首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climatic change, such as increases in extreme drought and rainfall events and changes in rainfall intensity and pattern, has been strongly influencing soil moisture. The climatic change impact is particularly common in arid, semi-arid and Mediterranean regions, which is causing dramatic changes in the intensity and frequency of soil drying–rewetting cycles. The soil drying–rewetting cycle is a natural phenomenon that the soil experiences drying, then wetting, and then drying and rewetting again and again. When a dry soil is being rewetted, the amount of soil microbial biomass and its activity can be sharply increasing in a short time period, and then a large amount of gaseous carbon (C) and nitrogen (N) erupts from the soil. The sudden release of gaseous C and N is caused by the stimulation of the soil microbes. Such a phenomenon is called “Birch effect”. The drying–rewetting cycles have direct and indirect effects on soil microbes, and soil microbial responses to the drying and rewetting events play an important role in the feedbacks of terrestrial ecosystems. From aspects of soil microbial biomass, microbial activities and microbial structure, we review recent advances on studies regarding microbial responses to soil drying–rewetting cycles. We interpret the microbial responses using five different types of mechanisms: (1) Microbial stress mechanism: when a soil becomes dry, microorganisms must accumulate compatible solutes such as carbohydrates and aminoacids so that the soil microbes can equilibrate with their environment in order to avoid dehydrating and being killed. When the soil is rewetted, soil microbes must dispose of those osmolytes rapidly by transforming them into carbon dioxide (CO2), dissolved organic carbon (DOC) and nutrients in order to prevent water from being flowing into the cells. (2) Substrate supply mechanism: low soil moisture may result in the physical disruption of soil aggregates which leads to the exposure of new soil surfaces and of previously protected organic matter. When the soil is rewetted, its physical structure is further disrupted by swelling. The increased new soil surfaces and previously protected organic matter will improve the microorganism’s nutrient availability. (3) Soil hydrophobicity mechanism: soil hydrophobicity can cause the reduction of soil moisture and nutrient availability and inhibition of microbial decomposition of soil organic matter. Therefore, soil hydrophobicity is an important factor of explaining the activity of microorganism in drying and rewetting events. (4) Diffusive limitations mechanism: transportation of the soil microbe is limited in a dry soil. When soil moisture is increasing, soil microbial activity is enhanced along with the increased availability of substrate nutrients. (5) Predation mechanism: a moist soil is usually conducive to the increase of bacteria and fungi populations. In response, protozoa and nematodes also increase, leading to the fluctuation of the soil microbial community structure. On the basis of the literature review, we propose five important aspects to be considered in the future: (1) assessing soil microbes’ concrete adapting ways to the drying–rewetting cycles, (2) evaluating the microbial responses to the drying–rewetting cycles based on suitable indicators, (3) interpreting microbial responses to the drying–rewetting cycles by combining field investigation and laboratory controlling experiment, (4) investigating the microbial responses to the drying–rewetting cycles at different temporal and spatial scales.  相似文献   

2.
Effects of recycling ECF-bleached softwood kraft pulp on pulp properties were evaluated in the laboratory. The tensile strength, fiber flexibility and WRV lost during drying of the pulp were recovered by refining between the cycles which, however, resulted in deteriorated drainage properties. The recycled pulps were treated with purified Trichoderma reesei cellulases and hemicellulases and the changes in fiber properties due to enzymatic treatments were characterized. The endoglucanases (EG I and EG II) significantly improved pulp drainage already at low dosage levels, and EG II was found to be more effective at a given level of carbohydrate solubilization. Combining hemicellulases with the endoglucanase treatments increased the positive effects of the endoglucanases on pulp drainage. However, as a result of the endoglucanase treatments a slight loss in strength was observed. Combining mannanase with endoglucanase treatments appeared to increase this negative effect, whereas the impact of xylanase was not significant. Although the drainage properties of the pulps could be improved by selected enzymes, the water retention capacity of the dried hornified fibers could not be recovered by any of the enzymes tested.  相似文献   

3.
Climate change and atmospheric nitrogen (N) deposition are two of the most important global change drivers. However, the interactions of these drivers have not been well studied. We aimed to assess how the combined effect of soil N additions and more frequent soil drying–rewetting events affects carbon (C) and N cycling, soil:atmosphere greenhouse gas (GHG) exchange, and functional microbial diversity. We manipulated the frequency of soil drying–rewetting events in soils from ambient and N‐treated plots in a temperate forest and calculated the Orwin & Wardle Resistance index to compare the response of the different treatments. Increases in drying–rewetting cycles led to reductions in soil levels, potential net nitrification rate, and soil : atmosphere GHG exchange, and increases in and total soil inorganic N levels. N‐treated soils were more resistant to changes in the frequency of drying–rewetting cycles, and this resistance was stronger for C‐ than for N‐related variables. Both the long‐term N addition and the drying–rewetting treatment altered the functionality of the soil microbial population and its functional diversity. Our results suggest that increasing the frequency of drying–rewetting cycles can affect the ability of soil to cycle C and N and soil : atmosphere GHG exchange and that the response to this increase is modulated by soil N enrichment.  相似文献   

4.
The white rot fungus Trametes (Coriolus) versicolor can delignify and brighten unbleached hardwood kraft pulp within a few days, but softwood kraft pulps require longer treatment. To determine the contributions of higher residual lignin contents (kappa numbers) and structural differences in lignins to the recalcitrance of softwood kraft pulps to biobleaching, we tested softwood and hardwood pulps cooked to the same kappa numbers, 26 and 12. A low-lignin-content (overcooked) softwood pulp resisted delignification by T. versicolor, but a high-lignin-content (lightly cooked) hardwood pulp was delignified at the same rate as a normal softwood pulp. Thus, the longer time taken by T. versicolor to brighten softwood kraft pulp than hardwood pulp results from the higher residual lignin content of the softwood pulp; possible differences in the structures of the residual lignins are important only when the lignin becomes highly condensed. Under the conditions used in this study, when an improved fungal inoculum was used, six different softwood pulps were all substantially brightened by T. versicolor. Softwood pulps whose lignin contents were decreased by extended modified continuous cooking or oxygen delignification to kappa numbers as low as 15 were delignified by T. versicolor at the same rate as normal softwood pulp. More intensive O2 delignification, like overcooking, decreased the susceptibility of the residual lignin in the pulps to degradation by T. versicolor.  相似文献   

5.
Soil drying and rewetting represents a common physiological stress for the microbial communities residing in surface soils. A drying–rewetting cycle may induce lysis in a significant proportion of the microbial biomass and, for a number of reasons, may directly or indirectly influence microbial community composition. Few studies have explicitly examined the role of drying–rewetting frequency in shaping soil microbial community structure. In this experiment, we manipulated soil water stress in the laboratory by exposing two different soil types to 0, 1, 2, 4, 6, 9, or 15 drying–rewetting cycles over a 2-month period. The two soils used for the experiment were both collected from the Sedgwick Ranch Natural Reserve in Santa Ynez, CA, one from an annual grassland, the other from underneath an oak canopy. The average soil moisture content over the course of the incubation was the same for all samples, compensating for the number of drying–rewetting cycles. At the end of the 2-month incubation we extracted DNA from soil samples and characterized the soil bacterial communities using the terminal restriction fragment length polymorphism (T-RFLP) method. We found that drying–rewetting regimes can influence bacterial community composition in oak but not in grass soils. The two soils have inherently different bacterial communities; only the bacteria residing in the oak soil, which are less frequently exposed to moisture stress in their natural environment, were significantly affected by drying–rewetting cycles. The community indices of taxonomic diversity and richness were relatively insensitive to drying–rewetting frequency. We hypothesize that drying–rewetting induced shifts in bacterial community composition may partly explain the changes in C mineralization rates that are commonly observed following exposure to numerous drying–rewetting cycles. Microbial community composition may influence soil processes, particularly in soils exposed to a significant level of environmental stress.  相似文献   

6.
Three different commercial monocomponent endoglucanases, with and without a cellulose-binding domain (CBD) and differences in their glycosidic hydrolysis mechanisms, were compared with respect to their ability to enhance the accessibility and reactivity of dissolving-grade pulps for viscose production. Hardwood (eucalyptus) and softwood (mixture of Norway spruce and Scots pine) commercial dried and never-dried bleached sulfite dissolving pulps were used for this purpose. The effects of the enzymatic treatments on pulps were studied by reactivity, according to Fock's method, and viscosity measurements, and recording of molecular weight distributions. Among the different assayed enzymes, endoglucanase with a CBD and an inverting hydrolysis mechanism was found to be the most effective in increasing the reactivity of both pulps. Simultaneously, the viscosity decreased, being more marked for softwood dissolving pulp. A narrower molecular weight distribution, with a great reduction in the amount of long-chain cellulose molecules was observed in both pulps, being more pronounced for softwood dissolving pulp. By contrast, endoglucanase without a CBD and a retaining hydrolysis mechanism showed a barley enhancement of the studied properties. The effects of the different endoglucanase treatments were more pronounced when never-dried dissolving pulps were used.  相似文献   

7.
Climate change will alter precipitation patterns with consequences for soil C cycling. An understanding of how fluctuating soil moisture affects microbial processes is therefore critical to predict responses to future global change. We investigated how long‐term experimental field drought influences microbial tolerance to lower moisture levels (“resistance”) and ability to recover when rewetted after drought (“resilience”), using soils from a heathland which had been subjected to experimental precipitation reduction during the summer for 18 years. We tested whether drought could induce increased resistance, resilience, and changes in the balance between respiration and bacterial growth during perturbation events, by following a two‐tiered approach. We first evaluated the effects of the long‐term summer drought on microbial community functioning to drought and drying–rewetting (D/RW), and second tested the ability to alter resistance and resilience through additional perturbation cycles. A history of summer drought in the field selected for increased resilience but not resistance, suggesting that rewetting after drought, rather than low moisture levels during drought, was the selective pressure shaping the microbial community functions. Laboratory D/RW cycles also selected for communities with a higher resilience rather than increased resistance. The ratio of respiration to bacterial growth during D/RW perturbation was lower for the field drought‐exposed communities and decreased for both field treatments during the D/RW cycles. This suggests that cycles of D/RW also structure microbial communities to respond quickly and efficiently to rewetting after drought. Our findings imply that microbial communities can adapt to changing climatic conditions and that this might slow the rate of soil C loss predicted to be induced by future cyclic drought.  相似文献   

8.
The study of biomass deconstruction by enzymatic hydrolysis has hitherto not focussed on the importance of supramolecular structures of cellulose. In lignocellulose fibres, regions with a different organisation of the microfibrils are present. These regions are called dislocations or slip planes and they are known to be more susceptible to various forms of degradation such as acid hydrolysis. Traditionally the cellulose within these regions has been assumed to be amorphous, but in this study it is shown by use of polarized light microscopy that dislocations are birefringent. This indicates that they have a crystalline organisation. Dislocations may be entry points for endoglucanases. Using a fluorescent labelled endoglucanase combined with confocal fluorescence microscopy, it is shown that the enzyme selectively binds to dislocations during the initial phase of the hydrolysis. Using a commercial cellulase mixture on hydrothermally treated wheat straw, it was found that the fibres were cut into segments corresponding to the sections between the dislocations initially present, as has previously been observed for acid hydrolysis of softwood pulps. The results indicate that dislocations are important during the initial part of enzymatic hydrolysis of cellulose. The implications of this phenomenon have not yet been recognized or explored within cellulosic biofuels.  相似文献   

9.
草地是陆地生态系统中最重要、分布最广的生态系统类型之一,对全球碳循环和气候调节有着重要的作用和效应.我国拥有极为丰富的草地资源,是巨大的陆地碳储存库,也是全球碳循环重要组成部分.干湿交替是土壤中普遍发生的自然现象,这种现象的发生可能会加速土壤的碳矿化过程、激增土壤呼吸以及影响微生物的活性和群落结构等.在全球变化日趋显著的背景下,降雨量、降雨强度以及降雨频率的变化将会加速土壤干湿交替进程,进而带来微生物活性、群落结构以及土壤呼吸的变化,并对全球碳循环过程产生重要影响.本文综述了近十年来国内外的相关文献,对干湿交替条件下,土壤释放CO2消耗碳源、土壤呼吸随时间的动态变化趋势以及土壤呼吸与微生物量、微生物活性和微生物群落结构之间的关系进行了分析和总结,以期为更好地理解干湿交替过程中草地生态系统土壤呼吸的微生物学响应机制,更准确地预测和评估未来的全球陆地生态系统的碳收支与气候变化提供一定的理论基础.  相似文献   

10.
Roots influence root litter decomposition through multiple belowground processes. Hydraulic lift or redistribution (HR) by plants is one such process that creates diel drying–rewetting cycles in soil. However, it is unclear if this phenomenon influences decomposition. Since decomposition in deserts is constrained by low soil moisture and is stimulated when dry soils are rewetted, we hypothesized that diel drying–rewetting, via HR, stimulates decomposition of root litter. We quantified the decomposition of root litter from two desert shrubs, Artemisia tridentata ssp. tridentata and Sarcobatus vermiculatus, during spring and summer in field soil core treatments designed to have abundant roots and high magnitude HR cycles (DenseRoot) or few roots and low magnitude HR (SparseRoot). To help explain our decomposition results, we not only evaluated HR, but multiple factors (i.e., soil moisture, soil temperature, dissolved soil organic C concentrations, and litter chemistry) that are often influenced by roots and regulate decomposition. Root length density in the DenseRoot treatment was at least four times higher than in the SparseRoot treatment for both Artemisia and Sarcobatus by the beginning of spring. During spring and summer, there was only one instance when decomposition rates differed between the treatments. This occurred in soils beneath Artemisia in the summer when decomposition rates were 25% higher in the DenseRoot than in the SparseRoot treatments. Of the factors evaluated, only a threefold increase in the magnitude of drying–rewetting cycles created by HR in the DenseRoot compared to the SparseRoot treatment coincided with this change in decomposition. Additionally, the lower soil Ψw present in the Artemisia DenseRoot treatment should have resulted in a decline in decomposition rates, but the presence of higher magnitude HR cycles seemed to nullify this effect. There was no evidence of this result in Sarcobatus soils, possibly due to Sarcobatus only creating HR cycles for a short period of time in the summer before soil Ψw dropped below ?7 MPa. As hypothesized, our results suggest that the presence of high magnitude HR cycles stimulated decomposition. The most plausible mechanism for this stimulation; however, was not solely due to HR drying–rewetting cycles but HR creating a diel rhythm of root-driven water fluxes and rhizodeposition. These together heightened microbial activity and, subsequently, enhanced the decomposition of surrounding litter. Our findings are the first field data supporting suggestions that HR influences belowground ecosystem processes and demonstrates that this relationship is seasonally variable.  相似文献   

11.
Endoglucanase treatment of pulp for the adjustment of viscosity and the increase in pulp reactivity is a promising step in the concept for the beneficial production of dissolving pulps from paper grade pulps. To promote the commercial applicability of these enzymes, the influence of pulp properties such as carbohydrate composition, pulp type and cellulose morphology on the enzymatic degradability of a pulp was examined. High contents of hemicelluloses and lignin were shown to impair the accessibility of the cellulose to the enzymes. Due to the elevated swelling capacity of cellulose II, conversion of the cellulose morphology from I to II upon alkaline treatments showed a large increasing effect on the cellulose accessibility, and enzymatic degradability. Reactivity measurements of softwood sulfite pulps after enzymatic degradation and acid-catalyzed hydrolysis, respectively, revealed elevated reactivity for the pulp after acid treatment. This is in contrast to effects of enzyme treatments reported for CCE treated kraft pulps.  相似文献   

12.
Soil microcosm studies often require some form of soil homogenisation, such as sieving, to provide a representative sample. Frequently, soils are also homogenised following drying and are then rewetted, yet little research has been done to understand how these methods impact upon microbial communities. Here we compared the molecular diversity and functional responses of intact cores from a Scottish grassland soil with homogenised samples prepared by drying, sieving and rewetting or freshly sieving wet soils. Results showed that there was no significant difference in total soil CO2-C efflux between the freshly sieved and intact core treatments, however, respiration was significantly higher in the dried and rewetted microcosms. Molecular fingerprinting (T-RFLP) of bacterial communities at two different time-points showed that both homogenisation methods significantly altered bacterial community structure with the largest differences being observed after drying and rewetting. Assessments of responsive taxa in each treatment showed that intact cores were dominated by Acidobacterial peaks whereas an increased relative abundance of Alphaproteobacterial terminal restriction fragments were apparent in both homogenised treatments. However, the shift in community structure was not as large in the freshly sieved soil. Our findings suggest that if soil homogenisation must be performed, then fresh sieving of wet soil is preferable to drying and rewetting in approximating the bacterial diversity and functioning of intact cores.  相似文献   

13.

Aims

There are few studies on the interactive effect of salinity and sodicity in soils exposed to drying and wetting cycles. We conducted a study to assess the impact of multiple drying and wetting on microbial respiration, dissolved organic carbon and microbial biomass in saline and saline-sodic soils.

Methods

Different levels of salinity (EC1:5 1.0 or 2.5) and sodicity (SAR?<?3 or 20) were induced by adding NaCl and CaCl2 to a non-saline/non-sodic soil. Finely ground wheat straw residue was added at 20?g?kg?1 as substrate to stimulate microbial activity. The constant moist (CM) treatment was kept at optimum moisture content for the length of the experiment. The drying and rewetting (DW) treatments consisted of 1 to 3 DW cycles; each DW cycle consisted of 1?week drying after which they were rewet to optimum moisture and then maintained moist for 1?week.

Results

Drying reduced respiration more strongly at EC2.5 than with EC1.0. Rewetting of dry soils produced a flush in respiration which was greatest in the soils without salt addition and smallest at high salinity (EC2.5) suggesting better substrate utilisation by microbes in soils without added salts. After three DW events, cumulative respiration was significantly increased by DW compared to CM, being 24% higher at EC1.0 and 16% higher at EC2.5 indicating that high respiration rates after rewetting may compensate for the low respiration rates during the dry phase. The respiration rate per unit MBC was lower at EC2.5 than at EC1.0. Further, the size of the flush in respiration upon rewetting decreased with each ensuing DW cycle being 50–70% lower in the third DW cycle than the first.

Conclusions

Both salinity and sodicity alter the effect of drying and rewetting on soil carbon dynamics compared to non-saline soils.  相似文献   

14.
Activation of fibres by radical formation is the first step when aiming at oxidative coupling of new functional groups on the fibre bound lignin. In this work, factors affecting the amount of phenoxy radicals created to unbleached TMP, CTMP, softwood kraft and hardwood kraft pulp fibres in the laccase catalysed oxidation were determined by EPR. Laccase was able to catalyse the oxidation of all the pulps studied. The reactivity of the pulp was found to be affected by both the physical accessibility of lignin in the fibres and the chemistry of the surface lignin accessible to laccase. Laccase dosage, use of extra oxygen in the laccase catalysed radicalization reaction, treatment time and also the amount and type of low-molecular weight compounds (LMWC) present in the pulp were all found to contribute to the radical content of pulp fibres measured after the enzymatic reaction. It could not been excluded that two types of reactions take place during the radical formation in fibres. Within the fibre matrix there may be both fibre material bound and soluble lignin fragments differing with respect to accessibility, molecular weight or chemical structure which can be radicalized at various rates, and the formed radicals may also undergo cross-coupling reactions reducing the amount of the total radicals.  相似文献   

15.
Full-length and truncated forms of a modular thermostable xylanase (EC 3.2.1.8., glycoside hydrolase family 10) were used in bleaching sequences of hardwood and softwood kraft pulps. Enzymatic treatment led to brightness gains of all pulps but the result depended on the pulp source. The presence of the additional domains in the full-length enzyme (including carbohydrate-binding modules) did not improve the bleaching process. No significant change in viscosity was seen after enzyme treatments indicating an unaffected pulp fibre length.  相似文献   

16.
Many environmental studies of restored peatlands focus on biogeochemical cycles, productivity and decomposition. However, changes in the composition and structure of invertebrate assemblages in restored bogs have received little attention. In the present study we describe effects of rewetting on the water mite faunas (Acari: Hydrachnidia) of four raised bogs located in northwestern Germany. All examined peatlands had been drained in the past, and two of them had been subjected to peat extraction. The examined sites had been rewetted 2, 12, 14 and 25 years prior to our surveys, and currently represent different stages of plant succession. With increasing age after rewetting, the vegetation developed more complex structure as defined by Sphagnum status, and water mite fauna became somewhat similar to the fauna in an undisturbed raised reference bog. Water mites were found almost exclusively in bogs 25 years after wetting, and in these bogs they occurred in sites with more complex vegetation structure. Because water mites have high demands on abiotic and biotic factors due to their complex life cycle (i.e., the larvae are parasites, and the nymphs and adults are predators), we can infer that their mere presence irrespective of species abundance and richness reflects positive effects of the rewetting measures conducted in peat bogs.  相似文献   

17.
Pulps with residual lignin ranging from 6.4-27.4% (w/w) were prepared from mixed softwoods using a proprietary biorefining technology (the Lignol process) based on aqueous ethanol organosolv extraction. The pulps were evaluated for bioconversion using enzymatic hydrolysis of the cellulose fraction to glucose and subsequent fermentation to ethanol. All pulps were readily hydrolyzed without further delignification. More than 90% of the cellulose in low lignin pulps (< or =18.4% residual lignin) was hydrolyzed to glucose in 48 h using an enzyme loading of 20 filter paper units/g cellulose. Cellulose in a high lignin pulp (27.4% residual lignin) was hydrolyzed to >90% conversion within 48 h using 40 filter paper units/g. The pulps performed well in both sequential and simultaneous saccharification and fermentation trials indicating an absence of metabolic inhibitors. Chemical and physical analyses showed that lignin extracted during organosolv pulping of softwood is a suitable feedstock for production of lignin-based adhesives and other products due to its high purity, low molecular weight, and abundance of reactive groups. Additional co-products may be derived from the hemicellulose sugars and furfural recovered from the water-soluble stream.  相似文献   

18.
Unbleached flax fibres for paper production were treated with laccase from Pycnoporus cinnabarinus and low molecular weight phenols (syringaldehyde - SA, acetosyringone - AS and p-coumaric acid - PCA) to evaluate the potential of this treatment to biomodify high cellulose content fibres. After the enzymatic treatment with the phenols, an increase in kappa number was found, probably due to a covalent binding of the phenoxy radicals on fibres. Grafting was more evident in pulps treated with PCA (an increase of 4 kappa number points with respect to the laccase control was achieved). Paper handsheets from treated pulps showed antimicrobial activity against the bacteria tested: Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella pneumoniae. An important reduction on microbial count was obtained after incubation of liquid cultures of the bacteria with grafted handsheets. AS and PCA grafted fibres showed a high antibacterial activity on K. pneumoniae, getting a nearly total growth inhibition. AS fibres also caused a high reduction in bacterial population of P. aeruginosa (97% reduction). Optical properties of handsheets from treated pulps were also determined, showing a brightness decrease and increase in coloration, evaluated by CIE L*a*b* system, caused by the laccase induced grafting of the phenols. The results suggest that these low molecular weight phenols, covalently bound to the flax fibres by the laccase treatment, can act as antimicrobial agents and produce handsheets with antimicrobial activity.  相似文献   

19.
Drying and rewetting is a frequent physiological stress for soil microbial communities; a stress that is predicted to grow more influential with future climate change. We investigated the effect of repeated drying–rewetting cycles on bacterial (leucine incorporation) and fungal (acetate in ergosterol incorporation) growth, on the biomass concentration and composition (PLFA), and on the soil respiration. Using different plant material amendments, we generated soils with different initial fungal:bacterial compositions that we exposed to 6–10 repetitions of a drying–rewetting cycle. Drying–rewetting decreased bacterial growth while fungal growth remained unaffected, resulting in an elevated fungal:bacterial growth ratio. This effect was found irrespective of the initial fungal:bacterial biomass ratio. Many drying–rewetting cycles did not, however, affect the fungal:bacterial growth ratio compared to few cycles. The biomass response of the microbial community differed from the growth response, with fungal and total biomass only being slightly negatively affected by the repeated drying–rewetting. The discrepancy between growth- and biomass-based assessments underscores that microbial responses to perturbations might previously have been misrepresented with biomass-based assessments. In light of this, many aspects of environmental microbial ecology may need to be revisited with attention to what measure of the microbial community is relevant to study.  相似文献   

20.
Enzymatic removal of hemicellulose from dissolving pulps   总被引:3,自引:0,他引:3  
Hemicellulases and an endoglucanase from seven different fungi were assessed for their potential to solubilze mannan and xylan from softwood sulfite dissolving pulps. A xylanase from Thermomyces lanuginosus and a mannanase from Sclerotium rolfsii acted synergistically on the pulp solubilizing 50% more mannan and 11% more xylan than did the individual enzymes. The addition of an endoglucanase further increased both the amount of xylan and mannan that was solubilized from the pulp. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号