首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of the enzyme 3-hydroxy-3-methlglutaryl-coenzyme A reductase (HMGR, EC 1.1.1.34) is highly expressed in 4-day-old etiolated seedlings of normal (cv. DeKalb XL72AA), dwarf ( d 5) and albino ( lw 3) maize ( Zea mays L.). HMGR activity of maize seedlings appeared to be exclusively associated with the microsomal rather than the plastidic fraction of maize cells. Maize tissues with high meristematic activity such as germinating seeds, leaf bases, root tips and the site of origin of lateral roots contained high levels of microsomal HMGR activity. The activity of HMGR extracted from leaf tips of normal, dwarf and albino maize seedlings is regulated by light. Microsomal HMGR activity from leaf tips of 4-day-old maize seedlings was inhibited significantly following exposure to strong light (600 μmol m−2 s−1) for more than 10 h. By comparison, microsomal HMGR activity from leaf bases and root tips of maize was not inhibited by exposure to strong light. These results suggest that the microsomal HMGR which is highly expressed in maize may be related to sterol biosynthesis and membrane biogenesis rather than plastidic-associated isoprenoid synthesis and that light may regulate HMGR activity indirectly by increasing cell differentiation.  相似文献   

2.
Apomine, a novel 1,1-bisphosphonate ester, has been shown to lower plasma cholesterol concentration in several species. Here we show that Apomine reduced the levels of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), the rate-limiting enzyme in the mevalonate pathway, both in rat liver and in cultured cells. Apomine resembles sterols such as 25-hydroxycholesterol in its ability to potently accelerate the rate of HMGR degradation by the ubiquitin-proteasome pathway, a process that depends on the transmembrane domain of the enzyme. The similarity between Apomine and sterols in promoting rapid HMGR degradation extends to its acute requirements for ongoing protein synthesis and mevalonate-derived non-sterol product(s) as a co-regulator. Yet, at suboptimal concentrations, sterols potentiated the effect of Apomine in stimulating HMGR degradation, indicating that these agents act via distinct modes. Furthermore, unlike sterols, Apomine inhibited the activity of acyl-CoA:cholesterol acyltransferase in intact cells but not in cell-free extracts. Apomine stimulated the cleavage of the precursor of sterol-regulatory element-binding protein-2 and increased the activity of low density lipoprotein receptor pathway. This Apomine-enhanced activation of sterol-regulatory element-binding protein-2 was prevented by sterols or mevalonate. Taken together, our results provide a molecular mechanism for the hypocholesterolemic activity of Apomine.  相似文献   

3.
The activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) and the level of its mRNA have been determined at various stages of tomato fruit development. The HMGR reaction makes mevalonate, a necessary component in the synthesis of all isoprene containing compounds, such as sterols and carotenoids. A cDNA clone encoding the active site region of HMGR has been isolated from a tomato library derived from young-fruit mRNA. The clone hybridizes to a one- or two-copy fragment in high-stringency DNA gel blot analyses and detects an mRNA of approximately 3.0 kb. Both HMGR activity and mRNA levels are high in early stages of tomato fruit development, when rapid cell division occurs, as well as in the subsequent early stages of cellular expansion. In contrast, ripening fruit have very low levels of reductase activity and mRNA, even though large amounts of the carotenoid lycopene are synthesized during this period. Furthermore, in vivo inhibition of HMGR during early fruit stages disrupts subsequent development, whereas inhibition during later stages of fruit expansion has no apparent effect on ripening. We conclude that the pool of mevalonate responsible for the synthesis of phytosterols is synthesized primarily during the first half of tomato fruit development. In addition, the final period of fruit expansion and ripening is not dependent upon HMGR activity, but instead utilizes a preexisting pool of pathway intermediates or requires the use of salvage pathways in the cell.  相似文献   

4.
The stability of the endoplasmic reticulum (ER) glycoprotein 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), the key enzyme in cholesterol biosynthesis, is negatively regulated by sterols. HMGR is anchored in the ER via its N-terminal region, which spans the membrane eight times and contains a sterol-sensing domain. We have previously established that degradation of mammalian HMGR is mediated by the ubiquitin-proteasome system (Ravid, T., Doolman, R., Avner, R., Harats, D., and Roitelman, J. (2000) J. Biol. Chem. 275, 35840-35847). Here we expressed in HEK-293 cells an HA-tagged-truncated version of HMGR that encompasses all eight transmembrane spans (350 N-terminal residues). Similar to endogenous HMGR, degradation of this HMG(350)-3HA protein was accelerated by sterols, validating it as a model to study HMGR turnover. The degradation of HMG(240)-3HA, which lacks the last two transmembrane spans yet retains an intact sterol-sensing domain, was no longer accelerated by sterols. Using HMG(350)-3HA, we demonstrate that transmembrane region of HMGR is ubiquitinated in a sterol-regulated fashion. Through site-directed Lys --> Arg mutagenesis, we pinpoint Lys(248) and Lys(89) as the internal lysines for ubiquitin attachment, with Lys(248) serving as the major acceptor site for polyubiquitination. Moreover, the data indicate that the N terminus is also ubiquitinated. The degradation rates of the Lys --> Arg mutants correlates with their level of ubiquitination. Notably, lysine-less HMG(350)-3HA is degraded faster than wild-type protein, suggesting that lysines other than Lys(89) and Lys(248) attenuate ubiquitination at the latter residues. The ATP-dependent ubiquitination of HMGR in isolated microsomes requires E1 as the sole cytosolic protein, indicating that ER-bound E2 and E3 enzymes catalyze this modification. Polyubiquitination of HMGR is correlated with its extraction from the ER membrane, a process likely to be assisted by cytosolic p97/VCP/Cdc48p-Ufd1-Npl4 complex, as only ubiquitinated HMGR pulls down p97.  相似文献   

5.
6.
Abstract

The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is mainly involved in the regulation of cholesterol biosynthesis. HMGR catalyses the reduction of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) to mevalonate at the expense of two NADPH molecules in a two-step reversible reaction. In the present study, we constructed a model of human HMGR (hHMGR) to explore the conformational changes of HMGR in complex with HMG-CoA and NADPH. In addition, we analysed the complete sequence of the Flap domain using molecular dynamics (MD) simulations and principal component analysis (PCA). The simulations revealed that the Flap domain plays an important role in catalytic site activation and substrate binding. The apo form of hHMGR remained in an open state, while a substrate-induced closure of the Flap domain was observed for holo hHMGR. Our study also demonstrated that the phosphorylation of Ser872 induces significant conformational changes in the Flap domain that lead to a complete closure of the active site, suggesting three principal conformations for the first stage of hHMGR catalysis. Our results were consistent with previous proposed models for the catalytic mechanism of hHMGR.

Communicated by Ramaswamy H. Sarma  相似文献   

7.
A 32-carboxylic acid derivative of lanosterol (SKF 104976) was found to be a potent inhibitor of lanosterol 14 alpha-demethylase (14 alpha DM). 14 alpha DM activity in a Hep G2 cell extract was inhibited 50% by 2 nM SKF 104976. Exposure of intact cells to similar concentrations of the compound resulted in the inhibition of incorporation of [14C]acetate into cholesterol with concomitant accumulation of lanosterol as well as a 40-70% decrease in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) activity. SKF 104976 did not effect low density lipoprotein uptake and degradation in Hep G2 cells, suggesting that HMGR and low density lipoprotein receptor activity were not coordinately regulated under these conditions. Reduction of the flux of carbon units in the sterol synthetic pathway by as much as 80% did not alter the suppressing effect of SKF 104976 on HMGR activity. However, under conditions where sterol synthesis was almost completely blocked by lovastatin, HMGR activity was not suppressed by SKF 104976. Mevalonate, at concentrations that did not decrease HMGR activity, was able to restore the inhibiting effect of SKF 104976 on HMGR activity. The rapid inhibition (2-3 h) of HMGR activity by SKF 104976 to 30-60% of the level in controls was not dependent on the initial amount of HMGR enzyme present. These findings suggest that upon inhibition of 14 alpha DM by SKF 104976, a mevalonate-derived precursor regulates HMGR activity, even when the sterol synthetic rate is considerably reduced and when HMGR protein levels are very high. In Hep G2 cells, formation of oxylanostenols from [3H]mevalonate reached a maximum between 1 and 10 nM SKF 104976 and was negligible at higher concentrations. This result suggests that oxylanostenols are not the key mediators of the modulation of HMGR in Hep G2 cells upon 14 alpha DM inhibition.  相似文献   

8.
9.
The steady-state level of the resident endoplasmic reticulum protein, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), is regulated, in part, by accelerated degradation in response to excess sterols or mevalonate. Previous studies of a chimeric protein (HM-Gal) composed of the membrane domain of HMGR fused to Escherichia coli beta-galactosidase, as a replacement of the normal HMGR cytosolic domain, have shown that the regulated degradation of this chimeric protein, HM-Gal, is identical to that of HMGR (Chun, K. T., Bar-Nun, S., and Simoni, R. D. (1990) J. Biol. Chem. 265, 22004-22010; Skalnik, D. G., Narita, H., Kent, C., and Simoni, R. D. (1988) J. Biol. Chem. 263, 6836-6841). Since the cytosolic domain can be replaced with beta-galactosidase without effect on regulated degradation, it has been assumed that the cytosolic domain was not important to this process and also that the membrane domain of HMGR was both necessary and sufficient for regulated degradation. In contrast to our previous results with HM-Gal, we observed in this study that replacement of the cytosolic domain of HMGR with various heterologous proteins can have an effect on the regulated degradation, and the effect correlates with the oligomeric state of the replacement cytosolic protein. Chimeric proteins that are oligomeric in structure are relatively stable, and those that are monomeric are unstable. To test the hypothesis that the oligomeric state of the cytosolic domain of HMGR influences degradation, we use an "inducible" system for altering the oligomeric state of a protein in vivo. Using a chimeric protein that contains the membrane domain of HMGR fused to three copies of FK506-binding protein 12, we were able to induce oligomerization by addition of a "double-headed" FK506-like "dimerizer" drug (AP1510) and to monitor the degradation rate of both the monomeric form and the drug-induced oligomeric form of the protein. We show that this chimeric protein, HM-3FKBP, is unstable in the monomeric state and is stabilized by AP1510-induced oligomerization. We also examined the degradation rate of HMGR as a function of concentrations within the cell. HMGR is a functional dimer; therefore, its oligomeric state and, we predict, its degradation rate should be concentration-dependent. We observed that it is degraded more rapidly at lower concentrations.  相似文献   

10.
11.
3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes the formation of mevalonate, the committed step in the biosynthesis of sterols and isoprenoids. The activity of HMGR is controlled through synthesis, degradation and phosphorylation to maintain the concentration of mevalonate-derived products. In addition to the physiological regulation of HMGR, the human enzyme has been targeted successfully by drugs in the clinical treatment of high serum cholesterol levels. Three crystal structures of the catalytic portion of human HMGR in complexes with HMG-CoA, with HMG and CoA, and with HMG, CoA and NADP(+), provide a detailed view of the enzyme active site. Catalytic portions of human HMGR form tight tetramers. The crystal structure explains the influence of the enzyme's oligomeric state on the activity and suggests a mechanism for cholesterol sensing. The active site architecture of human HMGR is different from that of bacterial HMGR; this may explain why binding of HMGR inhibitors to bacterial HMGRs has not been reported.  相似文献   

12.
Dihydrofolate reductase (DHFR) is a ubiquitous enzyme involved in major biological process, including DNA synthesis and cancer inhibition, and its modulation is the object of extensive structural, kinetic, and pharmacological studies. In particular, earlier studies showed that green tea catechins are powerful inhibitors of bovine liver and chicken liver DHFR. In this article, we report the results of inhibition kinetics for the enzyme from another source (DHFR from E. coli) exerted by (-)-epigallocatechingallate (EGCG). Using different analytical techniques, we reported that EGCG acts as a bisubstrate inhibitor on the bacterial DHFR. Moreover, the combined approach of biosensor, kinetic, and molecular modelling analysis disclosed the ability of EGCG to bind to the enzyme both on substrate (DHF) and cofactor (NADPH) site. Collectively, our data have confirmed the selectivity of antifolate compounds with respect to the different source of enzyme (bacterial or mammalian DHFR) and the possible role of tea catechins as chemopreventive agents.  相似文献   

13.
Insects employ iridoids to deter predatory attacks. Larvae of some Chrysomelina species are capable to produce those cyclopentanoid monoterpenes de novo. The iridoid biosynthesis proceeds via the mevalonate pathway to geranyl diphospate (GDP) subsequently converted into 8-hydroxygeraniol-8-O-beta-D-glucoside followed by the transformation into the defensive compounds. We tested whether the glucoside, its aglycon or geraniol has an impact on the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the key regulatory enzyme of the mevalonate pathway and also the iridoid biosynthesis. To address the inhibition site of the enzyme, initially a complete cDNA encoding full length HMGR was cloned from Phaedon cochleariae. Its catalytic portion was then heterologously expressed in Escherichia coli. Purification and characterization of the recombinant protein revealed attenuated activity in enzyme assays by 8-hydroxygeraniol whereas no effect has been observed by addition of the glucoside or geraniol. Thus, the catalytic domain is the target for the inhibitor. Homology modeling of the catalytic domain and docking experiments demonstrated binding of 8-hydroxygeraniol to the active site and indicated a competitive inhibition mechanism. Iridoid producing larvae are potentially able to sequester glucosidically bound 8-hydroxygeraniol whose cleavage of the sugar moiety results in 8-hydroxygeraniol. Therefore, HMGR may represent a regulator in maintenance of homeostasis between de novo produced and sequestered intermediates of iridoid metabolism. Furthermore, we demonstrated that HMGR activity is not only diminished in iridoid producers but most likely prevalent within the Chrysomelina subtribe and also within the insecta.  相似文献   

14.
The cholesterol content of the endoplasmic reticulum (ER) and the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) imbedded therein respond homeostatically within minutes to changes in the level of plasma membrane cholesterol. We have now examined the roles of sterol regulatory element-binding protein (SREBP)-dependent gene expression, side chain oxysterol biosynthesis, and cholesterol precursors in the short term regulation of ER cholesterol levels and HMGR activity. We found that SREBP-dependent gene expression is not required for the response to changes in cell cholesterol of either the pool of ER cholesterol or the rate of cholesterol esterification. It was also found that the acute proteolytic inactivation of HMGR triggered by cholesterol loading required the conversion of cholesterol to 27-hydroxycholesterol. High levels of exogenous 24,25-dihydrolanosterol drove the inactivation of HMGR; lanosterol did not. However, purging endogenous 24,25-dihydrolanosterol, lanosterol, and other biosynthetic sterol intermediates by treating cells with NB-598 did not greatly affect either the setting of their ER cholesterol pool or the inactivation of their HMGR. In summary, neither SREBP-regulated genes nor 27-hydroxycholesterol is involved in setting the ER cholesterol pool. On the other hand, 27-hydroxycholesterol, rather than cholesterol itself or biosynthetic precursors of cholesterol, stimulates the rapid inactivation of HMGR in response to high levels of cholesterol.  相似文献   

15.
3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR, EC1.1.1.34), the key enzyme in isoprenoid biosynthesis, was purified from microsomes of potato tuber tissue, and a polyclonal antibody and two monoclonal antibodies against the purified enzyme were prepared. HMGR protein content was measured by immunotitration and radioimmunoassay using these antibodies. HMGR activity was very low in the fresh tissues of both potato tuber and sweet potato root. The activity in potato tuber was increased by cutting and further by additional fungal infection of the cut tissues. In sweet potato root tissue, the activity was scarcely increased after cutting alone, but was markedly increased by additional fungal infection or chemical treatment. The HMGR protein contents in both fresh potato tuber and sweet potato root tissues were also very low, and increased markedly in response to cutting and fungal infection. From these results, we proposed a hypothesis on the induction mechanism of HMGR after cutting and fungal infection in potato tuber and sweet potato root tissues.  相似文献   

16.
Z Yang  H Park  G H Lacy    C L Cramer 《The Plant cell》1991,3(4):397-405
Potato genes encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) were expressed in response to pathogen, elicitor, and wounding. HMGR catalyzes the rate-limiting step in isoprenoid biosynthesis leading to accumulation of phytoalexins and steroid glycoalkaloids. Wounding caused increases in HMGR mRNA levels. A rapid and transient peak occurred 30 minutes after wounding, followed by a slower peak at 14 hours; both were correlated with increased enzyme activity. Induction of HMGR mRNA by the soft rot pathogen Erwinia carotovora subsp carotovora or arachidonic acid began 8 hours after challenge and continued through 22 hours. Potato HMGR is encoded by a gene family. An HMGR gene-specific probe was used to demonstrate that one isogene of the HMGR family is pathogen activated and is distinct from isogene(s) that are wound activated. This provides evidence that defense-related increases in HMGR activity are due to mRNA level increases and that HMGR isogenes are activated differentially by wounding or pathogen challenge.  相似文献   

17.
HMGR (3-hydroxy-3-methylglutaryl-coenzyme A reductase; E.C.1.1.1.34) supplies mevalonate for the synthesis of many plant primary and secondary metabolites, including the terpenoid component of indole alkaloids. Suspension cultures of Camptotheca acuminata and Catharanthus roseus, two species valued for their anticancer indole alkaloids, were treated with the elicitation signal transducer methyl jasmonate (MeJA). RNA gel blot analysis from MeJA treated cultures showed a transient suppression of HMGR mRNA, followed by an induction in HMGR message. Leaf disks from transgenic tobacco plants containing a chimeric hmgl::GUS construct were also treated with MeJA and showed a dose dependent suppression of wound-inducible GUS activity. The suppression of the wound response by MeJA was limited to the first 4 h post-wounding, after which time MeJA application had no effect. The results are discussed in relation to the differential regulation of HMGR isogenes in higher plants.Abbreviations GUS -glucuronidase - hmg gene of hmgr - HMGR 3-hydroxy-3-methylglutaryl-coenzyme A reductase - JA jasmonic acid - MeJA methyl jasmonate - MUG methylumbelliferyl--d-glucuronide - TDC tryptophan decarboxylase - SDS sodium dodecyl sulfate - SS strictosidine synthase  相似文献   

18.
19.
17beta-Hydroxysteroid dehydrogenase type 3 (17beta-HSD-3) is a member of the short-chain dehydrogenase/reductase (SDR) family and is essential for the reductive conversion of inactive C(19)-steroid, androstenedione, to the biologically active androgen, testosterone, which plays a central role in the development of the male phenotype. Mutations that inactivate this enzyme give rise to a rare form of male pseudohermaphroditism, referred to as 17beta-HSD-3 deficiency. One such mutation is the replacement of arginine at position 80 with glutamine, compromising enzyme activity by increasing the cofactor binding constant 60-fold. In the absence of a 17beta-HSD-3 crystal structure, we have grafted its amino acid sequence for the NADPH binding site on the X-ray crystal structures of glutathione reductase (Protein Data Bank code 1gra) and 17beta-HSD type 1 (Protein Data Bank codes 1fdv and 1fdu) where we find the trunk of the arginine 80 side chain forms part of the hydrophobic pocket for the purine ring of adenosine while its guanidinium moiety interacts with the 2'-phosphate to both stabilize cofactor binding and neutralize its intrinsic negative charge through two hydrogen bonds. To qualitatively assess the role arginine 80 plays in both selecting and stabilizing NADPH binding, it was replaced with each amino acid and the mutant enzymes subjected to enzymatic analysis. There are only seven enzymes exhibiting any measurable enzymatic activity with arginine approximately lysine>leucine>glutamine>methionine>tyrosine>isoleucine. With an aspartic acid at position 58 in 17beta-HSD-3 occupying the equivalent space in the cofactor binding pocket as arginine 224 in glutathione reductase or serine 12 in 17beta-HSD-1, there was an expectation that some of the mutants might use NADH as a cofactor. In no case was NADH found to substitute for NADPH.  相似文献   

20.
Theaflavin (TF) and epigallocatechin-3-gallate (EGCG) both have been reported previously as microtubule depolymerizing agents that also have anticancer effects on various cancer cell lines and in animal models. Here, we have applied TF and EGCG in combination on HeLa cells to investigate if they can potentiate each other to improve their anticancer effect in lower doses and the underlying mechanism. We found that TF and EGCG acted synergistically, in lower doses, to inhibit the growth of HeLa cells. We found the combination of 50 µg/mL TF and 20 µg/mL EGCG to be the most effective combination with a combination index of 0.28. The same combination caused larger accumulation of cells in the G 2/M phase of the cell cycle, potent mitochondrial membrane potential loss, and synergistic augmentation of apoptosis. We have shown that synergistic activity might be due to stronger microtubule depolymerization by simultaneous binding of TF and EGCG at different sites on tubulin: TF binds at vinblastine binding site on tubulin, and EGCG binds near colchicines binding site on tubulin. A detailed mechanistic analysis revealed that stronger microtubule depolymerization caused effective downregulation of PI3K/Akt signaling and potently induced mitochondrial apoptotic signals, which ultimately resulted in the apoptotic death of HeLa cells in a synergistic manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号