首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 243 毫秒
1.
2.
Liver mitochondrial bioenergetics of Goto-Kakizaki (GK) rats (a model of non-insulin dependent diabetes mellitus) reveals a Delta Psi upon energization with succinate significantly increased relatively to control animals. The repolarization rate following ADP phosphorylation is also significantly increased in GK mitochondria in parallel with increased ATPase activity. The increase in the repolarization rate and ATPase activity is presumably related to an improved efficiency of F(0)F(1)-ATPase, either from a better phosphorylative energy coupling or as a consequence of an enlarged number of catalytic units. Titrations with oligomycin indicate that diabetic GK liver mitochondria require excess oligomycin pulses to completely abolish phosphorylation, relative to control mitochondria. Therefore, accepting that the number of operational ATP synthase units is inversely proportional to the amount of added oligomycin, it is concluded that liver mitochondria of diabetic GK rats are provided with extra catalytic units relative to control mitochondria of normal rats. Other tissues (kidney, brain and skeletal muscle) were evaluated for the same bioenergetic parameters, confirming that this feature is exclusive to liver from diabetic GK rats.  相似文献   

3.
The mitochondrial import and assembly of the F1ATPase subunits requires, respectively, the participation of the molecular chaperones hsp70SSA1 and hsp70SSC1 and other components operating on opposite sides of the mitochondrial membrane. In previous studies, both the homology and the assembly properties of the F1ATPase alpha-subunit (ATP1p) compared to the groEL homologue, hsp60, have led to the proposal that this subunit could exhibit chaperone-like activity. In this report the extent to which this subunit participates in protein transport has been determined by comparing import into mitochondria that lack the F1ATPase alpha-subunit (delta ATP1) versus mitochondria that lack the other major catalytic subunit, the F1ATPase beta-subunit (delta ATP2). Yeast mutants lacking the alpha-subunit but not the beta-subunit grow much more slowly than expected on fermentable carbon sources and exhibit delayed kinetics of protein import for several mitochondrial precursors such as the F1 beta subunit, hsp60MIF4 and subunits 4 and 5 of the cytochrome oxidase. In vitro and in vivo the F1 beta-subunit precursor accumulates as a translocation intermediate in absence of the F1 alpha-subunit. In the absence of both the ATPase subunits yeast grows at the same rate as a strain lacking only the beta-subunit, and import of mitochondrial precursors is restored to that of wild type. These data indicate that the F1 alpha-subunit likely functions as an "assembly partner" to influence protein import rather than functioning directly as a chaperone. These data are discussed in light of the relationship between the import and assembly of proteins in mitochondria.  相似文献   

4.
MOM19, an import receptor for mitochondrial precursor proteins   总被引:40,自引:0,他引:40  
T S?llner  G Griffiths  R Pfaller  N Pfanner  W Neupert 《Cell》1989,59(6):1061-1070
We have identified a 19 kd protein of the mitochondrial outer membrane (MOM19). Monospecific IgG and Fab fragments directed against MOM19 inhibit import of precursor proteins destined for the various mitochondrial subcompartments, including porin, cytochrome c1, Fe/S protein, F0 ATPase subunit 9, and F1 ATPase subunit beta. Inhibition occurs at the level of high affinity binding of precursors to mitochondria. Consistent with previous functional studies that suggested the existence of distinct import sites for ADP/ATP carrier and cytochrome c, we find that import of those precursors is not inhibited. We conclude that MOM19 is identical to, or closely associated with, a specific mitochondrial import receptor.  相似文献   

5.
The Helicobacter pylori vacuolating cytotoxin (VacA) intoxicates mammalian cells resulting in reduction of mitochondrial transmembrane potential (Delta Psi m reduction) and cytochrome c release, two events consistent with the modulation of mitochondrial membrane permeability. We now demonstrate that the entry of VacA into cells and the capacity of VacA to form anion-selective channels are both essential for Delta Psi m reduction and cytochrome c release. Subsequent to cell entry, a substantial fraction of VacA localizes to the mitochondria. Neither Delta Psi m reduction nor cytochrome c release within VacA-intoxicated cells requires cellular caspase activity. Moreover, VacA cellular activity is not sensitive to cyclosporin A, suggesting that VacA does not induce the mitochondrial permeability transition as a mechanism for Delta Psi m reduction and cytochrome c release. Time-course and dose-response studies indicate that Delta Psi m reduction occurs substantially before and at lower concentrations of VacA than cytochrome c release. Collectively, these results support a model that VacA enters mammalian cells, localizes to the mitochondria, and modulates mitochondrial membrane permeability by a mechanism dependent on toxin channel activity ultimately resulting in cytochrome c release. This model represents a novel mechanism for regulation of a mitochondrial-dependent apoptosis pathway by a bacterial toxin.  相似文献   

6.
Abnormal death signaling in lymphocytes of systemic lupus erythematosus (SLE) patients has been associated with elevation of the mitochondrial transmembrane potential (Delta psi(m)) and increased production of reactive oxygen intermediates (ROI). The resultant ATP depletion sensitizes T cells for necrosis that may significantly contribute to inflammation in patients with SLE. In the present study, the role of mitochondrial signal processing in T cell activation was investigated. CD3/CD28 costimulation of PBL elicited transient mitochondrial hyperpolarization and intracellular pH (pH(i)) elevation, followed by increased ROI production. Baseline Delta psi(m), ROI production, and pH(i) were elevated, while T cell activation-induced changes were blunted in 15 patients with SLE in comparison with 10 healthy donors and 10 rheumatoid arthritis patients. Similar to CD3/CD28 costimulation, treatment of control PBL with IL-3, IL-10, TGF-beta(1), and IFN-gamma led to transient Delta psi(m) elevation. IL-10 had diametrically opposing effects on mitochondrial signaling in lupus and control donors. Unlike healthy or rheumatoid arthritis PBL, cells of lupus patients were resistant to IL-10-induced mitochondrial hyperpolarization. By contrast, IL-10 enhanced ROI production and cell death in lupus PBL without affecting ROI levels and survival of control PBL. Ab-mediated IL-10 blockade or stimulation with antagonistic lymphokine IL-12 normalized baseline and CD3/CD28-induced changes in ROI production and pH(i) with no impact on Delta psi(m) of lupus PBL. The results suggest that mitochondrial hyperpolarization, increased ROI production, and cytoplasmic alkalinization play crucial roles in altered IL-10 responsiveness in SLE.  相似文献   

7.
Similar to ischemic preconditioning, diazoxide was documented to elicit beneficial bioenergetic consequences linked to cardioprotection. Inhibition of ATPase activity of mitochondrial F(0)F(1) ATP synthase may have a role in such effect and may involve the natural inhibitor protein IF(1). We recently documented, using purified enzyme and isolated mitochondrial membranes from beef heart, that diazoxide interacts with the F(1) sector of F(0)F(1) ATP synthase by promoting IF(1) binding and reversibly inhibiting ATP hydrolysis. Here we investigated the effects of diazoxide on the enzyme in cultured myoblasts. Specifically, embryonic heart-derived H9c2 cells were exposed to diazoxide and mitochondrial ATPase was assayed in conditions maintaining steady-state IF(1) binding (basal ATPase activity) or detaching bound IF(1) at alkaline pH. Mitochondrial transmembrane potential and uncoupling were also investigated, as well as ATP synthesis flux and ATP content. Diazoxide at a cardioprotective concentration (40 muM cell-associated concentration) transiently downmodulated basal ATPase activity, concomitant with mild mitochondria uncoupling and depolarization, without affecting ATP synthesis and ATP content. Alkaline stripping of IF(1) from F(0)F(1) ATP synthase was less in diazoxide-treated than in untreated cells. Pretreatment with glibenclamide prevented, together with mitochondria depolarization, inhibition of ATPase activity under basal but not under IF(1)-stripping conditions, indicating that diazoxide alters alkaline IF(1) release. Diazoxide inhibition of ATPase activity in IF(1)-stripping conditions was observed even when mitochondrial transmembrane potential was reduced by FCCP. The results suggest that diazoxide in a model of normoxic intact cells directly promotes binding of inhibitor protein IF(1) to F(0)F(1) ATP synthase and enhances IF(1) binding indirectly by mildly uncoupling and depolarizing mitochondria.  相似文献   

8.
Mitochondria play a central role in apoptosis through release of cytochrome c and activation of caspases. In the present study, we showed that, in Jurkat human T cells, camptothecin-induced apoptosis is preceded by (i) an increase in cytochrome c and subunit IV of cytochrome c oxidase (COX IV) levels in mitochondria; and (ii) an elevation of the mitochondrial membrane potential (Delta(Psi)m). These events are followed by cytochrome c release into the cytosol, cytochrome c and COX IV depletion from mitochondria, externalization of phosphatidylserine (PS), disruption of Delta(Psi)m, caspase activation, poly(ADP-ribose)polymerase cleavage and DNA fragmentation. The pan-caspase inhibitor z-VAD.fmk blocked camptothecin-induced PS externalization, disruption of Delta(Psi)m and DNA fragmentation, suggesting that these events are mediated by caspase activation. In contrast, z-VAD did not prevent cytochrome c release, despite preventing cytochrome c and COX IV depletion from mitochondria. Together, these data suggest that mitochondrial cytochrome c and COX IV enrichment are early events preceding the onset of apoptosis and that cytochrome c release is upstream of caspase activation and loss of Delta(Psi)m. Furthermore, prevention by z-VAD of cytochrome c and COX IV depletion in mitochondria suggests the possibility that a caspase-like activity in mitochondria is involved in the proteolytic depletion of respiratory chain proteins. Activation of this activity may play an important role in drug-induced apoptosis.  相似文献   

9.
We have analyzed how translocation intermediates of imported mitochondrial precursor proteins, which span contact sites, interact with the mitochondrial membranes. F1-ATPase subunit beta (F1 beta) was trapped at contact sites by importing it into Neurospora mitochondria in the presence of low levels of nucleoside triphosphates. This F1 beta translocation intermediate could be extracted from the membranes by treatment with protein denaturants such as alkaline pH or urea. By performing import at low temperatures, the ADP/ATP carrier was accumulated in contact sites of Neurospora mitochondria and cytochrome b2 in contact sites of yeast mitochondria. These translocation intermediates were also extractable from the membranes at alkaline pH. Thus, translocation of precursor proteins across mitochondrial membranes seems to occur through an environment which is accessible to aqueous perturbants. We propose that proteinaceous structures are essential components of a translocation apparatus present in contact sites.  相似文献   

10.
CTLs kill targets by inducing them to die through apoptosis. A number of morphological and biochemical events are now recognized as characteristic features of the apoptotic program. Among these, the disruption of the inner mitochondrial transmembrane potential (Delta Psi m) and the release of cytochrome c into the cytoplasm appear to be early events in many systems, leading to the activation of caspase-3 and, subsequently, nuclear apoptosis. We show here that, in Jurkat targets treated in vitro with purified granzyme B and perforin or granzyme B and adenovirus, Delta Psi m collapse, reactive oxygen species production, and cytochrome c release from mitochondria were observed. Loss of Delta Psi m was also detected in an in vivo system where green fluorescent protein-expressing targets were attacked by a cytotoxic T cell line that kills predominantly through the granzyme pathway. DNA fragmentation, phosphatidylserine externalization, and reactive oxygen species production were inhibited in the presence of the caspase inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk) and benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethyl ketone (zDEVD-fmk) in our in vitro system. Importantly, in either the in vitro or in vivo systems, these inhibitors at concentrations up to 100 microM did not prevent Delta Psi m collapse. In addition, cytochrome c release was observed in the in vitro system in the absence or presence of zVAD-fmk. Thus the granzyme B-dependent killing pathway in Jurkat targets involves mitochondrial alterations that occur independently of caspases.  相似文献   

11.
Askari MD  Vo-Dinh T 《Biopolymers》2004,73(4):510-523
The fragile histidine triad (FHIT) tumor suppressor gene incorporates the common human chromosomal fragile site at 3p14.2. The structure and expression of the FHIT gene are frequently altered in many cancers. The tumor suppressor activity of the FHIT gene has been previously demonstrated as potentially involving apoptotic induction. Here, mitochondria are implicated as being involved in the apoptotic activity of the FHIT gene. A number of morphological and biochemical events, including the disruption of the inner mitochondrial transmembrane potential (Delta Psi(m)) and the release of apoptogenic cytochrome c protein into the cytoplasm, are characteristic features of the apoptotic program. The proapoptotic activity of the FHIT gene is studied by investigating the loss of Delta Psi(m) in mitochondria and translocation of cytochrome c. Synchronous luminescence (SL) spectroscopy is applied to measure mitochondrial incorporation of rhodamine 123 for direct analysis of alterations in the mitochondrial Delta Psi(m). The SL methodology is based on synchronous excitation in which the excitation and emission wavelengths are scanned simultaneously while a constant wavelength interval is maintained between the excitation and emission monochromators. An enhanced collapse of Delta Psi(m) in apoptotically induced FHIT expressing cells compared to FHIT negative cells is observed. The loss of Delta Psi(m) is greatly restricted in the presence of the apoptotic inhibitor, cyclosporin A. Cytoplasmic translocation of cytochrome c in the FHIT expressing cells as an early event in apoptosis is also demonstrated. It is concluded that Fhit protein expression maintained apoptotic function by altering the Delta Psi(m) and by enhancing cytochrome c efflux from the mitochondria.  相似文献   

12.
The hydrolysis of ATP, ADP or GTP was characterized in mitochondria and submitochondrial particles since a tightly-bound ATPase associated with the inner mitochondrial membrane from the human placenta has been described. Submitochondrial particles, which are basically inner membranes, were used to define the location of this enzyme. Mitochondria treated with trypsin and specific inhibitors were also used. The oxygen consumption stimulated by ATP or ADP was 100% inhibited in intact mitochondria by low concentrations of oligomycin (0.5 microgram/mg) or venturicidine (0.1 microgram/mg), while the hydrolysis of ATP or ADP was insensitive to higher concentrations of these inhibitors but it was inhibited by vanadate. Oligomycin or venturicidine showed a different inhibition pattern in intact mitochondria in relation to the hydrolysis of ATP, ADP or GTP. When submitochondrial particles were isolated from mitochondria incubated with oligomycin or venturicidine, no further inhibition of the nucleotide hydrolysis was observed, contrasting with the partial inhibition observed in the control. By incubating the placental mitochondria with trypsin, a large fraction of the hydrolysis of nucleotides was eliminated. In submitochondrial particles obtained from mitochondria treated with trypsin or trypsin plus oligomycin, the hydrolysis of ATP was 100% sensitive to oligomycin at low concentrations, resembling the oxygen consumption; however, this preparation still showed some ADP hydrolysis. Native gel electrophoresis showed two bands hydrolyzing ADP, suggesting at least two enzymes involved in the hydrolysis of nucleotides, besides the F1F0-ATPase. It is concluded that human placental mitochondria possesses ADPase and ATP-diphosphohydrolase activities (247).  相似文献   

13.
The effect of hypoxia and re-oxygenation on the mitochondrial complex F(O)F(1)-ATP synthase was investigated in the whiteleg shrimp Litopenaeus vannamei. A 660 kDa protein complex isolated from mitochondria of the shrimp muscle was identified as the ATP synthase complex. After 10h at hypoxia (1.5-2.0 mg oxygen/L), the concentration of L-lactate in plasma increased significantly, but the ATP amount and the concentration of ATPβ protein remained unaffected. Nevertheless, an increase of 70% in the ATPase activity was detected, suggesting that the enzyme may be regulated at a post-translational level. Thus, during hypoxia shrimp are able to maintain ATP amounts probably by using some other energy sources as phosphoarginine when an acute lack of energy occurs. During re-oxygenation, the ATPase activity decreased significantly and the ATP production continued via the electron transport chain and oxidative phosphorylation. The results obtained showed that shrimp faces hypoxia partially by hydrolyzing the ATP through the reaction catalyzed by the mitochondrial ATPase which increases its activity.  相似文献   

14.
The content of an intrinsic ATPase inhibitor in mitochondria was determined by a radioimmunoassay procedure which showed the molar ratio of the inhibitor to ATPase to be 1:1. The ratio in submitochondrial particles, where half of the enzyme was activated, was the same as that of mitochondria, indicating that the inhibitor protein has affinity for the mitochondrial membrane as well as for F1-ATPase. The inhibitor protein could be removed from the mitochondrial membrane by incubation with 0.5 M Na2SO4 and concomitantly the enzyme was fully activated. The enzyme fully activated by the salt treatment was inactivated again by the externally added ATPase inhibitor in the presence of ATP and Mg2+. The enzyme-inhibitor complex (inactive) on the mitochondrial membrane was more stable than the solubilized enzyme-inhibitor complex but gradually dissociated in the absence of ATP and Mg2+. However, in mitochondria, the enzyme activity was inhibited even in the absence of the cofactors. A protein factor stabilizing the enzyme-inhibitor complex on the mitochondrial membrane was isolated from yeast mitochondria. This factor stabilized the inhibitor complex of membrane-bound ATPase while having no effect on that of purified F1-ATPase. It also efficiently facilitated the binding of the inhibitor to membrane-bound ATPase to form the complex, which reversibly dissociated at slightly alkaline pH.  相似文献   

15.
J Kolarov  I Hatalová 《FEBS letters》1984,178(1):161-164
The intracellular transport of newly synthesized beta-subunits of the F1-ATPase (beta F1) and of newly synthesized ADP/ATP carrier was followed in isolated rat hepatoma cells. As tested by rapid fractionation of [35S]methionine pulse- and pulse-chase-labeled cells and by sensitivity of labeled polypeptides to externally added protease, the import of beta F1 into mitochondria was strongly inhibited by the additional low concentrations of rhodamine 6G (R6G). In contrast, the import of the ADP/ATP carrier into mitochondria was not affected by the inhibitor. The results imply that the proteolytic processing of the precursor of beta F1 is coupled to its translocation across the mitochondrial membrane.  相似文献   

16.
Neuronal NMB cells were used to determine changes in gene expression upon treatment with dopamine. Twelve differentially expressed cDNAs were identified and cloned, one of them having 99.4% sequence homology with isoform 2 of a voltage-dependent anion channel (VDAC-2). The known role of VDAC, a mitochondrial outer-membrane protein, in transport of anions, pore formation, and release of cytochrome C prompted us to investigate the possible role of VDAC gene family in dopamine-induced apoptosis. Semi-quantitative PCR analysis indicated that expression of the three VDAC isoforms was reduced by dopamine. Immunoblotting with anti-VDAC antibodies detected two VDAC protein bands of 33 and 34 kDa. Dopamine decreased differentially the immunoreactivity of the 34 kDa protein. Whether the decrease in VDAC expression influence the mitochondrial membrane potential (Delta(Psi)(m)) was determined with the dye Rhodamine-123. Dopamine indeed decreased the mitochondrial Delta(Psi)(m), but the maximum effect was observed within 3 h, prior to the decrease in VDAC mRNA or protein levels. Cyclosporin A, a blocker of the mitochondrial pore complex, prevented the decrease in Delta(Psi)(m), but did not rescue the cells from dopamine toxicity. To elucidate possible involvement of protease caspases in dopamine-induced apoptosis, the effect of the caspase inhibitor z-Val-Ala-Asp(Ome)-FMK (zVAD) was determined. zVAD decreased dopamine toxicity, yet it did not rescue the mitochondrial Delta(Psi)(m) drop. Dopamine also decreased ATP levels. Finally, transfection of NMB cells with pcDNA-VDAC decreased the cytotoxic effect of dopamine. These findings are in agreement with the notion that the mitochondria, and VDAC, are important participants in dopamine-induced apoptosis.  相似文献   

17.
(1) The mitochondrial ATPase (EC 3.6.1.3) Ehrlich ascites cell mitochondria, was inhibited by D-glucose under physiological concentrations of ATP. The generation of ADP by the mitochondrial bound hexokinase, seems to be the reason for the D-glucose inhibitory effect. Reversal of the inhibitory effect of ADP on Ehrlich ascites cell mitochondria ATPase by an ATP-regenerating system was achieved. (2) Dissociation of mitochondrial bound hexokinase from the mitochondria eliminated the inhibitory effect of D-glucose. Rebinding of the hexokinase to the mitochondria regenerated the D-glucose inhibitory effect on Ehrlich ascites cell mitochondria ATPase. (3) Bioflavonoids such as quercetin inhibit the mitochondrial hexokinase activity, but do not change the mitochondrial ATPase activity of isolated Ehrlich ascites tumor cell mitochondria. (4) The inhibitory effect of bioflavonoids on mitochondrial bound hexokinase activity is shown to be dissociable from the ascites tumor cell mitochondria and seems to be associated with regulatory rather than catalitic sites of the enzyme.  相似文献   

18.
Tumour necrosis factor alpha (TNF) cytotoxicity is mediated, at least in part, by oxidative stress. One of the post-receptor events shortly after the addition of TNF is the generation of the superoxide anion (O2-*). In the present study, we attempted to examine the role of O2-* in the regulation of mitochondrial membrane potential (Delta(Psi)m) and the release of cytochrome c (cyto c) in L929 cells after stimulation with TNF. Challenge of cells with TNF (50 ng/ml) resulted in an early (30 min after the addition of TNF) increase in the production of O2-*. The use of mitochondrial electron transport chain inhibitors such as antimycin A and rotenone could, respectively, potentiate or suppress the TNF-mediated release of O2-* and cytotoxicity. TNF also induced a late (>3 h after the addition of TNF) depolarization in the Delta(Psi)m. Reduction in the release of O2-* by rotenone (50 microM) or thenoyltrifluoroacetone (250 microM) suppressed both the TNF-mediated Delta(Psi)m depolarization and cyto c release. However, increase in the production of O2-* by antimycin A (25 microM) only slightly enhanced the TNF effect in altering the Delta(Psi)m and the release of cyto c. Treating cells with antimycin A alone could not induce a reduction in Delta(Psi)m nor a release of cyto c. Taken together, our results indicate that TNF induced damage in mitochondria in L929 cells. Our data also show that an increase in the production of O2-* was important in the TNF cytotoxicity, but was not sufficient to mimic the action of TNF.  相似文献   

19.
G D Clark-Walker  X J Chen 《Genetics》2001,159(3):929-938
Loss of mtDNA or mitochondrial protein synthesis cannot be tolerated by wild-type Kluyveromyces lactis. The mitochondrial function responsible for rho(0)-lethality has been identified by disruption of nuclear genes encoding electron transport and F(0)-ATP synthase components of oxidative phosphorylation. Sporulation of diploid strains heterozygous for disruptions in genes for the two components of oxidative phosphorylation results in the formation of nonviable spores inferred to contain both disruptions. Lethality of spores is thought to result from absence of a transmembrane potential, Delta Psi, across the mitochondrial inner membrane due to lack of proton pumping by the electron transport chain or reversal of F(1)F(0)-ATP synthase. Synergistic lethality, caused by disruption of nuclear genes, or rho(0)-lethality can be suppressed by the atp2.1 mutation in the beta-subunit of F(1)-ATPase. Suppression is viewed as occurring by an increased hydrolysis of ATP by mutant F(1), allowing sufficient electrogenic exchange by the translocase of ADP in the matrix for ATP in the cytosol to maintain Delta Psi. In addition, lethality of haploid strains with a disruption of AAC encoding the ADP/ATP translocase can be suppressed by atp2.1. In this case suppression is considered to occur by mutant F(1) acting in the forward direction to partially uncouple ATP production, thereby stimulating respiration and relieving detrimental hyperpolarization of the inner membrane. Participation of the ADP/ATP translocase in suppression of rho(0)-lethality is supported by the observation that disruption of AAC abolishes suppressor activity of atp2.1.  相似文献   

20.
Soluble mitochondrial ATPase (F1) from beef heart prepared in this laboratory contained approximately 1.8 mol of ADP and 0 mol of ATP/mol of F1 which were not removed by repeated precipitation of the enzyme with ammonium sulfate solution or by gel filtration in low ionic strength buffer containing EDTA. This enzyme had full coupling activity. Treatment of the enzyme with trypsin (5 mug/mg of F1 for 3 min) reduced the "tightly bound" ADP to zero, abolished coupling activity, but had no effect on the ATPase activity, stability, or membrane-binding capability of the F1. When the trypsin concentration was varied between 0 and 5 mug/mg of F1, tightly bound ADP was removed to varying degrees, and a correlation was seen between amount of residual tightly bound ADP and residual coupling activity. Gel filtration of the native F1 in high ionic strength buffer containing EDTA also caused complete loss of tightly bound ADP and coupling ability, whereas ATPase activity, stability, and membrane-binding capability were retained. The ADP-depleted F1 preparations were unable to rebind normal amounts of ADP or any ATP in simple reloading experiments. The results strongly suggest that tightly bound ADP is required for ATP synthesis and for energy-coupled ATP hydrolysis on F1. The results also suggest that ATP synthesis and energy-linked ATP hydrolysis rather than involving one nucleotide binding site on F1, involve a series or "cluster" of sites. The ATP hydrolysis site may represent one component of this cluster. The results show that nonenergy-coupled ATP hydrolysis on F1 can occur in the absence of tightly bound ADP or ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号