首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of heart muscle pyruvate dehydrogenase kinase   总被引:31,自引:25,他引:6       下载免费PDF全文
1. The activity of pig heart pyruvate dehydrogenase kinase was assayed by the incorporation of [(32)P]phosphate from [gamma-(32)P]ATP into the dehydrogenase complex. There was a very close correlation between this incorporation and the loss of pyruvate dehydrogenase activity with all preparations studied. 2. Nucleoside triphosphates other than ATP (at 100mum) and cyclic 3':5'-nucleotides (at 10mum) had no significant effect on kinase activity. 3. The K(m) for thiamin pyrophosphate in the pyruvate dehydrogenase reaction was 0.76mum. Sodium pyrophosphate, adenylyl imidodiphosphate, ADP and GTP were competitive inhibitors against thiamin pyrophosphate in the dehydrogenase reaction. 4. The K(m) for ATP of the intrinsic kinase assayed in three preparations of pig heart pyruvate dehydrogenase was in the range 13.9-25.4mum. Inhibition by ADP and adenylyl imidodiphosphate was predominantly competitive, but there was nevertheless a definite non-competitive element. Thiamin pyrophosphate and sodium pyrophosphate were uncompetitive inhibitors against ATP. It is suggested that ADP and adenylyl imidodiphosphate inhibit the kinase mainly by binding to the ATP site and that the adenosine moiety may be involved in this binding. It is suggested that thiamin pyrophosphate, sodium pyrophosphate, adenylyl imidodiphosphate and ADP may inhibit the kinase by binding through pyrophosphate or imidodiphosphate moieties at some site other than the ATP site. It is not known whether this is the coenzyme-binding site in the pyruvate dehydrogenase reaction. 5. The K(m) for pyruvate in the pyruvate dehydrogenase reaction was 35.5mum. 2-Oxobutyrate and 3-hydroxypyruvate but not glyoxylate were also substrates; all three compounds inhibited pyruvate oxidation. 6. In preparations of pig heart pyruvate dehydrogenase free of thiamin pyrophosphate, pyruvate inhibited the kinase reaction at all concentrations in the range 25-500mum. The inhibition was uncompetitive. In the presence of thiamin pyrophosphate (endogenous or added at 2 or 10mum) the kinase activity was enhanced by low concentrations of pyruvate (25-100mum) and inhibited by a high concentration (500mum). Activation of the kinase reaction was not seen when sodium pyrophosphate was substituted for thiamin pyrophosphate. 7. Under the conditions of the kinase assay, pig heart pyruvate dehydrogenase forms (14)CO(2) from [1-(14)C]pyruvate in the presence of thiamin pyrophosphate. Previous work suggests that the products may include acetoin. Acetoin activated the kinase reaction in the presence of thiamin pyrophosphate but not with sodium pyrophosphate. It is suggested that acetoin formation may contribute to activation of the kinase reaction by low pyruvate concentrations in the presence of thiamin pyrophosphate. 8. Pyruvate effected the conversion of pyruvate dehydrogenase phosphate into pyruvate dehydrogenase in rat heart mitochondria incubated with 5mm-2-oxoglutarate and 0.5mm-l-malate as respiratory substrates. It is suggested that this effect of pyruvate is due to inhibition of the pyruvate dehydrogenase kinase reaction in the mitochondrion. 9. Pyruvate dehydrogenase kinase activity was inhibited by high concentrations of Mg(2+) (15mm) and by Ca(2+) (10nm-10mum) at low Mg(2+) (0.15mm) but not at high Mg(2+) (15mm).  相似文献   

2.
Procedures are described for isolating highly purified porcine liver pyruvate and α-ketoglutarate dehydrogenase complexes. Rabbit serum stabilized these enzyme complexes in mitochondrial extracts, apparently by inhibiting lysosomal proteases. The complexes were purified by a three-step procedure involving fractionation with polyethylene glycol, pelleting through 12.5% sucrose, and a second fractionation under altered conditions with polyethylene glycol. Sedimentation equilibrium studies gave a molecular weight of 7.2 × 106 for the liver pyruvate dehydrogenase complex. Kinetic parameters are presented for the reaction catalyzed by the pyruvate dehydrogenase complex and for the regulatory reactions catalyzed by the pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase. For the overall catalytic reaction, the competitive Ki to Km ratio for NADH versus NAD+ and acetyl CoA versus CoA were 4.7 and 5.2, respectively. Near maximal stimulations of pyruvate dehydrogenase kinase by NADH and acetyl CoA were observed at NADH:NAD+ and acetyl CoA:CoA ratios of 0.15 and 0.5, respectively. The much lower ratios required for enhanced inactivation of the complex by pyruvate dehydrogenase kinase than for product inhibition indicate that the level of activity of the regulatory enzyme is not directly determined by the relative affinity of substrates and products of catalytic sites in the pyruvate dehydrogenase complex. In the pyruvate dehydrogenase kinase reaction, K+ and NH+4 decreased the Km for ATP and the competitive inhibition constants for ADP and (β,γ-methylene)adenosine triphosphate. Thiamine pyrophosphate strongly inhibited kinase activity. A high concentration of ADP did not alter the degree of inhibition by thiamine pyrophosphate nor did it increase the concentration of thiamine pyrophosphate required for half-maximal inhibition.  相似文献   

3.
1. The effects of ATP, PP(i) and EDTA on the skeletal-muscle pyruvate kinase reaction at various concentrations of magnesium (where ;magnesium' refers to total Mg(2+), both free and in the form of complexes) were investigated. The reaction rate was determined as the amount of pyruvate formed in a recorded time of incubation. 2. At 44mm-magnesium the K(m) values for ADP and phosphoenolpyruvate were unaltered by the presence of ATP up to 6.8mm in systems buffered with either tris-hydrochloric acid or glycylglycine-sodium hydroxide, but the K(m) values were different in these systems. The K(m) for one substrate was independent of the concentration of the second substrate. 3. At 10mm-magnesium in the tris-hydrochloric acid system ATP inhibited the reaction competitively with respect to ADP and phosphoenolpyruvate. In the glycylglycine-sodium hydroxide system the inhibition appeared to be non-competitive. At 10mm-magnesium the K(m) values were lower than at 44mm-magnesium and dependent on the system used. 4. In the tris-hydrochloric acid system the reaction rate rose with increasing magnesium concentration up to a maximum at a concentration 10-20 times that of ADP. Further increase inhibited the reaction and at 44mm-magnesium the rate was 25-50% of its maximum. This inhibition paralleled that produced by increasing trimethylammonium chloride concentrations and was not due to a specific effect of the Mg(2+) ion. 5. In the presence of 6.8mm-ATP no reaction occurred below 4-6mm-magnesium, and further increase apparently abolished the inhibition as the reaction rate increased and became equal to those obtained in the absence of ATP at 10-25mm-magnesium. Further increase in magnesium concentration gave reaction rates that were slightly higher in the presence of ATP than in its absence. The maximal rate in the presence of ATP was distinctly lower than in its absence. When 6.8mm-PP(i) or 6.8mm-EDTA was present the variations in reaction rate with rising magnesium concentration were similar to that obtained in the presence of ATP below 6-8mm-magnesium but further increase in the magnesium concentration resulted in an increase in the rate up to a maximum comparable with that of the control. The effect of pure chelation was thus a displacement of the reaction maximum to higher magnesium concentrations without changing the maximal rate. When correction had been made for this effect, ATP gave inhibition at 44mm-magnesium that was competitive with respect to ADP (K(i) 2.1x10(-2)m). This degree of inhibition is far less than was reported earlier and its importance for the mechanism of the pyruvate kinase reaction is discussed.  相似文献   

4.
Abstract The multi-ionic equilibria between enzymes, substrates and monovalent and divalent cations are related in such a way that a change in concentration of one element modifies the repartition of all the concentrations of the other elements, leading to a mutual depletion system. The pyruvate kinase reaction is a good application of the mutual depletion model: this cytoplasmic enzyme utilizes magnesium (Mg) and potassium (K) as cofactors and reacts with free phosphoenolpyruvate and MgADP, substrates involved in the binding of protons, K+ and Mg2+. Pyruvate kinase from Vibrio costicola , a moderately halophilic eubacterium, obeys the mutual depletion system and is competitively inhibited by physiological concentrations of potassium ions. This effect is relieved by manganese which forms more stable complexes than magnesium. Pyruvate kinase from Halobacterium cutirubrum cannot be described unambiguously by the mutual depletion model.
Cytoplasmic concentrations of potassium ions are elevated in halophilic bacteria and may thus inhibit the formation of the divalent cation complexes necessary in the enzymatic machinery of halophilic bacteria. Accordingly, the contents of the most abundant divalent cation, Mg2+, and of the trace element manganese, Mn2+, are higher in the halophilic bacteria, V. costicola, Halobacterium volcanii , and H. cutirubrum , and their increase is proportional to the ionic strength of the extracellular media. The Mn2+ increase is more marked than the Mg2+ increase, although the Mn2+ content is about two orders of magnitude lower than the Mg2+ content.  相似文献   

5.
The phosphoryl transferring enzymes pyruvate kinase, cAMP-dependent protein kinase and the pyrophosphoryl transferring enzyme PP-Rib-P synthetase utilize the beta, gamma bidentate metal--ATP chelate (delta-isomer) as substrate, as determined with substitution-insert CrIIIATP or CoIII(NH3)4ATP complexes. In addition, these enzymes bind a second divalent cation, which is an essential activator for pyruvate kinase and PP-Rib-P synthetase and an inhibitor of protein kinase. The enzyme-bound metal has been used as a paramagnetic reference point in T1 measurements to determine distances to the protons and phosphorus atoms of the bound nucleotide and acceptor substrates. These distances have been used to construct models of the conformations of the bound substrates. The activating metal forms a second sphere complex of the metal-nucleotide substrate on pyruvate kinase and PP-Rib-P synthetase while the inhibitory metal directly coordinates the polyphosphate chain of the metal-nucleotide substrate on protein kinase. Essentially no change is found in the dihedral angle at the glycosidic bond of ATP upon binding to pyruvate kinase (chi = 30 degrees), an enzyme of low base specificity, but significant changes in the torsional angle of ATP occur on binding to protein kinase (chi = 84 degrees) and PP-Rib-P synthetase (chi = 62 degrees), enzymes with high adenine-base specificity. Intersubstrate distances, measured with tridentate CrATP or beta, gamma bidentate CrAMPPCP as paramagnetic reference points, have been used to deduce the distance along the reaction coordinate on each enzyme. The reaction coordinate distances on pyruvate kinase (# +/- 1 A) and PP-Rib-P synthetase (not less than 3.8 A) are consistent with associative mechanisms, while that on protein kinase (5 +/- 0.7 A) allows room for a dissociative mechanism.  相似文献   

6.
1. Extraction of rat epididymal adipose tissue with buffer containing EDTA yields a pyruvate kinase, provisionally called PyK-A, the properties of which resemble in several respects those of the allosteric pyruvate kinase of liver. These properties include co-operative interactions with phosphoenolpyruvate, Mg(2+), K(+), NH(4) (+) and ATP, and sensitivity to activation by fructose 1,6-diphosphate. 2. Extraction in the absence of EDTA yields predominantly a form, PyK-B, that shows both normal Michaelis-Menten kinetics with phosphoenolpyruvate, Mg(2+) and ATP, and co-operative interactions with K(+) and NH(4) (+); this form is insensitive towards fructose 1,6-diphosphate. 3. Both forms yield simple kinetics with ADP, though K(m) values differ in the two systems. In all cases where co-operativity has been demonstrated, Hill-plot n values are between 1.4 and 2.0. 4. The conversion of PyK-A into PyK-B is mediated specifically by fructose 1,6-diphosphate; the reverse reaction is occasioned by EDTA, ATP or citrate. It is thought that a bivalent cation may be involved in this interconversion. 5. Attempts at partial purification have revealed that the enzyme resembles the pyruvate kinase of skeletal muscle, rather than that of liver, in its solubility in ammonium sulphate and elution from DEAE-cellulose. 6. The relevance of these properties in the regulation of pyruvate kinase activity in vivo in adipose tissue is discussed.  相似文献   

7.
1. A study was made of the hydrolysis, at pH9.0, of ATP and ADP catalysed by pig kidney alkaline phosphatase. Both of these nucleoside pyrophosphates are substrates for the enzyme; K(m) values are 4x10(-5)m for ATP and 6.3x10(-5)m for ADP. V(max.) for ADP is approximately double that of ATP. 2. Above 0.1mm approximately, both ATP and ADP are inhibitory, but the inhibition is reversible by the addition of Mg(2+) ions to form MgATP(2-) or MgADP(-) complexes. The complexes, besides being non-inhibitory, are also substrates for the enzyme with K(m) values identical with those of the respective free nucleotides. 3. Mg(2+) ions are inhibitory when present in excess of ATP or ADP. The degree of inhibition is greater with ATP as substrate, but with both ATP and ADP a mixed competitive-non-competitive type of inhibition is observed. 4. It is suggested that under normal conditions the enzyme is inhibited by cellular concentrations of ATP plus ADP but that an increase in the concentration of Mg(2+) ions stimulates activity by relieving nucleoside pyrophosphate inhibition. The properties may be of importance in the regulation of the transport of bivalent cations.  相似文献   

8.
The phosphorylation of pig liver pyruvate kinase by cyclic adenosine 3':5'-monophosphate-dependent protein kinase has been studied. For comparison, mixed histone and a synthetic heptapeptide were also used as substrates. Protein kinase was purified by chromatography on DEAE-cellulose, hydroxyapatite, and Sephadex G-200. The enzyme was stimulated by cyclic AMP with apparent Ka values of 2.5 and 0.8 x 10-7 M for pyruvate kinase and histone substrates, respectively. Divalent cations were essential for the activity of the protein kinase. Variation of the concentration of ATP resulted in approximately straight lines in Lineweaver-Burk plots for the phosphorylation of both pyruvate kinase and mixed histone. The apparent Km values for ATP were 21 and 11 muM, respectively. The phosphorylation rate increased with the concentration of pyruvate kinase even at a concentration of 2 muM pyruvate kinase. At a high ionic strength, the phosphorylation rate of both pyruvate kinase and histone decreased. The phosphorylation rate varied markedly with pH in imidazole/HC1 and Tris/HC1 buffers. At slightly alkaline pH values, pyruvate kinase was phosphorylated at a much higher rate than pH7, but this was not the case for histone. At pH 8.5, the phosphorylation rate of pyruvate kinase was 3.5 times the rate at pH 7, while the corresponding increase for the histone phosphorylation was 50 per cent. In potassium phosphate buffers, the phosphorylation rate of both substrates did not change significantly over the pH range studied. Arrhenius' plots of the protein kinase reaction resulted in a break at about 10 degrees when pyruvate kinase was used as substrate, whereas a straight line was obtained when using histone. The negative allosteric effectors of pyruvate kinase, alanine, and phenylalanine, increased the phosphorylation rate of pyruvate kinase at pH 8 by 50 and 120 per cent, respectively. The same effectors did not influence the phosphorylation rate of mixed histone or a synthetic heptapeptide. It is concluded that the conformations adopted by pyruvate kinase in the presence of allosteric inhibitors make it a better substrate for the protein kinase.  相似文献   

9.
1. The proton-transfer reactions of yeast pyruvate kinase (EC 2.7.1.40) were studied. Proton-transfer from C-3 of phosphoenolpyruvate to water occurs only in the presence of the phosphoryl-acceptor ADP. Proton transfer from C-3 of pyruvate to water occurs only in the presence of ATP. However, the proton transfer in the latter case occurs 10-100 times faster than phosphoryl transfer; this supports a mechanism in which proton transfer precedes phosphoryl transfer in the reverse reaction of pyruvate kinase. 2. The characteristics of proton-transfer reactions of yeast pyruvate kinase were compared with those previously reported for rabbit muscle pyruvate kinase (Robinson, JL. and Rose, I.A. (1972) J. Biol. Chem. 247, 1096-1105). The pH-profiles and the divalent cation dependencies were similar for Fru-1,6-P2-activated yeast pyruvate kinase and the muscle enzyme. Pyruvate enolization by yeast pyruvate kinase has an absolute requirement for ATP in contrast to enolization by the muscle enzyme which proceeds when ATP is replaced by Pi or other dianions. 3. Fructose-1,6-bisphosphate was shown to affect the catelytic steps of yeast pyruvate kinase in addition to the binding of substrates. Its role depends on the divalent cation used to activate the enzyme.  相似文献   

10.
A new approach for the regeneration of adenosine triphosphate (ATP) during cell-free protein synthesis was developed to prolong the synthesis and also to avoid the accumulation of inorganic phosphate. This approach was demonstrated in a batch system derived from Escherichia coli. Contrary to the conventional methods in which exogenous energy sources contain high-energy phosphate bonds, the new system was designed to generate continuously the required high-energy phosphate bonds within the reaction mixture, thereby recycling the phosphate released during protein synthesis. If allowed to accumulate, phosphate inhibits protein synthesis, most likely by reducing the concentration of free magnesium ion. Pediococcus sp. pyruvate oxidase, when introduced in the reaction mixture along with thiamine pyrophosphate (TPP) and flavin adenine dinucleotide (FAD), catalyzed the generation of acetyl phosphate from pyruvate and inorganic phosphate. Acetyl kinase, already present with sufficient activity in Escherichia coli S30 extract, then catalyzed the regeneration of ATP. Oxygen is required for the generation of acetyl phosphate and the H(2)O(2) produced as a byproduct is sufficiently degraded by endogenous catalase activity. Through the continuous supply of chemical energy, and also through the prevention of inorganic phosphate accumulation, the duration of protein synthesis is extended up to 2 h. Protein accumulation levels also increase. The synthesis of human lymphotoxin receives greater benefit than than that of chloramphenicol acetyl transferase, because the former is more sensitive to phosphate inhibition. Finally, through repeated addition of pyruvate and amino acids during the reaction period, protein synthesis continued for 6 h in the new system, resulting in a final yield of 0.7 mg/mL.  相似文献   

11.
Fo.F1-ATP synthase in inside-out coupled vesicles derived from Paracoccus denitrificans catalyzes Pi-dependent proton-translocating ATPase reaction if exposed to prior energization that relieves ADP.Mg2+ -induced inhibition (Zharova, T.V. and Vinogradov, A.D. (2004) J. Biol. Chem.,279, 12319-12324). Here we present evidence that the presence of medium ADP is required for the steady-state energetically self-sustained coupled ATP hydrolysis. The initial rapid ATPase activity is declined to a certain level if the reaction proceeds in the presence of the ADP-consuming, ATP-regenerating system (pyruvate kinase/phosphoenol pyruvate). The rate and extent of the enzyme de-activation are inversely proportional to the steady-state ADP concentration, which is altered by various amounts of pyruvate kinase at constant ATPase level. The half-maximal rate of stationary ATP hydrolysis is reached at an ADP concentration of 8 x 10(-6) M. The kinetic scheme is proposed explaining the requirement of the reaction products (ADP and Pi), the substrates of ATP synthesis, in the medium for proton-translocating ATP hydrolysis by P. denitrificans Fo.F1-ATP synthase.  相似文献   

12.
Electron spin echo envelope modulation (ESEEM) spectroscopy, with Mn2+ and VO2+ as paramagnetic probes, was used to examine active-site structures at the protein-based divalent cation site of rabbit muscle pyruvate kinase in the presence of substrates, products, and the requisite inorganic cofactors. Two different VO.protein complexes were clearly distinguished, which differed with respect to coordination of the active-site lysine to VO2+. Lysine coordination was sensitive to the presence of pyruvate and phosphoenolpyruvate (PEP) and to the nature of the monovalent cation. In the presence of MgATP and oxalate, a 4-MHz 31P contact interaction was observed, which indicates that the ATP is directly coordinated to Mn2+ at the protein-based site. No 31P contact interactions were observed, however, in the presence of PEP. Pyruvate was determined to be a bidentate ligand of VO2+, on the basis of the observation of 2.2- and 5.4-MHz 13C contact interactions between VO2+ and [1-13C]pyruvate and [2-13C]pyruvate, respectively. Magnetic coupling between VO2+ or Mn2+ and 23Na, 39K, and 133Cs was observed, demonstrating the close proximity of the monovalent cation and the protein-based divalent cation.  相似文献   

13.
In the presence of [gamma-32P]ATP the bovine adrenal pyruvate dehydrogenase complex accepts the label simultaneously and becomes inactivated. This suggests the existence of kinase in the composition of the complex as is typical of the complexes from other animal sources. The Pi is incorporated into the subunit with molecular weight of 42 000. The kinase activity of the adrenal pyruvate dehydrogenase complex is high: within the first 20 sec of incubation with ATP the inactivation is as high as 60%. The pH optimum for kinase is around 7.3. The apparent Km value for ATP with 50 mM KCl is 7 microM; that in the absence of KCl is 10 microM. ADP is a competitive inhibitor of kinase with respect to ATP (Ki = 100 microM), when K+ are present in the medium. Thiamine pyrophosphate and pyruvate decrease the rate of pyruvate dehydrogenase complex inactivation.  相似文献   

14.
Summary The mechanism of activation by inorganic phosphate and ATP of cardiac muscle pyruvate kinase was studied with the aid of steady-state kinetics. The enzyme was purified to homogeneity to a final specific activity of 400 units/ mg (phosphate buffer, pH 7.6, 25 °C). At pH 7.6 the enzyme displays Michaelis-Menten kinetics with respect to both its substrates, phosphoenolpyruvate and ADP. Substrate kinetic constants are: app.Km(phosphoenolpyruvate) –0.04 mM, app.Km(ADP) =0.22 mM. Under the conditions used in the standard assay the specific activity is greatly enhanced by inorganic phosphate (50 mM) or ATP (2.5 mM). Each of these modifiers, acting separately, increases the Vmax without seriously affecting Michaelis constants and Hill coefficients. In the presence of both Pi and ATP, only a decrease in Vmax was observed.The kinetics of activation by inorganic phosphate of pyruvate kinase was examined. Studying the effect of varying concentrations of Pi on the initial rate we obtained a hyperbolic saturation curve with the app. Km(Pi) = 20 mM and Vmax = 167 units/ mg. The evidence is presented that inorganic phosphate is a substrate for a side reaction catalyzed by cardiac pyruvate kinase. It is shown that in the presence of pyruvate, inorganic phosphate and ATP in the assay system, Pi is incorporated into acid-labile products of this reaction, inorganic pyrophosphate being one of them.These findings indicate the existence of an alternative reaction catalyzed by pyruvate kinase by which energy may be stored in the form of inorganic pyrophosphate.Abbreviations PEP phosphoenolpyruvate - Pi inorganic phosphate - TEA triethanolamine - EDTA ethylenediaminetetraacetate  相似文献   

15.
Kuczek M 《Bio Systems》1999,54(1-2):71-76
This paper presents a simple solution to the problem of approximating the calculated curve of reaction progress to the measured curve which is usually disturbed by initial oscillation of auxiliary lactate dehydrogenase (LDH) reaction. The experiments leading to the determination of the apparent Km for phosphoenolpyruvate (PEP) and Vm were performed. For precise estimation of kinetic parameters (Km and Vm) of the M1 isozyme of pyruvate kinase (PK), measured by coupling it to LDH reaction, the sequence of Michaelis-Menten for pyruvate kinase and second-order kinetics for lactate dehydrogenase reaction as well as a non-zero initial concentration of lactate was assumed. The functions of apparent Km and Vm of pyruvate kinase with respect to phosphate concentration, computed by an analysis of the total reaction progress curves, indicate that the reaction mixture contains an uncompetitive inhibitor of pyruvate kinase, and that the phosphate binds this inhibitor. The proposed simple mathematical model of pyruvate kinase Km and Vm increase by inorganic phosphate assumes that the pyridine nucleotides (NAD-derivatives) are kinase inhibitors. An approximate dissociation constant for pyridine nucleotides-phosphate complex and true Km of pyruvate kinase for PEP were estimated. The proposed model fits exactly the entire measured reaction process.  相似文献   

16.
Budde RJ  Randall DD 《Plant physiology》1988,88(4):1026-1030
The requirements for reactivation (dephosphorylation) of the pea (Pisum sativum L.) leaf mitochondrial pyruvate dehydrogenase complex (PDC) were studied in terms of magnesium and ATP effects with intact and permeabilized mitochondria. The requirement for high concentrations of magnesium for reactivation previously reported with partially purified PDC is shown to affect inactivation rather than reactivation. The observed rate of inactivation catalyzed by pyruvate dehydrogenase (PDH) kinase is always greater than the reactivation rate catalyzed by PDH-P phosphatase. Thus, reactivation would only occur if ATP becomes limiting. However, pyruvate which is a potent inhibitor of inactivation in the presence of thiamine pyrophosphate, results in increased PDC activity. Analysis of the dynamics of the phosphorylation-dephosphorylation cycle indicated that the covalent modification was under steady state control. The steady state activity of PDC was increased by addition of pyruvate. PDH kinase activity increased threefold during storage of mitochondria suggesting that there may be an unknown level of regulation exerted on the enzyme complex.  相似文献   

17.
1. An investigation of the reaction mechanism of the fructose 1,6-bisphosphate-activated pyruvate kinase isolated from the hepatopancreas of the crab Carcinus maenas was conducted. The enzyme was assayed in the presence of 500 microns-fructose 1,6-bisphosphate, 75 mM-KCl and 8 mM-Mg2+free at 25 degrees C. The results are consistent with a rapid-equilibrium random mechanism. 2. Evidence is presented that suggests the formation of two mixed-substrate-product dead-end complexes, enzyme-ADP-pyruvate and enzyme-ADP-ATP. 3. Competitive substrate inhibition was observed for both substrates, ADP and phosphoenolpyruvate, suggesting the formation of the complexes enzyme-ADP-ADP and enzyme-phosphoenolpyruvate-phosphoenolpyruvate in the suggested mechanism. 4. Data from the ATP product-inhibition studies indicate the formation of the complex enzyme-ATP-ATP. This suggests that in the reverse reaction ATP also will show substrate inhibition. 5. The presence of a saturating concentration of fructose 1,6-bisphosphate does not cause full activation of the purified preparations of the enzyme. 6. Pyruvate kinase activity in the supernatant of a hepatopancreas homogenate was completely activated by fructose 1,6-bisphosphate, suggesting that the binding of this ligand to the purified pyruvate kinase was impaired.  相似文献   

18.
Coordination of Mn(II) to the phosphate groups of the substrates and products in the central complexes of the creatine kinase reaction mixture has been investigated by electron paramagnetic resonance (EPR) spectroscopy with regiospecifically 17O-labeled substrates. The EPR pattern for the equilibrium mixture is a superposition of spectra for the two central complexes, and this pattern differs from those observed for the ternary enzyme-Mn(II)-nucleotide complexes and from that for the dead-end complex enzyme-Mn(II)ADP-creatine. In order to identify those signals that are associated with each of the central complexes of the equilibrium mixture, spectra were obtained for a complex of enzyme, Mn(II)ATP, and a nonreactive analogue of creatine, 1-(carboxymethyl)-2-iminoimidazolidin-4-one, which is a newly synthesized competitive inhibitor. This inhibitor permits an unobstructed view of the EPR spectrum for Mn(II)ATP in the closed conformation of the active site. The EPR spectrum for this nonreactive complex with Mn(II)ATP matches one subset of signals in the spectrum for the equilibrium mixture, i.e., those due to the enzyme-Mn(II)-ATP-creatine complex. Chemical quenching of the samples followed by chromatographic assays for both ATP and ADP indicates that the enzyme-Mn(II)ADP-phosphocreatine and the enzyme-Mn(II)ATP-creatine complexes are present in a ratio of approximately 0.7 to 1. A similar value for the equilibrium constant for enzyme-bound substrates is obtained directly from the EPR spectrum for the equilibrium mixture.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The interactions between ATP, monovalent cations, and divalent cations on rabbit muscle pyruvate kinase have been examined using 7Li, 31P, and 1H nuclear magnetic resonance. Water proton nuclear relaxation studies are consistent with the binding of Li+ to the K+ site on pyruvate kinase with an affinity of 120 mM in the absence of substrates and 16 mM in the presence of P-enolpyruvate. Titrations with pyruvate demonstrate that pyruvate binds to the enzyme with an affinity of 0.65 mM in the presence of Li+ and 0.4 mM in the presence of K+. 7Li+ nuclear relaxation rates in solutions of pyruvate kinase are increased upon titration with the metal-nucleotide analogue, Cr(H2O)4ATP. Mn2+ EPR spectra were used to determined the distribution of the enzyme between the so-called isotropic and anisotropic conformations of the enzyme (Ash, D. E., Kayne, F., and Reed, G.H. Arch. Biochem. Biophys. (1978) 190, 571-577). Li-Cr distances of 5.6 and 11.0 A were calculated for the anisotropic and isotropic forms, respectively, in the absence or presence of pyruvate. When the divalent cation site on the enzyme was saturated with Mg2+, these distances increased to 6.7 and 9.5 A, respectively, regardless of the presence or absence of pyruvate. 31P nuclear relaxation studies with the diamagnetic metal-nucleotide analogue, Co(NH3)4ATP, indicated that addition of Mn2+ ion to the divalent cation site on the enzyme increased the longitudinal relaxation rates of all three phosphorus nuclei of the analogue. The 31P data indicate that the presence of pyruvate at the active site effects a decrease in the Mn-P distances, bringing Mn2+ and Co(NH3)4ATP closer together at the active site. The data also permit an evaluation of the role of the metal coordinated to the beta-P and gamma-P of ATP at the active site.  相似文献   

20.
Plastidic pyruvate kinase (ATP: pyruvate phosphotransferase, EC 2.7.1.40) was purified to near homogeneity as judged by native PAGE with about 4% recovery from developing seeds of Brassica campestris using (NH4)2SO4 fractionation, DEAE-cellulose chromatography, gel filtration through Sepharose-CL-6B and affinity chromatography through reactive blue Sepharose-CL-6B. The purified enzyme having molecular mass of about 266 kDa was quite stable and showed a broad pH optimum between pH 6.8-7.8. Typical Michaelis-Menten kinetics was obtained for both the substrates with K(m) values of 0.13 and 0.14 mM for PEP and ADP, respectively. The enzyme could also utilize CDP, GDP or UDP as alternative nucleotide to ADP, but with lower Vmax and higher K(m). The enzyme had an absolute requirement for a divalent and a monovalent cation for activity and was inhibited by oxalate, fumarate, citrate, isocitrate and ATP, and activated by AMP, aspartate, 3-PGA, tryptophan and inorganic phosphate. ATP inhibited the enzyme competitively with respect to PEP and non-competitively with respect to ADP. Similarly, oxalate inhibition was also of competitive type with respect to PEP and non-competitive with respect to ADP. This inhibition by either ATP or oxalate was not due to chelation of Mg2+, as the inhibition was not relieved on increasing Mg2+ concentration even upto 30 mM. Initial velocity and product inhibition studies demonstrated the reaction mechanism to be compulsory ordered type. The enzyme seems to be regulated synergistically by ATP and citrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号