首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 342 毫秒
1.
树突状细胞是最强的抗原提呈细胞,在免疫系统中发挥着重要作用。Toll样受体是表达在树突状细胞上的一种PRRs,主要功能是通过识别病原体微生物所携带的病原相关分子模式激活DC,使其分泌各种免疫调节细胞因子,从而启动免疫应答。在肠道免疫中TLR信号的激活为肠道提供保护作用。本文简述了树突状细胞的生物特性、不同亚型。重点阐述了Toll样受体在肠道免疫中的作用及益生菌对肠道Toll样受体表达的影响。  相似文献   

2.
Toll样受体(Toll - like receptor,TLR)是在天然免疫与获得性免疫应答中发挥重要作用的模式识别受体(Pattern recognition receptors,PRRs).TLR识别来源于病原体或机体损伤产生的“危险信号”,介导多种炎症因子释放,激发机体对病原体的免疫反应,启动固有免疫并进一步活...  相似文献   

3.
张雨茜  王荣花  陈祥  严彦  张评浒 《病毒学报》2021,37(5):1234-1243
Toll样受体(Toll-like receptors,TLR)是参与非特异性免疫的Ⅰ型跨膜蛋白分子,可识别病原相关分子模式(Pathogen-associated molecular patterns,PAMP)并在病原体侵入体内的早期阶段激活机体的免疫应答,在响应宿主细胞对微生物病原体的识别中起重要作用,是机体抵抗感染疾病的重要屏障.以流感病毒和冠状病毒为代表的呼吸道病毒感染在临床具有极高的发病率和死亡率.此类病毒感染细胞后可通过模式识别受体和病原体相关分子模式相互作用激活宿主的先天免疫系统,诱发宿主产生过激的炎症反应从而引发"细胞因子风暴",最终导致急性肺损伤与急性呼吸窘迫综合症而致人死亡.因此,本文就Toll样受体家族中的Toll样受体4介导的信号通路为对象,就其介导的信号通路在流感病毒与冠状病毒复制及其在导致病毒性急性肺损伤与ARDS形成中的作用及靶向抑制该通路治疗病毒性肺炎的研究进展作一综述,以供同行参考.  相似文献   

4.
动脉粥样硬化是一种慢性免疫炎症性疾病,它与自身的先天性免疫和适应性免疫密切相关。Toll样受体(Toll-like receptors,TLR)作为激活非特异性免疫的重要受体蛋白,可以识别病原微生物,激活免疫反应。Toll样受体9是TLR家族中的重要一员,是先天免疫系统中识别细菌和病毒Cp G DNA的重要受体,其与动脉粥样硬化(atherosclerosis,AS)的发生发展紧密相关。研究发现,TLR9与动脉粥样硬化的发生、发展(内皮受损和泡沫化细胞形成)密切相关,但也有研究发现TLR9在AS进程中具有潜在的保护效应。本文对Toll样受体9与动脉粥硬化疾病之间关系做一个简要的阐述,简明的总结了TLR9与树突细胞及自噬之间的联系,并为其作为靶点治疗动脉粥样硬化提供新的思路。  相似文献   

5.
Liu HZ  Yang HZ  Hu ZW 《生理科学进展》2008,39(2):114-118
Toll样受体(TLRs)广泛表达于固有免疫和获得性免疫系统.它们通过识别内外源性致病原含有的保守病原体相关模式分子,启动宿主防卫反应.TLRs也是沟通固有免疫和获得性免疫反应,尤其是T细胞介导的细胞免疫反应的重要桥梁.新近研究表明,几乎所有亚型TLR均表达在B淋巴细胞,不仅参与B细胞增殖、成熟和功能调节,而且在系统性红斑狼疮和慢性淋巴细胞白血病等疾病发生过程中发挥重要调节作用.以TLRs为靶点,调节B细胞介导的免疫反应,可能成为具有崭新应用前景的免疫治疗途径和方法.  相似文献   

6.
机体损伤后通过诱导组织细胞产生复杂而又相互调控的系列反应,来促进损伤组织的再生.不同细胞因子、生长因子及细胞之间的协调平衡对于组织再生的调节非常重要,免疫系统在此过程中起着极其重要的作用.Toll样受体(Toll-like receptors,TLRs)可识别微生物病原体,在触发机体防御性抗病原微生物免疫反应中发挥着重要作用,是先天免疫系统中必不可少的重要成分,TLRs内源性配体的存在提示TLRs不仅可诱导机体防御性的抗微生物免疫反应,同时还是机体损伤后启动组织再生修复的敏感监测系统.本文概述了TLRs及其内源性配体,以及TLRs在诱导损伤后组织再生中的作用.TLR内源性配体及其在组织再生过程中的作用为促进机体损伤组织的再生修复提供了新的思路策略.  相似文献   

7.
Toll样受体(Toll-like receptor,TLR)是存在于一线防御细胞上的一种识别病原体相关分子模式(pathogen-asso-ciated molecular pattern,PAMP)的受体,在免疫反应中发挥重要作用。自噬是一种进化过程中保留的细胞反应机制,不仅是细胞适应各种代谢压力的生存机制,还被认为参与了天然免疫和获得性免疫过程。本文将TLR与自噬在免疫反应中的研究进展进行综述。  相似文献   

8.
Toll样受体介导的信号转导通路在对抗外来病原体的天然免疫应答中起重要作用。Toll样受体是一个天然模板识别受体家族,能识别固有性模板(微生物和哺乳动物所共有的病原相联的分子模板PAMPs)。Toll样受体通过巨噬细胞和其他免疫细胞来识别,其中TLR4识别内毒素、TLR2识别肽聚糖、TLR9识别细菌DNA、TLR5识别鞭毛蛋白、TLR3识别双链RNA等。本探讨了多种Toll受体家族成员在动物体内识别机理及功能,概述了其应用研究进展。  相似文献   

9.
Toll样受体4(TLR4)是固有免疫系统中能够识别病原相关分子模式的受体家族成员,可识别革兰氏阴性菌的脂多糖(LPS)而在细菌感染性疾病的发生中起重要作用。近年来越来越多的研究发现,TLR4还广泛参与病毒感染性疾病的发生和病毒的免疫逃逸,由于其信号转导通路的独特性和细胞定位的可变性,再次引起人们极大的研究兴趣。该文将介绍TLR4的生物学特性、信号转导通路及TLR4与病毒感染的最新研究进展。  相似文献   

10.
TLR家族及其功能研究进展   总被引:6,自引:0,他引:6  
由于TLR能识别病原体,从而在病原体入侵机体的早期即启动天然免疫,提示其在抗感染中的重要作用。至今已发现的TLR家族中的TLR1~10,其中TLR~5的结构已经被确定,而对于TLR的功能,现今对TLR在细菌内毒素(LPS)作用下引起的免疫毒理学作用的研究较为深入,提示TLR对由病原体引起的免疫病理损伤有重要的作用。随着研究的深入,发现TLR在促进细胞因子的合成与释放,引发炎症反应;促进免疫细胞膜表面表达相关免疫分子,促进免疫细胞的成熟和功能化;抗病毒感染;调节免疫应答;诱导一氧化氮(NO)依赖性杀菌活性;介导全身免疫病理损伤以及其家族间的协同作用影响免疫应答等方面起到重要的作用。  相似文献   

11.
Neuroinflammation is now recognized to compound many central nervous system (CNS) pathologies, from stroke to dementia. As immune responses evolved to handle infections, studying CNS infections can offer unique insights into the CNS immune response and address questions such as: What defenses and strategies do CNS parenchymal cells deploy in response to a dangerous pathogen? How do CNS cells interact with each other and infiltrating immune cells to control microbes? What pathways are beneficial for the host or for the pathogen? Here, we review recent studies that use CNS-tropic infections in combination with cutting-edge techniques to delve into the complex relationships between microbes, immune cells, and cells of the CNS.  相似文献   

12.
Herpes simplex virus 1 (HSV-1) causes a spectrum of disease, including herpes labialis, herpes keratitis, and herpes encephalitis, which can be lethal. Viral recognition by pattern recognition receptors plays a central role in cytokine production and in the generation of antiviral immunity. The relative contributions of different Toll-like receptors (TLRs) in the innate immune response during central nervous system infection with HSV-1 have not been fully characterized. In this study, we investigate the roles of TLR2, TLR9, UNC93B1, and the type I interferon (IFN) receptor in a murine model of HSV-1 encephalitis. TLR2 is responsible for detrimental inflammatory cytokine production following intracranial infection with HSV-1, and the absence of TLR2 expression leads to increased survival in mice. We prove that inflammatory cytokine production by microglial cells, astrocytes, neutrophils, and monocytes is mediated predominantly by TLR2. We also demonstrate that type I IFNs are absolutely required for survival following intracranial HSV-1 infection, as mice lacking the type I IFN receptor succumb rapidly following infection and have high levels of HSV in the brain. However, the absence of TLR9 does not impact survival, type I IFN levels, or viral replication in the brain following infection. The absence of UNC93B1 leads to a survival disadvantage but does not impact viral replication or type I IFN levels in the brain in HSV-1-infected mice. These results illustrate the complex but important roles that innate immune receptors play in host responses to HSV-1 during infection of the central nervous system.  相似文献   

13.
Toll-like receptor pathways in the immune responses to mycobacteria   总被引:8,自引:0,他引:8  
The control of Mycobacterium tuberculosis infection depends on recognition of the pathogen and the activation of both the innate and adaptive immune responses. Toll-like receptors (TLR) were shown to play a critical role in the recognition of several pathogens. Mycobacterial antigens recognise distinct TLR resulting in rapid activation of cells of the innate immune system. Recent evidence from in vitro and in vivo investigations, summarised in this review demonstrates TLR-dependent activation of innate immune response, while the induction of adaptive immunity to mycobacteria may be TLR independent.  相似文献   

14.
Browne EP 《PLoS pathogens》2011,7(10):e1002293
The development of vaccines that can enhance immunity to viral pathogens is an important goal. However, the innate molecular pathways that regulate the strength and quality of the immune response remain largely uncharacterized. To define the role of Toll-like receptor (TLR) signaling in control of a model retroviral pathogen, Friend virus (FV), I generated mice in which the TLR signaling adapter Myd88 was selectively deleted in dendritic cell (DC) or in B cell lineages. Deletion of Myd88 in DCs had little effect on immune control of FV, while B cell specific deletion of Myd88 caused a dramatic increase in viral infectious centers and a significantly reduced antibody response, indicating that B cell-intrinsic TLR signaling plays a crucial role, while TLR signaling in DCs is less important. I then identified the single-stranded RNA sensing protein TLR7 as being required for antibody-mediated control of FV by analyzing mice deficient in TLR7. Remarkably, B cells in infected TLR7-deficient mice upregulated CD69 and CD86 early in infection, but failed to develop into germinal center B cells. CD4 T cell responses were also attenuated in the absence of TLR7, but CD8 responses were TLR7 independent, suggesting the existence of additional pathways for detection of retroviral particles. Together these results demonstrate that the vertebrate immune system detects retroviruses in vivo via TLR7 and that this pathway regulates a key checkpoint controlling development of germinal center B cells.  相似文献   

15.
Bacterial lipopolysaccharide (LPS) triggers innate immune responses through Toll-like receptor (TLR) 4, a member of the TLR family that participates in pathogen recognition. TLRs recruit a cytoplasmic protein, MyD88, upon pathogen recognition, mediating its function for immune responses. Two major pathways for LPS have been suggested in recent studies, which are referred to as MyD88-dependent and -independent pathways. We report in this study the characterization of the MyD88-independent pathway via TLR4. MyD88-deficient cells failed to produce inflammatory cytokines in response to LPS, whereas they responded to LPS by activating IFN-regulatory factor 3 as well as inducing the genes containing IFN-stimulated regulatory elements such as IP-10. In contrast, a lipopeptide that activates TLR2 had no ability to activate IFN-regulatory factor 3. The MyD88-independent pathway was also activated in cells lacking both MyD88 and TNFR-associated factor 6. Thus, TLR4 signaling is composed of at least two distinct pathways, a MyD88-dependent pathway that is critical to the induction of inflammatory cytokines and a MyD88/TNFR-associated factor 6-independent pathway that regulates induction of IP-10.  相似文献   

16.
Toll-like receptors (TLRs) are considered to be essential for the initiation of immune responses against pathogens. Although myeloid differentiation factor 88 an adaptor molecule for most TLRs, is important for protection against Toxoplasma gondii, the TLR responsible for eliciting an immune response against this obligate intracellular pathogen remains unknown. A recent article reports that mice lacking TLR9 cannot develop severe inflammatory responses to T. gondii infection. The implications of this finding are discussed here.  相似文献   

17.
The TLRs 7, 8, and 9 stimulate innate immune responses upon recognizing pathogen nucleic acids. U-rich RNA sequences were recently discovered that stimulate human TLR7/8-mediated or murine TLR7-mediated immune effects. In this study we identified single-stranded RNA sequences containing defined sequence motifs that either preferentially activate human TLR8-mediated as opposed to TLR7- or TLR7/8-mediated immune responses. The identified TLR8 RNA motifs signal via TLR8 and fail to induce IFN-alpha from TLR7-expressing plasmacytoid dendritic cells but induce the secretion of Th1-like and proinflammatory cytokines from TLR8-expressing immune cells such as monocytes or myeloid dendritic cells. In contrast, RNA sequences containing the TLR7/8 motif signal via TLR7 and TLR8 and stimulate cytokine secretion from both TLR7- and TLR8-positive immunocytes. The TLR8-specific RNA sequences are able to trigger cytokine responses from human and bovine but not from mouse, rat, and porcine immune cells, suggesting that these species lack the capability to respond properly to TLR8 RNA ligands. In summary, we describe two classes of single-stranded TLR7/8 and TLR8 RNA agonists with diverse target cell and species specificities and immune response profiles.  相似文献   

18.
Relationships between the brain and the immune system   总被引:1,自引:0,他引:1  
The concept that the brain can modulate activity the immune system stems from the theory of stress. Recent advances in the study of the inter-relationships between the central nervous system and the immune system have demonstrated a vast network of communication pathways between the two systems. Lymphoid organs are innervated by branches of the autonomic nervous system. Accessory immune cells and lymphocytes have membrane receptors for most neurotransmitters and neuropeptides. These receptors are functional, and their activation leads to changes in immune functions, including cell proliferation, chimiotactism and specific immune responses. Brain lesions and stressors can induce a number of changes in the functioning of the immune system. All these changes are not necessarily mediated by the neuroendocrine system. They can also be dependent on autonomic nerve function. The communication pathways that link the brain to the immune system are normally activated by signals from the immune system, and they serve to regulate immune responses. These signals originate from accessory immune cells such as monocytes and macrophages and they are represented mainly by proinflammatory cytokines. Proinflammatory cytokines produced at the periphery act on the brain via two major pathways: (1) a humoral pathway allowing pathogen specific molecular patterns to act on Toll-like receptors in those brain areas that are devoid of a functional blood-brain barrier, the so-called circumventricular areas; (2) a neural pathway, represented by the afferent nerves that innervate the bodily site of infection and injury. In both cases, peripherally produced cytokines induce the expression of brain cytokines that are produced by resident macrophages and microglial cells. These locally produced cytokines diffuse throughout the brain parenchyma to act on target brain areas so as to organise the central components of the host response to infection (fever, neuroendocrine activation, and sickness behavior).  相似文献   

19.
The opportunistic human pathogen Pseudomonas aeruginosa causes rapidly progressive and tissue-destructive infections, such as hospital-acquired and ventilator-associated pneumonias. Innate immune responses are critical in controlling P. aeruginosa in the mammalian lung, as demonstrated by the increased susceptibility of MyD88(-/-) mice to this pathogen. Experiments conducted using bone marrow chimeric mice demonstrated that radio-resistant cells participated in initiating MyD88-dependent innate immune responses to P. aeruginosa. In this study we used a novel transgenic mouse model to demonstrate that MyD88 expression by epithelial cells is sufficient to generate a rapid and protective innate immune response following intranasal infection with P. aeruginosa. MyD88 functions as an adaptor for many TLRs. However, mice in which multiple TLR pathways (e.g., TLR2/TLR4/TLR5) are blocked are not as compromised in their response to P. aeruginosa as mice lacking MyD88. We demonstrate that IL-1R signaling is an essential element of MyD88-dependent epithelial cell responses to P. aeruginosa infection.  相似文献   

20.
Toll-like receptor 2 (TLR2) is a signaling receptor for a variety of microbial products, including bacterial lipoproteins and peptidoglycan, and is central in initiating immune responses toward Gram-positive bacteria, spirochetes, and mycobacteria. The mechanisms behind regulation of TLR2 protein expression are still not well understood. By using a newly developed monoclonal antibody against mouse TLR2, we detected TLR2 protein expression on macrophages, neutrophils, and dendritic cells. Endogenous macrophage TLR2 localized mostly to the cell membrane, with particular accumulation around phagosomes containing zymosan. Treatment of macrophages with the TLR2 antibody diminished cellular response to lipoproteins and down-regulated membrane TLR2. Marked up-regulation of surface TLR2 was observed on macrophages in response to whole bacteria, lipoproteins, lipopolysaccharide, poly(I-C) (double-stranded RNA), R848, and CpG DNA, and this up-regulation appeared to be a very sensitive marker for the presence of microbial products. Up-regulation of TLR2 in response to stimuli correlated with an increased response to secondary lipoprotein exposure following a low concentration of primary lipoprotein challenge. By comparison, exposure to a larger primary challenge induced a hyporeactive state. Most interestingly, lipopolysaccharide- and double-stranded RNA-induced up-regulation of surface TLR2 in macrophages was found to be MyD88-independent, whereas the up-regulation in response to lipoproteins, R848, and CpG DNA was absent in MyD88-deficient cells. We conclude that complex mechanisms regulate expression and signaling via TLR2. Up-regulation of TLR2 in the presence of low, yet clinically relevant amounts of microbial products may be an important mechanism by which the immune system boosts its response to a beginning infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号