首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Production of hydrolytic enzymes by oral isolates of Eikenella corrodens   总被引:3,自引:0,他引:3  
Abstract Thermus thermophilus cells harboring an expression plasmid for the aqualysin I gene secrete the mature enzyme into the medium. In an Escherichia coli expression system, a precursor of the enzyme with the C-terminal pro-sequence is accumulated in the cells, and upon treatment at 65°C the active enzyme is produced. One- to 10-amino acid residue deletions, as well as complete 105-residue deletion of the C-terminal pro-sequence from the C-terminus, did not affect the production of the enzyme in T. coli cells. T. thermophilus cells harboring plasmids for mutant precursors with one- and three-residue deletions secreted the enzyme extracellularly. However, transformants harboring plasmids for mutant precursors with deletions of five or more amino acid residues could not be obtained. These results suggest that the C-terminal pro-sequence plays an important role in the extracellular secretion of the enzyme in T. thermophilus cells.  相似文献   

2.
Aqualysin I is synthesized as a large precursor, processed, and secreted into the culture medium by Thermus aquaticus YT-1. An expression plasmid for the aqualysin I gene in T. thermophilus HB27 was constructed. T. thermophilus cells harboring the recombinant plasmid produced correctly processed aqualysin I, and the mature enzyme was secreted into the culture medium.  相似文献   

3.
The precursor of aqualysin I, an extracellular protease produced by Thermus aquaticus, consists of four domains: an N-terminal signal peptide, an N-terminal pro-sequence, the protease domain and a C-terminal pro-sequence. In an Escherichia coli expression system, mature and active aqualysin I is formed by treatment at 65 degrees C and the N-pro-sequence is required for its production. Complete deletion of the C-pro-sequence did not affect the production of active aqualysin I, indicating that the C-pro-sequence is not essential. A non-covalent N-pro-region was separately synthesized from the protease domain with or without the C-pro-sequence. In this system, mature and active aqualysin I was detected only when the C-pro-sequence was deleted.  相似文献   

4.
Aqualysin I is a subtilisin-type serine protease which is secreted into the culture medium by Thermus aquaticus YT-1, an extremely thermophilic Gram-negative bacterium. The nucleotide sequence of the entire gene for aqualysin I was determined, and the deduced amino acid sequence suggests that aqualysin I is produced as a large precursor, consisting of at least three portions, an NH2-terminal pre-pro-sequence (127 amino acid residues), the protease (281 residues), and a COOH-terminal pro-sequence (105 residues). When the cloned gene was expressed in Escherichia coli cells, aqualysin I was not secreted. However, a precursor of aqualysin I lacking the NH2-terminal pre-pro-sequence (38-kDa protein) accumulated in the membrane fraction. On treatment of the membrane fraction at 65 degrees C, enzymatically active aqualysin I (28-kDa protein) was produced in the soluble fraction. When the active site Ser residue was replaced with Ala, cells expressing the mutant gene accumulated a 48-kDa protein in the outer membrane fraction. The 48-kDa protein lacked the NH2-terminal 14 amino acid residues of the precursor, and heat treatment did not cause any subsequent processing of this precursor. These results indicate that the NH2-terminal signal sequence is cleaved off by a signal peptidase of E. coli, and that the NH2- and COOH-terminal pro-sequences are removed through the proteolytic activity of aqualysin I itself, in that order. These findings indicate a unique four-domain structure for the aqualysin I precursor; the signal sequence, the NH2-terminal pro-sequence, mature aqualysin I, and the COOH-terminal pro-sequence, from the NH2 to the COOH terminus.  相似文献   

5.
The precursor of aqualysin I, an extracellular subtilisin-type protease produced by Thermus aquaticus, consists of four domains: an N-terminal signal peptide, an N-terminal pro-sequence, a protease domain, and a C-terminal extended sequence. In an Escherichia coli expression system for the aqualysin I gene, a 38 kDa precursor protein consisting of the protease domain and the C-terminal extended sequence is accumulated in the membrane fraction and processed to a 28 kDa mature enzyme upon heat treatment at 65°C. The 38 kDa precursor protein is separated as a soluble form from denatured E. coli proteins after heat treatment. Accordingly, purification of the 38 kDa proaqualysin I was performed using chromatography. The purified precursor protein gave a single band on SDS-polyacrylamide gels. The precursor protein exhibited proteolytic activity comparable to that of the mature enzyme. The purified precursor protein was processed to the mature enzyme upon heat treatment. The processing was inhibited by diisopropyl fluorophosphate. The processing rate increased upon either the addition of mature aqualysin I or upon an increase in the concentration of the precursor, suggesting that the cleavage of the C-terminal extended sequence occurs through an intermolecular self-processing mechanism.  相似文献   

6.
7.
Aqualysin I, which is a subtilisin-type, extracellular protease secreted by Thermus aquaticus YT-1, is synthesized as a unique precursor bearing pro-domains at both N- and C-terminus of the mature protease domain as well as an N-terminal signal peptide. To investigate the function of the C-terminal pro-domain in maturation and export pathway of the precursor in E. coli cells, aqualysin I variants were constructed in which deletion mutants of the C-terminal pro-domain lacking its own signal peptide were inserted into pIN-III-ompA3. When E. coli harboring wild type and mutant plasmids were induced by 0.2 mM IPTG, active aqualysin I was produced by heat treatment at 65 °C. Aqualysin I precursors with deletions of more than 5 amino acid residues at the C-terminal end of pro-domain were much more rapidly processed than that of wild type, indicating that the C-terminal pro-domain functions as a inhibitor for processing of aqualysin I precursor. With the wild type, most of aqualysin I was present in membrane fraction (probably the outer membrane), whereas for the truncated mutants, it remained in the cytoplasm, indicating that for deletion mutants, their precursors expressed in cells were not translocated across the cytoplasmic membrane, despite the existence of an N-terminal signal peptide.  相似文献   

8.
 The DNA sequence encoding Thermus protease aqualysin I was inserted downstream from a bacteriophage T7 promoter in an expression vector. In the T7 expression system, using a strain lacking an F′ episome, aqualysin I was produced in soluble form without chemical induction. The deletions of part (30 amino acid residues) or all (105 residues) of the C-terminal pro-sequence from the C terminus significantly affected both cellular growth and the production of the enzyme. Complete deletion adversely affected both. In contrast, the 30-residue deletion markedly improved productivity by approximately four times compared to non-deletion, and shortened the time needed for the activation of a precursor to active enzyme. The concentration of inducer isopropyl β-D-thiogalactopyrano-side (IPTG) was varied to examine its effects, and it was found that a low concentration of IPTG improved aqualysin I production. To avoid the inhibitory effects of acetic acid accumulation in the culture medium, the use of other carbon sources besides glucose was examined. When cells were cultivated with glycerol, the acetic acid level remained relatively low, and both good cellular growth and a high level of production were attained. The aqualysin I productivity for a fed-batch culture using two carbon sources, glucose and glycerol, reached more than 150 kU/ml enzymatically active aqualysin I. Received: 19 May 1995/Received revision: 28 July 1995/Accepted: 22 August 1995  相似文献   

9.
An efficient procedure was established to select for thermostable proteases in an extreme thermophile, Thermus thermophilus. A non-protease-secreting mutant derived from T. thermophilus TH125 was used as host and the expression plasmid for aqualysin I from T. aquaticus YT-1 was constructed as a source of thermostable protease. T. thermophilus cells harboring the recombinant plasmid produced active aqualysin I into the medium and were able to grow on a minimal medium containing milk casein as the sole source of carbon and nitrogen.  相似文献   

10.
Aqualysin I is an alkaline serine protease which is secreted into the culture medium by Thermus aquaticus YT-1, an extreme thermophile [Matsuzawa, H., Hamaoki, M. & Ohta, T. (1983) Agric. Biol. Chem. 47, 25-28]. The gene encoding aqualysin I was cloned into Escherichia coli using synthetic oligodeoxyribonucleotides as hybridization probes. The nucleotide sequence of the cloned DNA was determined. The primary structure of aqualysin I, deduced from the nucleotide sequence, agreed with the NH2-terminal sequence previously reported and the determined amino acid sequences, including the COOH-terminal sequence, of the tryptic peptides derived from aqualysin I. Aqualysin I comprised 281 amino acid residues and its molecular mass was determined to be 28,350. On alignment of the whole amino acid sequence, aqualysin I showed high sequence homology with the subtilisin-type serine proteases, and 43% identity with proteinase K, 37-39% with subtilisins and 34% with thermitase. Extremely high sequence identity was observed in the regions containing the active-site residues, corresponding to Asp32, His64 and Ser221 of subtilisin BPN'. The nucleotide sequence of the cloned DNA (1105 nucleotides) revealed that it contains the entire gene encoding aqualysin I and one open reading frame without a translational stop codon. Therefore, aqualysin I was considered to be produced as a large precursor, which contains a NH2-terminal portion, the protease and a COOH-terminal portion. The G + C content of the coding region for aqualysin I was 64.6%, which is lower than those of other Thermus genes (68-74%). The codon usage in the aqualysin I gene was rather random in comparison with that in other Thermus genes.  相似文献   

11.
Aqualysin I is an alkaline serine protease which is secreted into the culture medium by Thermus aquaticus YT-1. Aqualysin I was purified, and its apparent relative molecular mass was determined to be 28 500. The enzyme contained four Cys residues (probably as two cystines), and its amino acids composition was similar to those of cysteine-containing serine proteases (proteinase K, etc.) as well as those of subtilisins. The NH2-terminal sequence of aqualysin I showed homology with those of the microbial serine proteases. The optimum pH for the proteolytic activity of aqualysin I was around 10.0. Ca2+ stabilized the enzyme to heat treatment, and the maximum proteolytic activity was observed at 80 degrees C. Aqualysin I was stable to denaturing reagents (7 M urea, 6 M guanidine.HCl and 1% SDS) at 23 degrees C for 24 h. The enzyme hydrolyzed the ester bond of an alanine ester and succinyl-Ala-Ala-Ala p-nitroanilide, a synthetic substrate for mammalian elastase. The cleavage sites for aqualysin I in oxidized insulin B chain were not specific when it was digested completely.  相似文献   

12.
An expression system for aqualysin I from Thermus aquaticus YT-1, a thermophilic serine protease belonging to the proteinase K family, in Escherichia coli is available, but the efficiency of production has been rather low for detailed analysis of the product. We developed a maltose biding protein (MBP)-fused proaqualysin I expression plasmid (pMAQ-c2Δ) in which MBP is attached to the N-terminus of proaqualysin I. MBP appeared effectively to suppress the folding-promoting activity of the N-terminal propeptide when the bacteria were grown at 30 °C, leading to a massive accumulation of fusion aqualysin I precursor. The precursor was converted efficiently to mature aqualysin I by heat treatment at 70 °C, enabling us to obtain 40 times more aqualysin I than is available using expression systems such as pAQNΔC105. By analyzing the product of the pMAQ-c2Δ-derived inactive mutant expression vector, pMAQ-S222A, it was confirmed that aqualysin I was initially expressed as a whole fusion protein and then processed autocatalytically.  相似文献   

13.
An expression system for aqualysin I from Thermus aquaticus YT-1, a thermophilic serine protease belonging to the proteinase K family, in Escherichia coli is available, but the efficiency of production has been rather low for detailed analysis of the product. We developed a maltose biding protein (MBP)-fused proaqualysin I expression plasmid (pMAQ-c2Delta) in which MBP is attached to the N-terminus of proaqualysin I. MBP appeared effectively to suppress the folding-promoting activity of the N-terminal propeptide when the bacteria were grown at 30 degrees C, leading to a massive accumulation of fusion aqualysin I precursor. The precursor was converted efficiently to mature aqualysin I by heat treatment at 70 degrees C, enabling us to obtain 40 times more aqualysin I than is available using expression systems such as pAQNDeltaC105. By analyzing the product of the pMAQ-c2Delta-derived inactive mutant expression vector, pMAQ-S222A, it was confirmed that aqualysin I was initially expressed as a whole fusion protein and then processed autocatalytically.  相似文献   

14.
Protein folding can be modulated in vivo by many factors. While chaperones act as folding catalysts and show broad substrate specificity, some pro-peptides specifically facilitate the folding of the mature protein to which they are bound. Potato carboxypeptidase inhibitor (PCI), a 39-residue protein carboxypeptidase inhibitor, is synthesized in vivo as a precursor protein that includes a 27-residue N-terminal and a seven-residue C-terminal pro-regions. In this work the disulfide-coupled folding of mature PCI in vitro has been compared with that of the same protein extended with either the N-terminal pro-sequence (ProNtPCI) or both N- and C-terminal pro-sequences (ProPCI), and also with the N-terminal pro-sequence in trans (ProNt + PCI). No significant differences can be observed in the folding kinetics or efficiencies of all these molecules. In addition, in vivo folding studies in Escherichia coli have been performed using wild-type PCI and three PCI mutant forms with and without the N-terminal pro-sequence, the mutations had been previously reported to affect folding of the PCI mature form. The extent to which the 'native-like' form was secreted to the media by each construction was not affected by the presence of the N-terminal pro-sequence. These results indicate that PCI does not depend on the N-terminal pro-sequence for its folding in both, in vitro and in vivo in E. coli. However, structural analysis by spectroscopy, hydrogen exchange and limited proteolysis by mass spectrometry, indicate the capability of such N-terminal pro-sequence to fold within the precursor form.  相似文献   

15.
Germination-specific enzymes, an amidase and a muramidase, of Clostridium perfringens S40 were synthesized at the time of forespore formation during sporulation. The amidase had a unique precursor structure consisting of four domains: the N-terminal pre-sequence, the N-terminal pro-sequence, mature enzyme and the C-terminal pro-sequence. The N-terminal pre-sequence and the C-terminal pro-sequence were sequentially processed at the time of development of phase-bright spores, and the resulting inactive pro-enzyme was activated by cleavage of the N-terminal pro-sequence with a specific protease during germination. A possible mechanism for the regulation of activity of muramidase, which is produced as a mature form and does not need processing for activation, is presented.  相似文献   

16.
The cysteine endopeptidase streptopain, an extracellular enzyme from pathogenic Streptococcus pyogenes, is synthesized as a precursor containing an NH2-terminal pro-sequence. The pro-sequence of streptopain was expressed in Escherichia coli and subjected to structural and functional investigation. Heat-induced denaturation of the pro-sequence studied using circular dichroism spectroscopy revealed that it forms a compact structure and represents an independently folded domain. The isolated pro-sequence exhibits high affinity towards mature streptopain and associates with its cognate enzyme by forming an equimolar complex. Refolding of denatured streptopain in the presence of pro-sequence in vitro facilitated recovery of active enzyme. Expression of the mature streptopain in E. coli either alone, or in trans with its pro-sequence as an independent polypeptide, led to the formation of insoluble protein aggregates or functionally active enzyme, respectively. These results demonstrate that the pro-sequence domain acts as an intramolecular chaperone that directs the correct folding of the mature streptopain.  相似文献   

17.
To understand the molecular basis of the thermostability of a thermophilic serine protease aqualysin I from Thermus aquaticus YT-1, we introduced mutations at Pro5, Pro7, Pro240 and Pro268, which are located on the surface loops of aqualysin I, by changing these amino acid residues into those found at the corresponding locations in VPR, a psychrophilic serine protease from Vibrio sp. PA-44. All mutants were expressed stably and exhibited essentially the same specific activity as wild-type aqualysin I at 40 degrees C. The P240N mutant protein had similar thermostability to wild-type aqualysin I, but P5N and P268T showed lower thermostability, with a half-life at 90 degrees C of 15 and 30 min, respectively, as compared to 45 min for the wild-type enzyme. The thermostability of P7I was decreased even more markedly, and the mutant protein was rapidly inactivated at 80 degrees C and even at 70 degrees C, with half-lives of 10 and 60 min, respectively. Differential scanning calorimetry analysis showed that the transition temperatures of wild-type enzyme, P5N, P7I, P240N and P268T were 93.99 degrees C, 83.45 degrees C, 75.66 degrees C, 91.78 degrees C and 86.49 degrees C, respectively. These results underscore the importance of the proline residues in the N- and C-terminal regions of aqualysin I in maintaining the integrity of the overall protein structure at elevated temperatures.  相似文献   

18.
Thaumatin is a 22-kDa sweet-tasting protein containing eight disulfide bonds. When thaumatin is expressed in Pichia pastoris using the thaumatin cDNA fused with both the alpha-factor signal sequence and the Kex2 protease cleavage site from Saccharomyces cerevisiae, the N-terminal sequence of the secreted thaumatin molecule is not processed correctly. To examine the role of the thaumatin cDNA-encoded N-terminal pre-sequence and C-terminal pro-sequence on the processing of thaumatin and efficiency of thaumatin production in P. pastoris, four expression plasmids with different pre-sequence and pro-sequence were constructed and transformed into P. pastoris. The transformants containing pre-thaumatin gene that has the native plant signal, secreted thaumatin molecules in the medium. The N-terminal amino acid sequence of the secreted thaumatin molecule was processed correctly. The production yield of thaumatin was not affected by the C-terminal pro-sequence, and the pro-sequence was not processed in P. pastoris, indicating that pro-sequence is not necessary for thaumatin synthesis.  相似文献   

19.
We characterized the heat stability and detergent stabilities of aqualysin I, produced by Thermus aquaticus YT-1, and compared them with those of fungal proteinase K and Bacillus subtilisin.

Aqualysin I displayed excellent heat and detergent stabilities. Proteinase K, another Cys-containing enzyme, was less stable than aqualysin I. All these enzymes maintained activities in the presence of urea or Tween-20.  相似文献   

20.
ABSTRACT. The proteolytic processing and secretion of a lysosomal enzyme, acid α-glucosidase, was studied by pulse-chase labeling with [35S]methionine in Tetrahymena thermophila CU-399 cells treated with ammonium chloride. This cell secreted a large amount of acid α-glucosidase into the cultured medium during starvation. the secretion was found to be repressed by addition of ammonium chloride (NH4Cl). Acid α-glucosidase was produced as a precursor form (108 kDa) and then processed to a mature polypeptide (105 kDa) within 60 min. This mature enzyme was secreted into the media within 2-3 h after chase, whereas the precursor form was not secreted by either control cells or NH4Cl-treated cells. NH4Cl did not affect the processing of the precursor acid α-glucosidase. Processing profile of this enzyme was apparently indistinguishable from that of the mutant MS-1 defective in lysosomal enzyme secretion. Furthermore, the purified extracellular (CU-399) and intracellular (MS-1) acid a-glucosidases were the same in molecular mass (105 kDa) and enzymatic properties. They contained no mannose 6-phosphate residues in N-linked oligosaccharides. These results suggested that unlike mammalian cells, Tetrahymena acid α-glucosidase may be transferred to lysosomes by a mannose 6-phosphate receptor-independent mechanism, and also that low pH was not essential for the proteolytic processing of precursor polypeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号