首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Signal transduction processes involved in blue light-dependent proton pumping were investigated using guard cell protoplasts from Vicia faba. N-[2-(Methylamino)ethyl]-5-isoquinolinesulfonamide, an inhibitor of cyclic AMP- and cyclic GMP-dependent protein kinases, had no effect. 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine (H-7) and calphostin C, inhibitors of protein kinase C, produced slight inhibition of the blue light-dependent proton pumping. 1-[N, O-Bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl] -4-phenylpiperazine, a specific inhibitor of Ca2+/calmodulin (CaM)-dependent protein kinase II, did not inhibit the proton pumping, but 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine and 1-(5-chloro-naphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine (ML-9), inhibitors of Ca2+/CaM-dependent myosin light chain kinase, strongly suppressed the proton pumping. A CaM antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), inhibited blue light-dependent proton pumping, whereas its less active structural analog, N-(6-aminohexyl)-1-naphthalenesulfonamide (W-5), had little effect on the response. Other CaM antagonists, trifluoperazine, compound 48/80, prenylamine, and 3-(2-benzothiazolyl)-4,5-dimethoxy-N-[3-(4-phenyl-piperidinyl)- propylbenzenesulfonamide inhibited the proton pumping. In accord with these results, light-induced stomatal opening in the epidermis of Commelina benghalensis ssp. was inhibited by ML-9 and W-7, but not by H-7 and W-5. Thus, it is concluded that CaM and Ca2+/CaM-dependent myosin light chain kinase are the components of the signal transduction process in blue light-dependent proton pumping in guard cells.  相似文献   

2.
Abe S  Takeda J 《Plant physiology》1988,87(2):389-394
When dielectrophoresis and electrofusion of barley (Hordeum vulgare var Moor) leaf protoplasts were assayed in the presence of 0.1 to 1 millimolar lanthanum ion (La3+) in the basal medium (0.7 molar mannitol, 1 millimolar piperazine-N, N-bis[2-ethanesulfonic acid]-Na [pH 6.7], 0.1 millimolar CaCl2), dielectrophoresis and induction of electrofusion were strongly inhibited. The latter remained inhibited and the former recovered by about 60% after washing the La3+ -treated protoplasts without EDTA. These inhibitions were almost completely abolished by washing the La3+ -treated protoplasts with 1 millimolar EDTA. Inductively coupled plasma atomic emission spectroscopic analysis revealed that protoplasts retained a considerable amount of La3+ after washing without EDTA and released most of the bound La3+ by washing with 1 millimolar EDTA. This tightly bound La3+ seemed responsible for the inhibition of electrofusion and dielectrophoresis that was observed in the La3+ -treated protoplasts after washing. ζ-potentials of protoplasts were -39.0±3.2 millivolts, -16.7 ± 2.6 millivolts, and virtually zero in media containing 0, 0.1, and 0.3 millimolar La3+ (I = 7.2 millimolar), respectively, and had a positive value (+ 14.2 ± 2.2 millivolts) in the presence of 1 millimolar La3+. These effects of La3+ on ζ-potentials were easily abolished by washing without EDTA. This indicates that charged species located at the surface of plasma membrane of protoplasts cannot account for the sites at which La3+ exerts its inhibition of dielectrophoresis and electrofusion. In contrast, the promotion of spherical fusion and the reduction of broken fusion products observed in the presence of La3+ were almost completely abolished by washing without EDTA. Our results also indicate that the initial induction and development of electrofusion can be studied independently.  相似文献   

3.
The release of preloaded [3H]dopamine by the synaptosomal fraction prepared from rat forebrain was examined in the presence and absence of N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a calmodulin inhibitor. The release induced by high K+ was blocked by W-7 in a concentration-dependent manner after the pretreatment with and in the presence of the inhibitor. The inhibition by W-7 may specifically involve calmodulin, because little effects were seen with N-(6-aminohexyl)-naphthalenesulfonamide, an analog of W-7 with only a low affinity for calmodulin. W-7 may not affect the voltage-dependent Ca2+ channel of synaptosomal plasmalemma, since the inhibitor produced no change in the synaptosomal 45Ca2+ uptake induced by high K+ depolarization. Thus, calmodulin may play a role in transmitter release and may function at the step(s) after the increase of free Ca2+ concentration in the cytosol of the nerve terminal. W-7 affected only to a small extent [3H]dopamine release in the presence of A23187 plus Ca2+.  相似文献   

4.
N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), commonly regared as a calmodulin antagonist, inhibted phospholipid-sensitive Ca2+-dependent protein kinase and to a lesser extent cyclic GMP- and cyclic AMP-dependent protein kinases. Kinetic studies of the inhibition of the homogenous spleen phospholipid-sensitive Ca2+-dependent protein kinase indicated that W-7 inhibited the enzyme activity competitively with respect to phospholipid (Ki = 60 μM). N-(6-Aminohexyl)-1-naphthalenesulfonamide (W-5) was found to be musch less potent than W-7. The findings indicate that W-6 was able to inhibit a variety of protein kinases, in addition to those requiring calmodulin previously reported.  相似文献   

5.
The inside-out fraction of plasma membrane-rich vesicles prepared from leaves of Commelina communis L. by aqueous twophase partitioning was loaded with 45Ca2+ through the action of the plasma membrane Ca2+-ATPase. While the Ca2+-loaded vesicles were tightly sealed, trifluoperazine (TFP) (effective concentration giving 50% of maximum effect [EC50] = 70 micromolar) and W-7 (EC50 = 100 micromolar), but to a much lesser extent, W-5 (EC50 = 500 micromolar) led to a rapid efflux of 45Ca2+ from the vesicles. This efflux could be blocked efficiently with low (<1 millimolar) concentrations of La3+, but it remained unaffected by the addition of calmodulin (CM). Further experiments with vesicles incubated in 45Ca2+ in the absence of ATP, as well as experiments performed with control liposomes and nonloaded as well as Ca2+-loaded plasma membrane vesicles using the indicator dye arsenazo III showed, that TFP and W-7 and, again to a lesser extent, W-5 mobilized a pool of membrane-bound Ca2+ from the vesicles. No indications for a detergent effect of TFP and W-7 were obtained. The EC50-values of these compounds for mobilizing membrane-associated Ca2+ (TFP = 100 micromolar, W-7 = 100 micromolar, W-5 = 500 micromolar) or for the triggering of Ca2+ release from Ca2+-loaded vesicles (see above) were very similar, suggesting a common basis of antagonist action on both processes. Our results suggest the presence of a Ca2+ channel in the plasma membrane of C. communis. The channel is obtained in a Ca2+-inactivated state after preparation and Ca2+-loading of the vesicles. The inactivation is removed by TFP or W-7, presumably due to the Ca2+-mobilizing effect of these compounds. The activated Ca2+ channel is La3+ sensitive and, in the cell, would allow for passage of Ca2+ into the cell. The possibility that TFP or W-7 act independent of CM, or through CM tightly associated with the plasma membrane, is discussed. The system described allows a cell free analysis of Ca2+ influx, displaying channel properties, in a higher plant.  相似文献   

6.
《FEBS letters》1999,442(2-3):173-177
Small-angle X-ray scattering and nuclear magnetic resonance were used to investigate the structural change of calcium-bound calmodulin (Ca2+/CaM) in solution upon binding to its antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7). The radius of gyration was 17.4±0.3 Å for Ca2+/CaM-W-7 with a molar ratio of 1:5 and 20.3±0.7 Å for Ca2+/CaM. Comparison of the radius of gyration and the pair distance distribution function of the Ca2+/CaM-W-7 complex with those of other complexes indicates that binding of two W-7 molecules induces a globular shape for Ca2+/CaM, probably caused by an inter-domain compaction. The results suggest a tendency for Ca2+/CaM to form a globular structure in solution, which is inducible by a small compound like W-7.  相似文献   

7.
Summary Illumination of barnacle (Balanus amphitrite) photoreceptors is known to increase the membrane permeability to sodium and Ca2+ ions resulting in a depolarizing receptor potential. In this report, we show that lanthanum (La3+), a known inhibitor of Ca-binding proteins, reversibly eliminates the receptor potential of barnacle photoreceptors when applied to the extracellular space. Similar reversible elimination of the light response was obtained by removing extracellular Ca2+ by application of the calcium chelating agent EGTA. Iontophoretic injection of Ca2+, but not K+ into the cells protected both the transient and the steady-state phases of the receptor potential from elimination by EGTA while only the transient phase was protected in the presence of La3+. The EGTA experiments suggest that internal Ca2+ is necessary for light excitation of barnacle photoreceptors while the La3+ experiments suggest that La3+-sensitive inward current is necessary to maintain excitation during prolonged light.Abbreviations EGTA ethylenglyol-bis-(-aminoethylether) N, N, N1, N1-tetraacetate - BAPTA bis-(0-aminophenoxy)-ethane-N, N, N1, N1-tetraacetic acid - DMSO dimethyl sulfoxide - trp transient receptor potential - nss no steady state - ASW artificial sea water  相似文献   

8.
Effects of N-(6-aminohexyl)-5-chloro-1-naph-thalenesulfonamide (W-7), a calmodulin antagonist, on catecholamine (CA) release and 45Ca2+ uptake were studied using cultured bovine adrenal chromaffin cells. W-7 inhibited the carbamylcholine (CCh)-evoked CA release and 45Ca2+ uptake in a concentration-dependent manner. The inhibitory effect of W-7 on CCh-evoked CA release was not overcome either by an increase in extracellular calcium or CCh concentration. Although W-7 inhibited the high K+-evoked CA release and 45Ca2+ uptake, potency of the drug was approximately 50–100 fold less than when inhibiting the CCh-evoked CA release and 45Ca2+ uptake. The inhibitory effects of W-7 were observed both in norepinephrine release and epinephrine release. Moreover, W-7 inhibited the CCh-evoked 45Ca2+ efflux. These results suggest that the inhibition of CA release by W-7 in adrenal chromaffin cells is mainly due to its inhibition of calcium uptake. W-7 may influence the linkage between acetylcholine-receptor and calcium uptake with higher potency than depolarization-dependent calcium entry.  相似文献   

9.
Directional chloroplast photorelocation is a major physio-biochemical mechanism that allows these organelles to realign themselves intracellularly in response to the intensity of the incident light as an adaptive response. Signaling processes involved in blue light (BL)-dependent chloroplast movements were investigated in Hydrilla verticillata (L.f.) Royle leaves. Treatments with antagonists of actin filaments [2,3,5-triiodobenzoic acid (TIBA)] and microtubules (oryzalin) revealed that actin filaments, but not microtubules, play a pivotal role in chloroplast movement. Involvement of reactive oxygen species (ROS) in controlling chloroplast avoidance movement has been demonstrated, as exogenous H2O2 not only accelerated chloroplast avoidance but also could induce chloroplast avoidance even in weak blue light (WBL). Further support came from experiments with different ROS scavengers, i.e., dimethylthiourea (DMTU), KI, and CuCl2, which inhibited chloroplast avoidance, and from ROS localization using specific stains. Such avoidance was also partially inhibited by ZnCl2, an inhibitor of NADPH oxidase (NOX) as well as 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), a photosynthetic electron transport chain (ETC) inhibitor at PS II. However, methyl viologen (MV), a PS I ETC inhibitor, rather accelerated avoidance response. Exogenous calcium (Ca+2) induced avoidance even in WBL while inhibited chloroplast accumulation partially. On the other hand, chloroplast movements (both accumulation and avoidance) were blocked by Ca+2 antagonists, La3+ (inhibitor of plasma membrane Ca+2 channel) and ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA, Ca+2 chelator) while LiCl that affects Ca+2 release from endosomal compartments did not show any effect. A model on integrated role of ROS and Ca+2 (influx from apolastic space) in actin-mediated chloroplast avoidance has been proposed.  相似文献   

10.
Effect of calmodulin antagonists on auxin-induced elongation   总被引:7,自引:5,他引:2       下载免费PDF全文
Coleoptile segments of oat (Avena sativa var Cayuse) and corn (Zea mays L. var Patriot) were incubated in different concentrations of calmodulin antagonists in the presence and absence of α-naphthaleneacetic acid. The calmodulin antgonists (chlorpromazine (CP), trifluoperazine, and fluphenazine) inhibited the auxin-induced elongation at 5 to 50 micromolar concentrations. Chlorpromazine sulfoxide, an analog of chlorpromazine, did not have significant effect on the elongation of oat and corn coleoptiles. A specific inhibitor of calmodulin N-(6-aminohexyl)5-chloro-1-naphthalenesulfonamide hydrochloride (W-7, a naphthalenesulfonamide derivative) inhibited coleoptile elongation, while its inactive analog N-(6-aminohexyl)-1-naphthalenesulfonamide hydrochloride (W-5) was ineffective at similar concentrations. During a 4-hour incubation period, coleoptile segments accumulated significant quantities of 3H-CP. About 85 to 90% of auxin-induced growth was recovered after 4 hours of preincubation with CP or 12 hours with W-7 and transferring coleoptiles to buffer containing NAA. Leakage of amino acids from coleoptiles increased with increasing concentration of CP, showing a rapid and significant increase above 20 micromolar CP. The amount of amino acids released in the presence of W-7 and W-5 was significantly lower than the amount released in the presence of CP. Both W-5 and W-7 increased amino acid release but only W-7 inhibited auxin-induced growth. Calmodulin activity measured by phosphodiesterase activation did not differ significantly between auxin-treated and control coleoptile segments. These results suggest the possible involvement of calmodulin in auxin-induced coleoptile elongation.  相似文献   

11.
1. Effects of W-7 and W-5, calmodulin antagonists, on the pigment aggregation within melanophores and coloring response of iridophores were examined in the blue damselfish, Chrysiptera cyanea.2. W-7 was found to antagonize norepinephrine-induced responses of the chromatophores, whereas W-5 had only a slight effect on inhibition of the responses.3. H-7, a specific antagonist of protein kinase C, did not arrest the responses of melanophores and iridophores at all.4. The chromatophores responded normally to norepinephrine in Ca2+, Mg2+-free saline solution.5. These results indicate that it is a Ca2+/calmodulin-regulated enzyme and not protein kinase C that is involved in motile activities of fish chromatophores. Ca2+ may be supplied from an intracellular store.  相似文献   

12.
A calcium-dependent protein kinase was partially purified and characterized from the green alga Dunaliella salina. The enzyme was activated at free Ca2+ concentrations above 10−7 molar. and half-maximal activation was at about 3 × 10−7 molar. The optimum pH for its Ca2+-dependent activity was 7.5. The addition of various phospholipids and diolein had no effects on enzyme activity and did not alter the sensitivity of the enzyme toward Ca2+. The enzyme was inhibited by calmodulin antagonists, N-(6-aminohexyl)-1-naphthalene sulfonamide and N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide in a dose-dependent manner while the protein kinase C inhibitor, sphingosine, had little effect on enzyme activity up to 800 micromolar. Immunoassay showed some calmodulin was present in the kinase preparations. However, it is unlikely the kinase was calmodulin regulated, since it still showed stimulation by Ca2+ in gel assays after being electrophoretically separted from calmodulin by two different methods. This gel method of detection of the enzyme indicated that a protein band with an apparent molecular weight of 40,000 showed protein kinase activity at each one of the several steps in the purification procedure. Gel assay analysis also showed that after native gel isoelectric focusing the partially purified kinase preparations had two bands with calcium-dependent activity, at isoelectric points 6.7 and 7.1. By molecular weight, by isoelectric point, and by a comparative immunoassay, the Dunaliella kinase appears to differ from at least some of the calcium-dependent, but calmodulin and phospholipid independent kinases described from higher plants.  相似文献   

13.
A soluble protein was isolated from Mougeotia by chloropromazine-sepharose 4 B affinity chromatography. The protein matches the properties of calmodulin in terms of heat stability, Ca2+-dependent electrophoretic mobility in sodium-dodecyl-sulfate polyacrylamide gels, and its ability to activate cyclic nucleotide phosphodiesterase in a Ca2+-dependent manner. Phytochrome-mediated chloroplast reorientational movement in Mougeotia was inhibited by the calmodulin antagonist trifluoperazine, a hydrophobic compound, or N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a hydrophilic compound; 50% inhibition (IC50) of chloroplast movement is caused by 20–50 mol l-1 trifluoperazine or 100 mol l-1 W-7. The Ca2+-calmodulin may act as an intermediate in the chloroplast reorientational response in Mougeotia governed by phytochrome.Abbreviations EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - SDS sodium dodecyl sulfate - W-7 N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide  相似文献   

14.
Hsieh WL  Pierce WS  Sze H 《Plant physiology》1991,97(4):1535-1544
Ca2+-ATPases keep cytoplasmic [Ca2+] low by pumping Ca2+ into intracellular compartments or out of the cell. The transport properties of Ca2+-pumping ATPases from carrot (Daucus carota cv Danvers) tissue culture cells were studied. ATP-dependent Ca2+ transport in vesicles that comigrated with an endoplasmic reticulum marker, was stimulated three- to fourfold by calmodulin. Cyclopiazonic acid (a specific inhibitor of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase) partially inhibited oxalate-stimulated Ca2+ transport activity; however, it had no effect on calmodulin-stimulated Ca2+ uptake driven by ATP or GTP. The results would suggest the presence of two types of Ca2+-ATPases, an endoplasmic reticulum- and a plasma membrane-type. Interestingly, incubation of membranes with [gamma32P]ATP resulted in the formation of a single acyl [32P]phosphoprotein of 120 kilodaltons. Formation of this phosphoprotein was dependent on Ca2+, but independent of Mg2+. Its enhancement by La3+ is characteristic of a phosphorylated enzyme intermediate of a plasma membrane-type Ca-ATPase. Calmodulin stimulated Ca2+ transport was decreased by W-7 (a calmodulin antagonist), ML-7 (myosin light chain kinase inhibitor) or thyroxine. Acidic phospholipids, like phosphatidylserine, stimulated Ca2+ transport, similar to their effect on the erythrocyte plasma membrane Ca2+-ATPase. These results would indicate that the calmodulin-stimulated Ca2+ transport originated in large part from a plasma membrane-type Ca2+ pump of 120 kilodaltons. The possibility of calmodulin-stimulated Ca2+-ATPases on endomembranes, such as the endoplasmic reticulum and secretory vesicles, as well as the plasma membrane is suggested.  相似文献   

15.
A subcellular fraction enriched in plasma membranes was obtained from gypsy moth (Lymantria dispar) larval midgut tissue. Using [45Ca]2+ as a tracer, Ca2+ transport activity by membrane vesicles in the enriched fraction was measured and shown to be ATP-dependent, with a very high affinity for Ca2+ (apparent Km for [Ca2+ free]
  • 1 Abbreviations used: [Ca2+free] = concentration of free (unbound) calcium ion;CaM = calmodulin; F = fraction; IOV = inside-out membrane vesicles; W-5 = N-(6-aminohexyl)-1-naphthalenesulfonamide; W-7 = N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide.
  • = 22 nM). Ca2+ transport was abolished upon addition of the calcium ionophore, A23187. Ca2+-stimulated, Mg2+-dependent ATPase activity peaked between 100 and 200 nM Ca2+free. Ca2+-Mg2+-ATPase activity was inhibited by vanadate, 2 phenothiazine drugs (trifluoperazine and chlorpromazine), and the naphthalene sulfonamide, W-7; the related compound, W-5, and ouabain had a negligible effect. These results suggest the presence of a high affinity plasma membrane Ca2+ pump in gypsy moth larval midgut cells and are discussed in light of earlier work involving calcium transport in isolated midguts of larval Hyalophora cecropia. Ionic and other conditions that characterize the midgut physiology of larval Lepidoptera (e.g., luminal pH; electrochemical gradient for Ca2+; effect of certain ions and inhibitors on Ca2+ transport) contrast significantly with those found in adult Diptera. The implications that these differences may have for calcium regulation are discussed. © 1992 Wiley-Liss, Inc.  相似文献   

    16.
    We report that a localized intracellular and extracellular Ca2+ mobilization occurs at the site of microscopic epithelial damage in vivo and is required to mediate tissue repair. Intravital confocal/two-photon microscopy continuously imaged the surgically exposed stomach mucosa of anesthetized mice while photodamage of gastric epithelial surface cells created a microscopic lesion that healed within 15 min. Transgenic mice with an intracellular Ca2+-sensitive protein (yellow cameleon 3.0) report that intracellular Ca2+ selectively increases in restituting gastric epithelial cells adjacent to the damaged cells. Pretreatment with U-73122, indomethacin, 2-aminoethoxydiphenylborane, or verapamil inhibits repair of the damage and also inhibits the intracellular Ca2+ increase. Confocal imaging of Fura-Red dye in luminal superfusate shows a localized extracellular Ca2+ increase at the gastric surface adjacent to the damage that temporally follows intracellular Ca2+ mobilization. Indomethacin and verapamil also inhibit the luminal Ca2+ increase. Intracellular Ca2+ chelation (1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid/acetoxymethyl ester, BAPTA/AM) fully inhibits intracellular and luminal Ca2+ increases, whereas luminal calcium chelation (N-(2-hydroxyetheyl)-ethylendiamin-N,N,N′-triacetic acid trisodium, HEDTA) blocks the increase of luminal Ca2+ and unevenly inhibits late-phase intracellular Ca2+ mobilization. Both modes of Ca2+ chelation slow gastric repair. In plasma membrane Ca-ATPase 1+/− mice, but not plasma membrane Ca-ATPase 4−/− mice, there is slowed epithelial repair and a diminished gastric surface Ca2+ increase. We conclude that endogenous Ca2+, mobilized by signaling pathways and transmembrane Ca2+ transport, causes increased Ca2+ levels at the epithelial damage site that are essential to gastric epithelial cell restitution in vivo.  相似文献   

    17.
    Abstract: Serotonin 5-HT2C receptor-mediated intracellular Ca2+ mobilization was investigated in Chinese hamster ovary (CHO) cells transfected with 5-HT2C receptors. Fura-2 acetoxymethyl ester was used to investigate the regulation of 5-HT2C receptor function. CHO cells, transfected with a cDNA clone for the 5-HT2C receptor, expressed 287 fmol/mg of the receptor protein as determined by mianserin-sensitive [3H]mesulergine binding (KD = 0.49 nM). The addition of 5-HT mobilized intracellular Ca2+ in a dose-dependent fashion, ranging from a basal level of 99 ± 1.8 up to 379 ± 18 nM, with an EC50 value for 5-HT of 0.029 µM. Exposure to 5-HT, 1-(3-chlorophenyl)piperazine dihydrochloride (a 5-HT2C agonist), and 1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane (a 5-HT2C and 5-HT2A agonist) resulted in increased intracellular Ca2+ levels. Mianserin, mesulergine, ritanserin, and ketanserin each blocked 5-HT-mediated intracellular Ca2+ mobilization more effectively than spiperone. The receptor was rapidly desensitized by preexposure to 5-HT in a time- and concentration-dependent manner. Mezerein and phorbol 12-myristate 13-acetate, protein kinase C activators, weakly inhibited the intracellular Ca2+ mobilization induced by 10 µM 5-HT. Furthermore, the protein kinase C inhibitor H-7 partially prevented the protein kinase C activator-induced inhibition of the 5-HT-mediated increase in intracellular Ca2+ concentration. The desensitization induced by pretreatment with 5-HT was blocked by W-7, added in conjunction with 5-HT, and partially inhibited by W-5, a nonselective inhibitor of protein kinases and weak analogue of W-7. Therefore, the 5-HT2C receptor may be connected with protein kinase C and calcium/calmodulin turnover. These results suggest that 5-HT2C receptor activation mobilizes Ca2+ in CHO cells and that the acute desensitization of the receptor may be due to calmodulin kinase-mediated feedback.  相似文献   

    18.
    《Plant science》2001,161(2):249-258
    It has been previously suggested that auxin-induced stomatal opening results from at least two transduction pathways, one of which involves cyclic GMP (cGMP) as the mediator within a Ca2+ signalling cascade. This hypothesis was investigated further in epidermal peels of Commelina communis by comparing the effects of potential inhibitors of plant Ca2+-dependent enzymes on the stomatal opening responses to the auxin indolyl-3-butyric acid (IBA) and to the cGMP membrane-permeable derivative 8-bromoguanosine 3′,5′-cyclic monophosphate (8-Br-cGMP). In the 30–50 μM range, the potential plant calmodulin (CaM) antagonist N-(aminohexyl)-5-chloro-1-naphthalenesulphonamide (W-7) positively interacted with IBA but not with 8-Br-cGMP to open the stomata. The CaM antagonists W-7 (in the 10–20 μM range) and N-(aminohexyl)-1-naphthalenesulphonamide (40 μM), the potential inhibitors of plant protein kinases 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (20 and 200 μM) and K-252a (0.6 μM), and cyclosporine A and FK506, potential inhibitors of plant homologs of Ca2+–CaM complex (Ca2+/CaM)-dependent protein phosphatase 2B, prevented the IBA and 8-Br-cGMP responses by about 70% and 100%, respectively. Together, these results provide indirect pharmacological evidence that, in addition to the cGMP-dependent pathway, the auxin signal is transduced through at least one cGMP-independent pathway.  相似文献   

    19.
    Summary The fungusZoophthora radicans (Zygomycetes: Entomophthorales) requires external Ca2+ for appressorium formation but not for conidial germination. The number of appressoria formed depends on the Ca2+ concentration of the medium. At low [Ca2+] (100 pM) nuclear division and germ tube growth are significantly reduced compared to higher Ca2+ concentrations (10 and 1,000 M). By contrast, neither external K+ nor external Cl is needed for germination or appressorium formation. Treatment of conidia with a Ca2+-antagonist, Nd3+, and a Ca2+-channel blocker, nifedipine, inhibits appressorium formation, showing that a Ca2+ influx is required for appressorium formation. Furthermore, the partial yet saturating inhibition by nifedipine and complete inhibition by Nd3+ indicates that at least two kinds of Ca2+ channels are involved in appressorium formation. A contribution of intracellular Ca2+ to the signal transduction chain for the formation of appressoria is demonstrated by the inhibitory effect of the intracellular Ca2+ antagonist TMB-8. The calmodulin antagonists R24571, TFP, W-7, and W-5 inhibit appressorium formation at concentrations which have no effect on germination. The data presented in this paper are consistent with the hypothesis that a Ca2+/calmodulin system is involved in regulating appressorium formation. However, since the direct effects of the drugs were not specifically tested on their proposed binding sites, we leave room for alternative hypotheses that have yet to be formulated.Abbreviations A-9-C 9-anthracenecarboxylic acid - DAPI 4,6 diamino-2-phenylindole - EGTA ethylene glycol bis(-aminoethylether)-N,N-tetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - H-7 N-(2-methylamino)ethyl-5-isoquino-linesulphonamide dihydrochloride - IC50 concentration of inhibitor that causes 50% inhibiton - R24571 (calmidazolium) 1-[bis-(4-chlorophenyl)methyl]-3-[2,4-dichloro--(2,4-dichlorobenzyloxy)phenethyl]-imidazolium chloride - TEA tetraethylammonium - TFP (trifluoperazine) 10-[3-(4-methylpiperazine-1-yl)-propyl]-2-trifluomethylphenothiazine - TMB-8 8-(diethylamino)octyl 3,4,5-trimethoxybenzoate hydrochloride - W-5 N-(6-aminohexyl)-1-naphthalene-sulfonamide - W-7 N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide  相似文献   

    20.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号