首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
The host range of the B-lymphotropic papovavirus (LPV) in cultured human cells is limited to a few B-lymphoma-derived cell lines. The constitutively expressed cell surface receptor for the virus is a major determinant restricting the LPV host range (G. Haun, O. T. Keppler, C. T. Bock, M. Herrmann, H. Zentgraf, and M. Pawlita, J. Virol. 67:7482-7492, 1993). Here we show that human B-lymphoma cells with low-level susceptibility are rendered highly susceptible to LPV infection by pretreatment with the N glycosylation inhibitor tunicamycin but remain nonsusceptible to infection by the related polyomavirus simian virus 40. Among the selective N glycosylation processing inhibitors, deoxymannojirimycin, but not deoxynojirimycin, swainsonine, or castanospermine, could mimic the effect of tunicamycin. Tunicamycin treatment also induced a drastic enhancement of the cells' LPV-binding capacity, indicating that the induction of LPV susceptibility might be mediated by an increase in the number of functional cell surface receptors and/or by increased receptor affinity. Sialidase sensitivity of the tunicamycin-induced LPV receptor showed that oligosaccharides carrying terminal sialic acids are necessary for binding and are likely to be O linked. The constitutive LPV receptor is also sialic acid dependent, which points to a possible identity with the sialic acid-dependent tunicamycin-induced LPV receptor. We conclude that removal or modification of certain N-linked oligosaccharides in human B-lymphoma cells can enhance expression or functional activity of the sialylated LPV receptor.  相似文献   

5.
Capsids of polyomaviruses--small, nonenveloped DNA viruses--consist of the major structural protein VP1 and the minor structural proteins VP2 and VP3. The contributions of the individual capsid proteins to functions of the viral particle, such as DNA encapsidation, cell receptor attachment, entry, and uncoating, are still not clear. Here we show that viruslike particles assembled in nuclei of insect cells from VP1 of the monkey B-lymphotropic papovavirus (LPV) are sufficient to unspecifically encapsidate DNA. LPV VP1 expressed in large amounts in insect cells by a baculovirus vector assembled spontaneously in the nuclei to form viruslike particles. After metrizamide equilibrium density gradient purification and nuclease digestion, a fraction of these particles was shown to contain VP1-associated linear, double-stranded DNA with a predominant size of 4.5 kb. The fraction of DNA-containing VP1 particles increased with time and dose of baculovirus vector infection. The DNA-containing particles, further purified by sucrose gradient centrifugation, appeared as "full" particles in negative-staining electron microscopy. As shown by DNA hybridization, the encapsidated DNA consisted of insect cell and baculoviral sequences with no apparent strong homology to LPV sequences. Three non-LPV VP1-derived host proteins with apparent molecular masses of approximately 14, 15, and 16 kDa copurified with the DNA-containing particles and may represent insect cell histones encapsidated together with the DNA. A similar species of host DNA was also found in purified LPV wild-type virions. These data suggest that LPV VP1 alone can be sufficient to encapsidate linear DNA in a sequence-independent manner.  相似文献   

6.
Evaluation of annotation strategies using an entire genome sequence   总被引:2,自引:0,他引:2  
MOTIVATION: Genome-wide functional annotation either by manual or automatic means has raised considerable concerns regarding the accuracy of assignments and the reproducibility of methodologies. In addition, a performance evaluation of automated systems that attempt to tackle sequence analyses rapidly and reproducibly is generally missing. In order to quantify the accuracy and reproducibility of function assignments on a genome-wide scale, we have re-annotated the entire genome sequence of Chlamydia trachomatis (serovar D), in a collaborative manner. RESULTS: We have encoded all annotations in a structured format to allow further comparison and data exchange and have used a scale that records the different levels of potential annotation errors according to their propensity to propagate in the database due to transitive function assignments. We conclude that genome annotation may entail a considerable amount of errors, ranging from simple typographical errors to complex sequence analysis problems. The most surprising result of this comparative study is that automatic systems might perform as well as the teams of experts annotating genome sequences.  相似文献   

7.
R Dhar  C J Lai  G Khoury 《Cell》1978,13(2):345-358
DNA and RNA sequencing techniques were used to obtain the sequence surrounding the origin of DNA replication for human papovavirus BKV. The structure is characterized by a true palindrome of 17 residues followed by two sets of symmetrical sequences and a stretch of 20 AT residues. Within the two symmetrical sequences is a segment containing a strong purine bias, 23 of 26 nucleotides. These structures are similar, if not identical, to those found in the region of the SV40 replication, origin. Within the homologous DNA segments, 60-80% of the BKV and SV40 nucleotides are the same. The remarkable similarity of BKV and SV40 sequences containing the origins of DNA replication would appear to confirm our previous suggestion of an evolutionary relationship between the two genomes. In addition, topological similarities between these sequences suggest the possibility of certain structural requirements for bidirectional replication origins in these superhelical DNAs.  相似文献   

8.
Two segments of the variable terminal regions of the variola virus (VARV) genome were sequenced in 22 strains from the Russian collection, including about 13.5 kb of the left segment and about 10.5 kb of the right segment. The total length of the sequences was over 540 kb. Phylogenetic analysis of the new and published data determined the relationships among 70 VARV strains, the character of their clustering, and the intergroup and intragroup variation of the strain clusters. Loci with the highest polymorphism rate were identified and proved to map to noncoding regions or to regions of damaged open reading frames, characteristic of the ancestral virus. These loci offer attractive possibilities for developing a strategy of VARV strain genotyping. Recombination analysis by different methods did not detect, except for a single case, significant recombination events in the VARV strains examined.  相似文献   

9.
The B-lymphotropic papovavirus (LPV) productively infects only a subset of human B-lymphoma-derived cell lines while transfection of the viral genome yields infectious viral particles in a much wider variety of human hematopoietic cell lines. We have analyzed the contribution of a putative LPV receptor on the cell surface of B-cell lines in restricting the virus host range. In order to establish a quantitative virus binding assay for LPV, infectious virus particles were highly purified by metrizamide equilibrium density centrifugation and used as immunogens to raise seven mouse monoclonal antibodies specific for LPV VP1. Virus particle binding was quantitated in an indirect, nonradioactive assay with an LPV VP1-specific enzyme-linked immunosorbent assay. Binding of LPV particles to permissive human B-lymphoma cell line BJA-B occurred within minutes. Kinetics and capacity of binding were similar at 4 and 37 degrees C. A BJA-B cell was estimated to bind approximately 600 virus particles at conditions under which 50% of the administered virus was bound. The sialidase and trypsin sensitivities of the cellular virus binding moiety show that sialylated and proteinaceous components are necessary components of the LPV receptor on BJA-B cells. Despite a high binding capacity of BJA-B cells for simian virus 40, LPV binding was not significantly affected by a 20-fold excess of simian virus 40 particles, indicating that these related polyomaviruses do not bind to the same receptor on BJA-B cells. Reduction of LPV binding to sialidase-pretreated BJA-B cells was accompanied by a similar reduction of infection, indicating that virus binding may be a limiting factor in the LPV replicative cycle. The two highly LPV-permissive human B-lymphoma cell lines BJA-B and Namalwa displayed high virus binding whereas low and nonpermissive hematopoietic cell lines showed reduced or undetectable virus binding. We conclude that the inability of LPV particles to productively infect the nonpermissive human hematopoietic cell lines analyzed is probably due to the absence or insufficient expression of a functional cell surface receptor.  相似文献   

10.
A new approach has been used to examine DNA sequence organization in the chicken genome. The interspersion pattern was determined by studying the fraction of labelled DNA fragments of different lengths that hybridized to an excess of short chicken repeated DNA sequences. The results indicate that chicken DNA has a pattern of sequence organization quite different than the standard ‘Xenopus’ or ‘Drosophila’ patterns. Two classes of unique sequences are found. One, 34% of the genome, consists of unique sequences approx. 4 kb long interspersed with repeated sequences. The second, non-interspersed fraction, 38% of the genome, consists of unique sequences found in long tracts, a minimum of approx. 22 kb in length. In an attempt to determine whether a relationship exists between DNA sequence organization and the distribution of structural genes we have isolated chicken DNA sequences belonging to different interspersion classes and tested each for the presence of structural genes by hybridization to excess poly(A)+ mRNA. Sequences complementary to poly(A)+ mRNA can be found with approximately the same frequency in both the non-interspersed fraction of the genome and a repeat-contiguous fraction enriched for interspersed sequences.  相似文献   

11.
Complete DNA sequence of the rat cytomegalovirus genome   总被引:7,自引:0,他引:7       下载免费PDF全文
We have determined the complete genome sequence of the Maastricht strain of rat cytomegalovirus (RCMV). The RCMV genome has a length of 229,896 bp and is arranged as a single unique sequence flanked by 504-bp terminal direct repeats. RCMV was found to have counterparts of all but one of the open reading frames (ORFs) that are conserved between murine CMV (MCMV) and human CMV (HCMV). Like HCMV, RCMV lacks homologs of the genes belonging to the MCMV m02 glycoprotein gene family. However, RCMV contains 15 ORFs with homology to members of the MCMV m145 glycoprotein gene family. Four ORFs are predicted to encode homologs of host proteins; R33 and R78 both putatively encode G protein-coupled receptors, whereas r144 and r131 encode homologs of major histocompatibility class I heavy chains and CC chemokines, respectively. An intriguing feature of the RCMV genome is the presence of an ORF, r127, with similarity to the rep gene of parvoviruses as well as ORF U94 of human herpesvirus 6A (HHV-6A) and HHV-6B. Counterparts of these ORFs have not been found in the other sequenced herpesviruses.  相似文献   

12.
13.
E Knust  S Schirm  W Dietrich  W Bodemer  E Kolb  B Fleckenstein 《Gene》1983,25(2-3):281-289
Purified particles of Herpesvirus saimiri, a potent tumor-eliciting virus of primates, contain genomic DNA molecules (145-170 kb) consisting of a unique L-DNA region (112 kb) which is flanked by variable stretches of repetitive sequences (H-DNA). Restriction fragments representing the entire L-DNA of H. saimiri strain No. 11 were cloned in plasmid and bacteriophage vectors. The internal fragments of L-DNA generated by the enzymes EcoRI and KpnI were inserted into plasmid pACYC184, cosmid pJC81, or bacteriophage lambda derivative Charon 4A. The terminal parts of L-DNA, including the junctions between repetitive DNA and unique sequences, were cloned between the cleavage sites for KpnI and SmaI in the plasmid vector pWD7, which was constructed for this purpose. Molecular cloning allowed us to confirm and modify, in part, the existing cleavage maps of H. saimiri DNA. It provides a basis for future studies on virus replication and oncogenic transformation.  相似文献   

14.
15.
The DNA genome of the murine papovavirus K virus (KV) was characterized and compared with the genome of polyoma virus. A physical map of the KV genome was constructed by analysis of the size of DNA fragments generated by sequential cleavage with combinations of restriction endonucleases. By using one of the three EcoRI sites in the KV genome as the 0 map position, the KV physical map was then oriented to the polyoma virus genome. Of 42 restriction sites mapped within the KV genome, 7 were localized within 0.01 map unit of their respective sites in the polyoma virus genome; an eighth site mapped within 0.02 map unit. KV replication was examined and found to be bidirectional, initiating at approximately 0.70 map unit. This corresponds well to the origin of replication within the polyoma virus genome and further supports the orientation of the KV physical map.  相似文献   

16.
17.
The DNA sequence of the human cytomegalovirus genome.   总被引:14,自引:0,他引:14  
In the first part of this article we review what has been learnt from the analysis of the sequence of HCMV. A summary of this information is presented in the form of an updated map of the viral genome. HCMV is representative of a major lineage of herpesviruses distinct from previously sequenced members of this viral family and demonstrates striking differences in genetic content and organization. The virus encodes approximately 200 genes, including nine gene families, a large number of glycoprotein genes, and homologues of the human HLA class I and G protein-coupled receptor genes. The HCMV sequence thus provides a sound basis for future molecular studies of this highly complex eukaryotic virus. The second part discusses the practical rate of DNA sequencing as deduced from this and other studies. The 229 kilobase pair DNA genome of human cytomegalovirus (HCMV) strain AD169 is the largest contiguous sequence determined to date, and as such provides a realistic benchmark for assessing the practical rate of DNA sequencing as opposed to theoretical calculations which are usually much greater. The sequence was determined manually and we assess the impact of new developments in DNA sequencing.  相似文献   

18.
The genome of Nicotiana tabacum was investigated by DNA/DNA reassociation for its spectrum of DNA repetition components and pattern of DNA sequence organization. The reassociation of 300 nucleotide DNA fragments analyzed by hydroxyapatite chromatography reveals the presence of three major classes of DNA differing in reiteration frequency. Each class of DNA was isolated and characterized with respect to kinetic homogeneity and thermal properties on melting. These measurements demonstrate that the genome of N. tabacum has a 1C DNA content of 1.65 pg and that DNA sequences are represented an average of 12,400, 252, and 1 times each. — The organization of the DNA sequences in the N. tabacum genome was determined from the reassociation kinetics of long DNA fragments as well as S1 nuclease resistance and hyperchromicity measurements on DNA fragments after annealing to C0t values at which only repetitive DNA sequences will reassociate. At least 55% of the total DNA sequences are organized in a short period interspersion pattern consisting of an alternation of single copy sequences, averaging 1400 nucleotides, with short repetitive elements approximately 300 nucleotides in length. Another 25% of the genome contains long repetitive DNA sequences having a minimal genomic length of 1500 nucleotides. These repetitive DNA sequences are much less divergent than the short interspersed DNA sequence elements. These results indicate that the pattern of DNA sequence organization in the tobacco genome bears remarkable similarity to that found in the genomes of most animal species investigated to date.  相似文献   

19.
The pattern of DNA sequence organization in the genome of Cycas revoluta was analyzed by DNA/DNA reassociation. Reassociation of 400 base pair (bp) fragments to various C0t values indicates the presence of at least four kinetic classes: the foldback plus very highly repetitive sequences (15%), the fast repeats (24%), the slow repeats (44%), and the single copy (17%). The latter component reassociates with a rate constant 1×10–4 M–1S–1 corresponding to a complexity of 1.6× 106 kb per haploid genome. A haploid C. revoluta nucleus contains approximately 10.3 pg DNA. The single-copy sequences account for about 28% of the DNA, but only 17% reassociate with single-copy kinetics because of interspersion with repetitive sequences. — The interspersion of repetitive and single-copy sequences was examined by reassociation of DNA fragments of varying length to C0t values of 70 and 500. A major (65%) and homogeneous class of single-copy sequences averaging 1,100 bp in length is interspersed in a short period pattern with repeated sequences. A minor (35%) heterogeneous single-copy component is interspersed in a long-period pattern. The majority of repetitive sequences have a length distribution of 100–350 bp with subclasses averaging 150 and 300 bp in length. Repeat sequences with a wide range in sizes exceeding 2 kilobase pair (kb) are also present in this genome. — The size and distribution of inverted repeat (ir) sequences in the DNA of C. revoluta were studied by electron microscopy. It is estimated that there are approximately 4 × 106 ir pairs (one per 2.33 kb) that form almost equal numbers of looped and unlooped palindromes. This high value is 2.5 times that found in wheat DNA. These palindromes are in general randomly distributed in the genome with an average interpalindrome distance of 1.6 kb. The majority (about 85%) of ir sequences of both types of palindromes belong to a main-size class, with an average length of 210 bp in the unlooped and and 163 bp in the looped type. These values are comparable to those reported for some other plant and animal genomes. Distribution of length of single stranded loops showed a main-size class (75%) with an average length of 220 bp.  相似文献   

20.
Uniqueness is fundamental to the individuality of species, and this in turn is based on the uniqueness of their genomes. For the purpose of resolving the genetic basis of human uniqueness, we describe here the isolation of human-specific sequences using the technique of genome subtraction, i.e., competitive reassociation of genomic DNAs between two very closely related species. One such sequence, HS5, was found to be present only in the human genome and absent in the genomes of non-human primates including chimpanzees, the species most closely related to humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号