined in glucose, fructose and sedoheptulose which contained 46–57 per cent of the 14C in the acid soluble metabolites in the rat brain. In contrast, during the critical period (10–15 days after birth) the 14C in the free sugars decreased from 24 to 3 per cent, while the 14C content of amino acids in the brain increased from 11 to 44 per cent of the total perchloric acid-soluble 14C. The increase in labelling of amino acids during the critical period was attributed to increased glycolysis and increased oxidation of pyruvate. The relative specific radioactivity of y -aminobutyrate and aspartate in the rat brain at 28 days after birth was equal to or greater than the relative specific radioactivity of glutamate. Assuming that the increase in amino acid content following the cessation of cell proliferation in the brain is located mainly in cell processes (cytoplasm of axons, dendrites, glial processes and nerve terminals), tentative values were estimated for the pool sizes of glutamate, glutamine, aspartate and y -amino butyrate.  相似文献   

7.
The metabolism of ['4C]-labelled glucose and acetate has been investigated during the early germination - before radicle emergence - of lettuce ( Lactuca sativa L., cv. Val d'Orge) embryos. Similar amounts of radioactivity from both substrates were evolved as C., or incorporated into organic acids, amino acids and proteins. A large part of the [14C]-glucose was also incorporated into sucrose and polysaecharides, and a small part into the glycerol moiety of lipids. Acetate was massively incorporated into lipids, and only slightly into neutral compounds. These results show that both glucose and acetate can be utilized as respiratory substrates during early germination of lettuce embryos. Various biosynthetic pathways leading to amino acids, proteins, polysaecharides and lipids are active during this period.  相似文献   

8.
The fate of carbamoyl phosphate in white spruce seedlings revolves around the production of spontaneous degradation products, cyanate, bicarbonate, and carba-mate. When [14C]-carbamoyl phosphate and [14C]-cyanate are assimilated, urea is a common early metabolic intermediate that appears in the alcohol soluble N. By contrast, urea is not detected among the products of [14C]-bicarbonate. Carbamoyl phosphate and glutamic acid are implicated as having pivotal roles in the production of amides, arginine, and biotin. Within 2-h exposures to radioactive substrates considerably more carbon from bicarbonate was diverted into amino acids Incorporated into proteins than with carbon-nitrogen substrates. Specific activities of bound amino acid residues support the view that proteins formed from these [14C]-substrates have different rates of metabolic turnover.  相似文献   

9.
Abstract— Following intracranial and intraperitoneal injection of acetyl- l -[U-14C]aspartate into mice about 5% and 0.7% of the radioactivity, respectively, was recovered from the brain after 30 min.
On chromatographic separation of the cationic and anionic compounds on a Dowex 50 column, the former fraction contained about 60% of the radioactivity, predominantly as labelled aspartate and glutamate. The anionic compounds, containing 20% of the labelled compounds, were fractionated in several chromatographic systems and resolved into a great variety of labelled peptidic compounds of which five acetyl-[U14-C]aspartyl peptides, containing two to four amino acids, were purified. One of these, acetyl-aspartyl glutamine, has not previously been found in brain.  相似文献   

10.
Abstract: The incorporation of amino acids into brain proteins following brachial plexus stimulation (BPS) was studied in anaesthetised Sprague-Dawley rats following injection of radioactive precursors of both neuronal and glial compartments. Following intraperitoneal injection of [14C]glucose, which is the major neuronal pool precursor, BPS resulted in a significant increase of 379% ( P ± 0.001) in the incorporation of carbon from [14C]glucose into TCA-insoluble proteins in the contralateral sensorimotor cortex as compared with the ipsilateral area of the same animal. This increase was abolished totally when tetrodotoxin (10 μg ml-1) was applied topically to the surface of the stimulated area. Following intraperitoneal injection of [14C]acetate, which is considered to be mainly a glial cell precursor, the same afferent electrical stimuli caused a significant decrease of 21% in the incorporation of amino acids into proteins in the stimulated versus unstimulated sensorimotor cortex. With [4-3H]phenyl-alanine or [l-14C]leucine as precursors a significant decrease (12%) or no change was recorded, respectively. A similar decrease in protein synthesis in the stimulated sensorimotor cortex was achieved using different routes of injection. No significant changes were observed in the ratio of the specific radioactivities of the total amino acids of the two hemispheres using either precursor. In vitro , synaptosomes showed a large increase in incorporation into proteins after treatment with electrical pulses, both with [14C]glucose and with [U-14C]acetate as precursors.  相似文献   

11.
Abstract— Rabbit retinae were homogenized in isotonic sucrose and subjected to differential and density gradient centrifugation. Preliminary electron microscopic examination of some of the fractions indicated that in addition to the subcellular particles usually observed in brain homogenates, the photoreceptor cells gave rise to several characteristic fragments. These included fragmented outer limbs, aggregations of mitochondria from the inner segments, and photoreceptor terminals. Unlike the synaptosomes formed from the conventional type of synapses in the retina, these photoreceptor terminals appeared to sediment mainly in the low speed crude nuclear pellet (P1).
Retinae were incubated with low concentrations of [14C]GABA and/or [3H]dopamine prior to subcellular fractionation and in these experiments the P2 pellet was further fractionated on sucrose density gradients. Analysis of the radioactivity in the fractions showed that labelled GABA was accumulated by osmotically sensitive particles which had the sedimentation characteristics of synaptosomes. The panicles accumulating [3H]dopamine appeared to belong to a different, slightly lighter, population than those accumulating [14C]GABA. It is tentatively suggested that the particles accumulating labelled GABA were synaptosomes because the fractions containing these particles also possessed most of the GAD activity of the gradient. In contrast, GABA-T and MAO activity was found in the dense fractions of the gradients usually associated with mitochondria.
When retinae were incubated with a high concentration of labelled GABA a'lighter'population of particles seemed to accumulate the amino acid than when a low external GABA concentration was used. These results suggest that the high and low affinity uptake processes for GABA in the retina may have different cellular sites.  相似文献   

12.
Abstract— Changes in morphology and in transformations of [U-14C]glucose and [1-14C]acetate into amino acids of the brain cortex were followed on the Sth, 10th and 21st days after production of mechanical lesions and compared with control tissue. In the experimental tissue, proliferation of astroglia and reduction of the number of neurons had taken place. On the 10th day, accumulation of mitochondria and of some gliofilaments in the cytoplasm of astroglia was observed. On the 21st day, the gliofilaments occupied a substantial portion of the astroglial cytoplasm and the mitochondria were reduced in number and compressed to the cell membrane. Incorporation of 14C from acetate into amino acids was substantially increased on the 10th day (up to 240% with respect to controls) and normalized again on the 21st day. Incorporation of [14C]glucose into amino acids decreased somewhat during the experimental period. It has been proposed that the proliferation of astrocytes and their ultrastructural changes may account for the increased transformation of [14C]acetate into amino acids, in particular into glutamine which is formed from the small glutamate pool.  相似文献   

13.
Abstract— Uptake systems for [14C]aspartate and [14C]glutamate were characterized in two distinct synaptosomal fractions solated from rabbit retina. The P, synaptosomal fraction was highly enriched in large photoreceptor cell synaptosomes but contained very few conventional sized synaptosomes from amacrine, horizontal or bipolar cells. In contrast, the P2 synaptosomal fraction contained numerous conventional sized synaptosomes and was virtually free of photoreceptor cell synaptosomes. Both synaptosomal fractions took up [14C]aspartate and [14C]glutamate with high affinity [ K m= 1–2μM). Uptake characteristics were similar to those described for high affinity uptake systems in brain synaptosomes, i.e. saturation kinetics; temperature and Na+ dependence. Although the presence of a high affinity uptake system is not a definitive criterion for demonstration of functional neurotransmitter systems, it is an important and necessary prerequisite and can thus be considered as supportive evidence for the involvement of asparate and glutamate in neurotransmission in rabbit retina.  相似文献   

14.
SYNTHESIS AND RELEASE OF [14C]ACETYLCH0LINE IN SYNAPTOSOMES   总被引:4,自引:2,他引:2  
Abstract— Synaptosomes took up [14C]choline, about half or more of which was converted to [I4C]acetylcholine when incubated in an appropriate medium containing 1 to 5 μ M-[14C] choline and neostigmine. The amount of [14C]acetylcholine synthesized in synaptosomes increased in parallel with the increase of Na+ concentration in the incubation medium. The effect of Na+ on the uptake of [I4C]choline into synaptosomes was dependent on the concentration of choline in the incubation medium.
About 25 per cent of [14C]acetylcholine synthesized in synaptosomes was released rapidly into the medium by increasing the K+ concentration in the medium from 5 m m to 35 m m . The change of Na+ concentration hardly affected the release of [14C]acetylcholine. The effect of K+ on the release of [14C]choline was rather small compared to that on [14C] acetylcholine. Ouabain promoted the release of [14C]acetylcholine.  相似文献   

15.
Abstract. The fate of radioactively labelled amino acids injected into the haemolymph of the aphid Aphis fabae was investigated. Radioactivity from each of L-[U-14C]-glutamic acid, L-[U-14C]-serine and L-[U-14C]-threonine in the aphid tissues declined exponentially, at rates of 32, 9.3 and 1.0 pmol/aphid/min, respectively. For 14C-glutamic acid, radioactivity lost from the aphids was recovered quantitatively as carbon dioxide, and radioactivity in aphid saliva and honeydew was undetectable. When expressed on a per unit aphid biomass basis, the rate of respiratory loss of glutamic acid from aphids reared on chemically-defined diets was more than double that of aphids reared on the host plant, Vicia faba . It is concluded that respiration is a quantitatively important component to the aphid metabolism of glutamic acid and other amino acids.  相似文献   

16.
The role of methionine as a precursor in mugineic acid (MA) biosynthesis was studied by feeding 15N-ammonium sulfate, 14C-amino acids, and [1-14C, 15N]-methionine to iron-deficient barley roots ( Hordeum vulgare L. cv. Minorimugi), grown hydroponically. The incorporation of isotopes into amino acids was also examined. Methionine appears to be the most efficient precursor of the mugineic acid family (MAs) of phytosiderophores; homoserine was also incorporated into the MAs, but other amino acids such as glutamate, alanine, and γ-amino butyric acid did not act as precursors of MAs. Carbon-14 and 15N of methionine were incorporated into MAs. This specific incorporation of 14C and 15N indicated that the nitrogen atoms of MAs were derived from two molecules of methionine. It is suggested that deoxymugineic acid (DMA) is probably the first phytosiderophore to be synthesized on the biosynthetic pathway of MAs.  相似文献   

17.
Abstract— Slices from the cerebral cortices of normal and alloxan-diabetic rats were incubated with [U-24C]glucose. When insulin was added to the incubation medium the incorporation of 14C into glycogen was significantly increased in both groups. Insulin did not appear to have any significant effect on the incorporation of 14C into carbon dioxide.  相似文献   

18.
[8-14C]Benzyladenine (BA) and [8-14C] trans-zeatin (tZ) were fed through the petiole to mature, detached green, yellow and variegated leaves of Schefflera arboricola. Recovery of radioactivity from the plant material ranged between 4.2 and 22.1%. More radioactivity was recovered when tZ was applied compared to BA. Green leaves or the green parts of variegated leaves yielded more radioactivity than the yellow leaf material. BA was metabolized much faster than the endogenous cytokinin tZ. It would appear that while lower amounts of radioactivity were present in yellow leaves, as well as in yellow parts of variegated leaves, the rate of cytokinin metabolism was nevertheless faster. Metabolites that were formed to a greater extent in these yellow parts were the nucleotides of both cytokinins. Currently it is not known whether or not cytokinins influence chlorophyll and other pigment development in chimeric variegated leaves.  相似文献   

19.
Aspartate metabolism was investigated in excised cotyledons of radiata pine ( Pinus radiata D. Don). These cotyledons were cultured under shoot-forming (plus N6-benzyladenine, SF), non-shoot-forming (minus N6-benzyladenine, NSF) and unresponsive (plus N6-benzyladenine, OLD) conditions, then incubated with [14C]-aspartate for 3-h pulse treatments followed by 3-h chase treatments with cold aspartate. The majority of label was recovered in the CO2, amino acid, organic acid and pellet fractions. Uptake was greatest in all tissue types early in culture. Most (over 80%) of the [14C]-aspartate taken up by the tissues was converted to CO2 at day 0 in SF and NSF tissues, CO2 accounted for less than 50% of the total radioactivity in other tissues. Greater incorporation into fractions was observed in SF tissues during promeristemoid formation, while in NSF tissues the greatest incorporation was observed during a period of rapid elongation. Generally, less incorporation was observed in OLD cotyledons than in SF and NSF cotyledons. Analysis of the amino acid fraction showed that labelled aspartate was converted to other amino acids, mainly glutamate, glutamine, asparagine and 4-aminobutyric acid.  相似文献   

20.
IN VIVO INHIBITION OF RAT BRAIN PROTEIN SYNTHESIS BY l-DOPA   总被引:3,自引:2,他引:1  
Abstract— A study has been made of the effect of a single intraperitoneal dose of l -DOPA on the in vivo metabolism of [14C]leucine and [14C]lysine by the brain, and on their uptake into brain protein. Administration of 500 mg DOPA/kg to 40-g rats raised the concentrations of several free amino acids; the only amino acid which underwent a statistically significant increment was alanine. Intracisternally-injected [U-14C]leucine was rapidly metabolized to other labelled compounds; DOPA administration did not influence significantly the rate of its metabolism. No similar metabolic change was observed after administering [U-14C]lysine intracisternally.
Incorporation of [14C]leucine and [14C]lysine into total brain protein was significantly reduced 45 min after DOPA administration. There was also depression of the uptake of labelled amino acid into a supernatant fraction, obtained by high speed centrifugation of the brain homogenate, and into brain microtubular protein (tubulin). Reduced amino-acid incorporation into brain proteins observed 45 min after l -DOPA injection coincided with extensive disaggregation of brain polyribosomes. At 120 min after DOPA treatment, disaggregation was no longer significant and there was a smaller depression in labelled amino aicd incorporation, which disappeared completely 240 min after l -DOPA injection. It is concluded that disaggregation of brain polysomes following DOPA treatment is an accurate reflection of a change in the intensity of brain protein synthesis in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号