首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytokinins promote cell division and chloroplast development in tissue culture. We previously isolated two mutants of Arabidopsis thaliana, ckh1 (cytokinin-hypersensitive 1) and ckh2, which produce rapidly growing green calli in response to lower levels of cytokinins than those found in the wild type. Here we report that the product of the CKH2 gene is PICKLE, a protein resembling the CHD3 class of SWI/SNF chromatin remodeling factors. We also show that inhibition of histone deacetylase by trichostatin A (TSA) partially substituted for cytokinins, but not for auxin, in the promotion of callus growth, indicating that chromatin remodeling and histone deacetylation are intimately related to cytokinin-induced callus growth. A microarray experiment revealed that either the ckh1 mutation or the ckh2 mutation caused hypersensitivity to cytokinins in terms of gene expression, especially of photosynthesis-related genes. The ckh1 and ckh2 mutations up-regulated nuclear-encoded genes, but not plastid-encoded genes, whereas TSA deregulated both nuclear- and plastid-encoded genes. The ckh1 ckh2 double mutant showed synergistic phenotypes: the callus grew with a green color independently of exogenous cytokinins. A yeast two-hybrid experiment showed protein interaction between CKH1/EER4/AtTAF12b and CKH2/PKL. These results suggest that CKH1/EER4/AtTAF12b and CKH2/PKL may act together on cytokinin-regulated genes.  相似文献   

2.
We isolated Arabidopsis thaliana mutants that respond more sensitively than the wild type to cytokinins. The calli produced from the mutants exhibit typical cytokinin responses, including rapid proliferation and chloroplast development in response to lower levels of cytokinins than in the wild type. The mutations are recessive and belong to two complementation groups designated ckh1 and ckh2 for cytokinin-hypersensitive. CKH1 and CKH2 were mapped to the top of chromosome I and the middle of chromosome II, respectively. The cytokinin levels in these mutants were not increased. We speculate that the CKH1 and CKH2 gene products negatively regulate the signaling pathway leading from cytokinin perception to cell proliferation and chloroplast development.  相似文献   

3.
Li CH  Yu N  Jiang SM  Shangguan XX  Wang LJ  Chen XY 《Planta》2008,228(1):125-136
S-adenosyl-L: -homocysteine hydrolase (SAHH) is a key enzyme for maintenance of cellular transmethylation potential. Although a cytokinin-binding activity had been hypothesized for SAHH, the relation between cytokinin and transmethylation reactions has not been elucidated. Here we show that, of the two Arabidopsis thaliana SAHH genes, AtSAHH1 has a much higher expression level than AtSAHH2. A T-DNA insertion mutant of AtSAHH1 (sahh1-1) and the RNA interference (RNAi) plants (dsAtSAHH2) accumulated a higher level of cytokinins, exhibited phenotypic changes similar to those of cytokinin-overproducers, and their global DNA methylation status was reduced. On the other hand, cytokinins positively regulate the transmethylation pathway genes, including AtSAHH1, AtADK1 (for adenosine kinase), and this regulation involves the cytokinin activity. Furthermore, expression of three cytosine DNA methyltransferase genes examined was inducible by cytokinin treatment. Unlike adenine and adenosine which are SAHH inhibitors, the adenine-type cytokinins have no effect on SAHH activity at protein level. Changing of endogenous cytokinin levels by transgene expression resulted in alterations of DNA methylation status in the sahh1-1 background, suggesting that cytokinins promote DNA methylation, at least under transmethylation stringent conditions. These data demonstrate that the phytohormone cytokinin plays a role in promoting transmethylation reactions, including DNA methylation.  相似文献   

4.
The cytokinin class of plant hormones plays key roles in regulating diverse developmental and physiological processes. Arabidopsis perceives cytokinins with three related and partially redundant receptor histidine kinases (HKs): CRE1 (the same protein as WOL and AHK4), AHK2, and AHK3 (CRE-family receptors). It is suggested that binding of cytokinins induces autophosphorylation of these HKs and subsequent transfer of the phosphoryl group to a histidine phosphotransfer protein (HPt) and then to a response regulator (RR), ultimately regulating downstream signaling events. Here we demonstrate that, in vitro and in a yeast system, CRE1 is not only a kinase that phosphorylates HPts in the presence of cytokinin but is also a phosphatase that dephosphorylates HPts in the absence of cytokinin. To explore the roles of these activities in planta, we replaced CRE1 with mutant versions of the gene or with AHK2. Replacing CRE1 with CRE1(T278I), which lacks cytokinin binding activity and is locked in the phosphatase form, decreased cytokinin sensitivity. Conversely, replacing CRE1 with AHK2, which favors kinase activity, increased cytokinin sensitivity. These results indicate that in the presence of cytokinins, cytokinin receptors feed phosphate to phosphorelay-integrating HPt proteins. In the absence of cytokinins, CRE1 removes phosphate from HPt proteins, decreasing the system phosphoload.  相似文献   

5.
Cytokinins are involved in plant cell proliferation leading to plant growth and morphogenesis. Earlier we described a mutant of Arabidopsis thaliana, amp1, that had five times higher levels of cytokinin and had a number of pleiotropic phenotypes, including increased cell proliferation and de-etiolated growth in the dark. While these phenotypes were correlated with higher levels of cytokinin, the actual mechanism of how cytokinin is elevated was not elucidated before. In order to understand if the increased cytokinin is a result of increased biosynthesis or decreased degradation we have compared the synthesis of cytokinins from radiolabelled adenine and the degradation of zeatin ribosides and other cytokinins between amp1 and wild type plants. The degradation of the hormone is not affected in the mutant but there is a 4 to 6 fold increase in cytokinin synthesis compared to the wild type. Because the amp1 mutant is recessive we hypothesise that the AMP1 product negatively regulates cytokinin production.  相似文献   

6.
Plants display a number of responses to low phosphate availability, involving biochemical and developmental changes. Recently we have shown that many of these responses can be repressed in roots by exogenous addition of cytokinins. In order to understand the genetic basis to this effect of cytokinins, and its relation with the better known roles of cytokinins in the control of cell-cycle and differentiation, we have undertaken mutant screening and characterization using a transgenic line of Arabidopsis thaliana harbouring a reporter gene specifically responsive to Pi starvation (AtIPS1::GUS). One type of mutant identified displayed reduced sensitivity of AtIPS1::GUS to cytokinin repression. Several other Pi starvation response genes showed reduced cytokinin sensitivity in these lines. These mutants also showed reduced cytokinin repression of the anthocyanin accumulation induced by Pi starvation in the aerial part of the plants. Mapping and molecular characterization of these mutants showed that they were allelic of CRE1/WOL, a locus known to encode a cytokinin receptor. CRE1 is downregulated by Pi starvation and induced by cytokinins, both in the wild-type and in the cre1 mutants, in which cre1 mRNA levels are higher. These results reveal the existence of a positive feed-back loop, in addition to the already established negative feedback loop, in cytokinin signalling and indicate that the negative regulation of Pi starvation responses by cytokinins involves a two-component signalling circuitry, as it is the case of other types of cytokinin response.  相似文献   

7.
8.
9.
10.
The ubiquitin/26S proteasome-dependent proteolysis of response regulators is a critical element of many plant hormone signaling pathways. We have recently shown that cytokinin signaling requires the AXR1 component of the related to ubiquitin (RUB) protein modification pathway to promote the proteasome-dependent degradation of the cytokinin response inhibitor ARR5. Here, we show that ARR5 also accumulates in the 26S proteasome mutant rpn12a-1, and leads to a marked resistance to cytokinins. Collectively, these results suggest that proteasome-dependent proteolysis of feedback inhibitors such as ARR5 is essential for the maintenance of optimal responsivity and plasticity in cytokinin signaling.  相似文献   

11.
12.
13.
14.
Cytokinins are plant hormones that may play essential and crucial roles in various aspects of plant growth and development. Although the functional significance of exogenous cytokinins as to the proliferation and differentiation of cells has been well documented, the biological roles of endogenous cytokinins have remained largely unknown. The recent discovery of the Arabidopsis Histidine Kinase 4 (AHK4)/CRE1/WOL cytokinin receptor in Arabidopsis thaliana strongly suggested that the cellular response to cytokinins involves a two-component signal transduction system. However, the lack of an apparent phenotype in the mutant, presumably because of genetic redundancy, prevented us from determining the in planta roles of the cytokinin receptor. To gain insight into the molecular functions of the three AHK genes AHK2, AHK3, and AHK4 in this study, we identified mutational alleles of the AHK2 and AHK3 genes, both of which encode sensor histidine kinases closely related to AHK4, and constructed a set of multiple ahk mutants. Application of exogenous cytokinins to the resultant strains revealed that both AHK2 and AHK3 function as positive regulators for cytokinin signaling similar to AHK4. The ahk2 ahk4 and ahk3 ahk4 double mutants and the ahk single mutants grew normally, whereas the ahk2 ahk3 double mutants exhibited a semidwarf phenotype as to shoots, such as a reduced leaf size and a reduced influorescence stem length. The growth and development of the ahk2 ahk3 ahk4 triple mutant were markedly inhibited in various tissues and organs, including the roots and leaves in the vegetative growth phase and the influorescence meristem in the reproductive phase. We showed that the inhibition of growth is associated with reduced meristematic activity of cells. Expression analysis involving AHK:beta-glucuronidase fusion genes suggested that the AHK genes are expressed ubiquitously in various tissues during postembryonic growth and development. Our results thus strongly suggest that the primary functions of AHK genes, and those of endogenous cytokinins, are triggering of the cell division and maintenance of the meristematic competence of cells to prevent subsequent differentiation until a sufficient number of cells has accumulated during organogenesis.  相似文献   

15.
The 26S proteasome is an ATP-dependent eukaryotic protease responsible for degrading many important cell regulators, especially those conjugated with multiple ubiquitins. Bound on both ends of the 20S core protease is a multisubunit regulatory particle that plays a crucial role in substrate selection by an as yet unknown mechanism(s). Here, we show that the RPN12 subunit of the Arabidopsis regulatory particle is involved in cytokinin responses. A T-DNA insertion mutant that affects RPN12a has a decreased rate of leaf formation, reduced root elongation, delayed skotomorphogenesis, and altered growth responses to exogenous cytokinins, suggesting that the mutant has decreased sensitivity to the hormone. The cytokinin-inducible genes CYCD3 and NIA1 are upregulated constitutively in rpn12a-1, indicating that feedback-inhibitory mechanisms also may be altered. rpn12a-1 seedlings also showed changes in auxin-induced growth responses, further illustrating the close interaction between auxin and cytokinin regulation. In yeast, RPN12 is necessary for the G1/S and G2/M transitions of the cell cycle, phases that have been shown to be under cytokinin control in plants. We propose that RPN12a is part of the Arabidopsis 26S proteasome that controls the stability of one or more of the factors involved in cytokinin regulation.  相似文献   

16.
17.
18.
Cytokinins control key processes during plant growth and development, and cytokinin receptors CYTOKININ RESPONSE 1/WOODEN LEG/ARABIDOPSIS HISTIDINE KINASE 4 (CRE1/WOL/AHK4), AHK2, and AHK3 have been shown to play a crucial role in this control. The involvement of cytokinins in signaling the status of several nutrients, such as sugar, nitrogen, sulfur, and phosphate (Pi), has also been highlighted, although the full physiological relevance of this role remains unclear. To gain further insights into this aspect of cytokinin action, we characterized a mutant with reduced sensitivity to cytokinin repression of a Pi starvation-responsive reporter gene and show it corresponds to AHK3. As expected, ahk3 displayed reduced responsiveness to cytokinin in callus proliferation and plant growth assays. In addition, ahk3 showed reduced cytokinin repression of several Pi starvation-responsive genes and increased sucrose sensitivity. These effects of the ahk3 mutation were especially evident in combination with the cre1 mutation, indicating partial functional redundancy between these receptors. We examined the effect of these mutations on Pi-starvation responses and found that the double mutant is not significantly affected in long-distance systemic repression of these responses. Remarkably, we found that expression of many Pi-responsive genes is stimulated by sucrose in shoots and to a lesser extent in roots, and the sugar effect in shoots of Pi-starved plants was particularly enhanced in the cre1 ahk3 double mutant. Altogether, these results indicate the existence of multidirectional cross regulation between cytokinin, sugar, and Pi-starvation signaling, thus underlining the role of cytokinin signaling in nutrient sensing and the relative importance of Pi-starvation signaling in the control of plant metabolism and development.  相似文献   

19.
20.
The increase in the ratio of root growth to shoot growth that occurs in response to phosphate (Pi) deprivation is paralleled by a decrease in cytokinin levels under the same conditions. However, the role of cytokinin in the rescue system for Pi starvation remains largely unknown. We have isolated a gene from Arabidopsis thaliana (AtIPS1) that is induced by Pi starvation, and studied the effect of cytokinin on its expression in response to Pi deprivation. AtIPS1 belongs to the TPSI1/Mt4 family, the members of which are specifically induced by Pi starvation, and the RNAs of which contain only short, non-conserved open reading frames. Pi deprivation induces AtIPS1 expression in all cells of wild-type plants, whereas in the pho1 mutant grown on Pi-rich soils, AtIPS1 expression in the root was delimited by the endodermis. This supports the view that pho1 is impaired in xylem loading of Pi, and that long-distance signals controlling the Pi starvation responses act via negative control. Exogenous cytokinins repress the expression of AtIPS1 and other Pi starvation-responsive genes in response to Pi deprivation. However, cytokinins did not repress the increase in root-hair number and length induced by Pi starvation, a response dependent on local Pi concentration rather than on whole-plant Pi status. Our results raise the possibility that cytokinins may be involved in the negative modulation of long-distance, systemically controlled Pi starvation responses, which are dependent on whole-plant Pi status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号