首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prions     
The discovery of infectious proteins, denoted prions, was unexpected. After much debate over the chemical basis of heredity, resolution of this issue began with the discovery that DNA, not protein, from pneumococcus was capable of genetically transforming bacteria (Avery et al. 1944). Four decades later, the discovery that a protein could mimic viral and bacterial pathogens with respect to the transmission of some nervous system diseases (Prusiner 1982) met with great resistance. Overwhelming evidence now shows that Creutzfeldt-Jakob disease (CJD) and related disorders are caused by prions. The prion diseases are characterized by neurodegeneration and lethality. In mammals, prions reproduce by recruiting the normal, cellular isoform of the prion protein (PrP(C)) and stimulating its conversion into the disease-causing isoform (PrP(Sc)). PrP(C) and PrP(Sc) have distinct conformations: PrP(C) is rich in α-helical content and has little β-sheet structure, whereas PrP(Sc) has less α-helical content and is rich in β-sheet structure (Pan et al. 1993). The conformational conversion of PrP(C) to PrP(Sc) is the fundamental event underlying prion diseases. In this article, we provide an introduction to prions and the diseases they cause.  相似文献   

2.
《朊病毒》2013,7(2):74-77
The aggregation of a soluble protein into insoluble, β-sheet rich amyloid fibrils is a defining characteristic of many neurodegenerative diseases, including prion disorders. The prion protein has so far been considered unique because of its infectious nature. Recent investigations, however, suggest that other amyloid-forming proteins associated with much more common diseases, such as tau, α-synuclein, amyloid β, and polyglutamine proteins, while not infectious in the classical sense, share certain essential properties with prions that may explain phenotypic diversity, and patterns of spread within the nervous system. We suggest a common mechanism of pathogenesis of myriad sporadic and inherited neurodegenerative diseases based on templated conformational change.  相似文献   

3.
Mapping out regions of PrP influencing prion conversion remains a challenging issue complicated by the lack of prion structure. The portion of PrP associated with infectivity contains the α-helical domain of the correctly folded protein and turns into a β-sheet-rich insoluble core in prions. Deletions performed so far inside this segment essentially prevented the conversion. Recently we found that deletion of the last C-terminal residues of the helix H2 was fully compatible with prion conversion in the RK13-ovPrP cell culture model, using 3 different infecting strains. This was in agreement with preservation of the overall PrPC structure even after removal of up to one-third of this helix. Prions with internal deletion were infectious for cells and mice expressing the wild-type PrP and they retained prion strain-specific characteristics. We thus identified a piece of the prion domain that is neither necessary for the conformational transition of PrPC nor for the formation of a stable prion structure.  相似文献   

4.
《朊病毒》2013,7(2):56-59
Prion diseases are infectious conformational diseases. Despite the determination of many native prion protein (PrP) structures and in vitro production of infectious prions from recombinant PrP the structural background of PrP conversion remains the largest unsolved problem. The aggregated state of PrPSc makes it inaccessible to high resolution techniques, therefore indirect methods have to be used to investigate the conversion process. We engineered disulfide bridges into the structured domain of PrP in order to determine the secondary structure elements that remain conserved upon conversion. Rather surprisingly, introduction of disulfides into each or both of the subdomains B1-H1-B2 and H2-H3 of the C-terminal globular domain retained the robust ability to convert into fibrils with increased content of β-structure, indistinguishable from the wild-type PrP. On the other hand disulfide bridges tethering the two subdomains completely prevented conversion, while their reduction reversed their conversion ability. The same conversion propensity was replicated also in prion infected cell lines. Experiments with combinations of engineered cysteine residues further support that domain swapping, centered on the B2-H2 loop, previously associated to species barrier, leads to PrP swapped dimers as the building block of prion fibrils.  相似文献   

5.
Amyloids and amyloid-based prions are self-perpetuating protein aggregates which can spread by converting a normal protein of the same sequence into a prion form. They are associated with diseases in humans and mammals, and control heritable traits in yeast and other fungi. Some amyloids are implicated in biologically beneficial processes. As prion formation generates reproducible memory of a conformational change, prions can be considered as molecular memory devices. We have demonstrated that in yeast, stress-inducible cytoskeleton-associated protein Lsb2 forms a metastable prion in response to high temperature. This prion promotes conversion of other proteins into prions and can persist in a fraction of cells for a significant number of cell generations after stress, thus maintaining the memory of stress in a population of surviving cells. Acquisition of an amino acid substitution required for Lsb2 to form a prion coincides with acquisition of increased thermotolerance in the evolution of Saccharomyces yeast. Thus the ability to form an Lsb2 prion in response to stress coincides with yeast adaptation to growth at higher temperatures. These findings intimately connect prion formation to the cellular response to environmental stresses.  相似文献   

6.
Saiki M  Hidaka Y  Nara M  Morii H 《Biochemistry》2012,51(8):1566-1576
Prion diseases represent fatal neurodegenerative disorders caused by the aggregation of prion proteins. With regard to the formation of the amyloidogenic cross-β-structure, the initial mechanism in the conversion to a β-structure is critically important. To explore the core regions forming a stem of the amyloid, we designed and prepared a series of peptides comprised of two native sequences linked by a turn-inducing dipeptide moiety and examined their ability to produce amyloids. A sequence alignment of the peptides bearing the ability to form amyloid structures revealed that paired strands consisting of VNITI (residues 180-184) and VTTTT (residues 189-193) are the core regions responsible for initiating the formation of cross-β-structures and for further ordered aggregation. In addition, most of the causative mutations responsible for inherited prion diseases were found to be located in these stem-forming regions on helix H2 and their counterpart on helix H3. Moreover, the volume effect of the nonstem domain, which contains ~200 residues, was deduced to be a determinant of the nature of the association such as oligomerization, because the stem-forming domain is only a small part of a prion protein. Taken together, we conclude that the mechanism underlying the initial stage of amyloidogenesis is the exposure of a newly formed intramolecular β-sheet to a solvent through the partial transition of a native structure from an α-helix to a β-structure. Our results also demonstrate that prion diseases caused by major prion proteins except the prions of some fungi such as yeast are inherent only in mammals, as evidenced by a comparison of the corresponding sequences to the stem-forming regions among different animals.  相似文献   

7.
In prion diseases cellular prion protein (PrPC) undergoes conformational transition into the β-sheet-rich form (PrPSc). PrPC consists of the disordered N-terminal part and a C-terminal globular domain containing three α-helices (H1, H2, H3) and an antiparallel beta sheet (B1, B2). B2–H2 loop, which has a focal role in the species barrier, contains the highest density of asparagine (N) and glutamine (Q) residues in the whole sequence. Q/N-rich domains are essential for the conversion of yeast prions. We investigated the role of Q/N residues in the B2–H2 loop in PrP conversion. We prepared mouse PrP mutants with increasing number of consecutive Q/N residues in the B2–H2 loop. Stability of the mutants decreased with the increasing number of inserted glutamines. In vitro conversion of mutants yielded fibrils of similar morphology as the wild-type PrP. Q/N mutants accelerated fibrillization in comparison to the wild-type PrP, with mutant containing the most glutamines having the shortest lag phase. The effect of Q/N residues was specific for the B2–H2 loop and was not due to simple increase in flexibility as the introduction of Gly-Ser or Ala residues slowed the conversion despite their decreased stability. Our results thus suggest that Q/N residues in the B2–H2 loop of PrP promote protein conversion and may represent a link to conversion of Q/N-rich prions.  相似文献   

8.
It is hypothesized that infectious prions are generated as the cellular form of the prion protein (PrP(C)) undergoes pronounced conformational change under the direction of an infectious PrP(Sc) template. Conversion to the infectious conformer is particularly associated with major structural rearrangement in the central portion of the protein (residues 90-120), which has an extended flexible structure in the PrP(C) isoform. Using a panel of recombinant antibodies reactive with different parts of PrP, we show that equivalent major structural rearrangements occur spontaneously in this region of PrP immobilized on a surface. In contrast, regions more towards the termini of the protein remain relatively unaltered. The rearrangements occur even under conditions where individual PrP molecules should not contact one another. The propensity of specific unstructured regions of PrP to spontaneously undergo large and potentially deleterious conformational changes may have important implications for prion biology.  相似文献   

9.
Two infectious proteins (prions) of Saccharomyces cerevisiae have been identified by their unusual genetic properties: (1) reversible curability, (2) de novo induction of the infectious prion form by overproduction of the protein, and (3) similar phenotype of the prion and mutation in the chromosomal gene encoding the protein. [URE3] is an altered infectious form of the Ure2 protein, a regulator of nitrogen catabolism, while [PSI] is a prion of the Sup35 protein, a subunit of the translation termination factor. The altered form of each is inactive in its normal function, but is able to convert the corresponding normal protein into the same altered inactive state. The N-terminal parts of Ure2p and Sup35p (the "prion domains") are responsible for prion formation and propagation and are rich in asparagine and glutamine residues. Ure2p and Sup35p are aggregated in vivo in [URE3]- and [PSI]-containing cells, respectively. The prion domains can form amyloid in vitro, suggesting that amyloid formation is the basis of these two prion diseases. Yeast prions can be cured by growth on millimolar concentrations of guanidine. An excess or deficiency of the chaperone Hsp104 cures the [PSI] prion. Overexpression of fragments of Ure2p or certain fusion proteins leads to curing of [URE3].  相似文献   

10.
A central event in the formation of infectious prions is the conformational change of a host-encoded glycoprotein, PrPC, into a pathogenic isoform, PrPSc. However, the molecular requirements for efficient PrP conversion remain unknown. In this study, we employed the recently developed protein misfolding cyclic amplification (PMCA) and scrapie cell assay (SCA) techniques to study the role of N-linked glycosylation on prion formation in vitro. The results show that unglycosylated PrPC molecules are required to propagate mouse RML prions, whereas diglycosylated PrPC molecules are required to propagate hamster Sc237 prions. Furthermore, the formation of Sc237 prions is inhibited by substoichiometric levels of hamster unglycosylated PrPC molecules. Thus, interactions between different PrPC glycoforms appear to control the efficiency of prion formation in a species-specific manner.  相似文献   

11.
The concept of prion is applied to protein modules that share the ability to switch between at least two conformational states and transmit one of these through intermolecular interaction and change of conformation. Although much progress has been achieved through the understanding of prions from organisms such as Saccharomyces cerevisiae, Podospora anserina, or Aplysia californica, the criteria that qualify a protein module as a prion are still unclear. In addition, the functionality of known prion domains fails to provide clues to understand the first identified prion, the mammalian infectious prion protein, PrP. To address these issues, we generated mammalian cellular models of expression of the C-terminal two helices of PrP, H2 and H3, which have been hypothesized, among other models, to hold the replication and conversion properties of the infectious PrP. We found that the H2H3 domain is an independent folding unit that undergoes glycosylations and glycosylphosphatidylinositol anchoring similar to full-length PrP. Surprisingly, in some conditions the normally folded H2H3 was able to systematically go through a conversion process and generate insoluble proteinase K-resistant aggregates. This structural switch involves the assembly of amyloid structures that bind thioflavin S and oligomers that are reactive to A11 antibody, which specifically detects protein oligomers from neurological disorders. Overall, we show that H2H3 is a conformational switch in a cellular context and is thus suggested to be a candidate for the conversion domain of PrP.  相似文献   

12.
Transmissible self-assembled fibrous cross-β polymer infectious proteins (prions) cause neurodegenerative diseases in mammals and control non-Mendelian heritable traits in yeast. Cross-species prion transmission is frequently impaired, due to sequence differences in prion-forming proteins. Recent studies of prion species barrier on the model of closely related yeast species show that colocalization of divergent proteins is not sufficient for the cross-species prion transmission, and that an identity of specific amino acid sequences and a type of prion conformational variant (strain) play a major role in the control of transmission specificity. In contrast, chemical compounds primarily influence transmission specificity via favoring certain strain conformations, while the species origin of the host cell has only a relatively minor input. Strain alterations may occur during cross-species prion conversion in some combinations. The model is discussed which suggests that different recipient proteins can acquire different spectra of prion strain conformations, which could be either compatible or incompatible with a particular donor strain.  相似文献   

13.
Neurodegenerative diseases induced by transmissible spongiform encephalopathies are associated with prions. The most spectacular event in the formation of the infectious scrapie form, referred to as PrP(Sc), is the conformational change from the predominantly alpha-helical conformation of PrP(C) to the PrP(Sc) state that is rich in beta-sheet content. Using sequence alignments and structural analysis of the available nuclear magnetic resonance structures of PrP(C), we explore the propensities of helices in PrP(C) to be in a beta-strand conformation. Comparison of a number of structural characteristics (such as solvent accessible area, distribution of (Phi, Psi) angles, mismatches in hydrogen bonds, nature of residues in local and nonlocal contacts, distribution of regular densities of amino acids, clustering of hydrophobic and hydrophilic residues in helices) between PrP(C) structures and a databank of "normal" proteins shows that the most unusual features are found in helix 2 (H2) (residues 172-194) followed by helix 1 (H1) (residues 144-153). In particular, the C-terminal residues in H2 are frustrated in their helical state. The databank of normal proteins consists of 58 helical proteins, 36 alpha+beta proteins, and 31 beta-sheet proteins. Our conclusions are also substantiated by gapless threading calculations that show that the normalized Z-scores of prion proteins are similar to those of other alpha+beta proteins with low helical content. Application of the recently introduced notion of discordance, namely, incompatibility of the predicted and observed secondary structures, also points to the frustration of H2 not only in the wild type but also in mutants of human PrP(C). This suggests that the instability of PrP(C) proteins may play a role in their being susceptible to the profound conformational change. Our analysis shows that, in addition to the previously proposed role for the segment (90-120) and possibly H1, the C-terminus of H2 and possibly N-terminus may play a role in the alpha-->beta transition. An implication of our results is that the ease of polymerization depends on the unfolding rate of the monomer. Sequence alignments show that helices in avian prion proteins (chicken, duck, crane) are better accommodated in a helical state, which might explain the absence of PrP(Sc) formation over finite time scales in these species. From this analysis, we predict that correlated mutations that reduce the frustration in the second half of helix 2 in mammalian prion proteins could inhibit the formation of PrP(Sc).  相似文献   

14.
《朊病毒》2013,7(4):228-235
In vivo amyloid formation is a widespread phenomenon in eukaryotes. Self-perpetuating amyloids provide a basis for the infectious or heritable protein isoforms (prions). At least for some proteins, amyloid-forming potential is conserved in evolution despite divergence of the amino acid (aa) sequences. In some cases, prion formation certainly represents a pathological process leading to a disease. However, there are several scenarios in which prions and other amyloids or amyloid-like aggregates are either shown or suspected to perform positive biological functions. Proven examples include self/nonself recognition, stress defense and scaffolding of other (functional) polymers. The role of prion-like phenomena in memory has been hypothesized. As an additional mechanism of heritable change, prion formation may in principle contribute to heritable variability at the population level. Moreover, it is possible that amyloid-based prions represent by-products of the transient feedback regulatory circuits, as normal cellular function of at least some prion proteins is decreased in the prion state.  相似文献   

15.
Mammalian and most fungal infectious proteins (also known as prions) are self-propagating amyloid, a filamentous beta-sheet structure. A prion domain determines the infectious properties of a protein by forming the core of the amyloid. We compare the properties of known prion domains and their interactions with the remainder of the protein and with chaperones. Ure2p and Sup35p, two yeast prion proteins, can still form prions when the prion domains are shuffled, indicating a parallel in-register beta-sheet structure.  相似文献   

16.
Two conformational isomers of recombinant hamster prion protein (residues 90-232) have been probed by reaction with two tyrosine nitration reagents, peroxynitrite and tetranitromethane. Two conserved tyrosine residues (tyrosines 149 and 150) are not labeled by either reagent in the normal cellular form of the prion protein. These residues become reactive after the protein has been converted to the beta-oligomeric isoform, which is used as a model of the fibrillar form that causes disease. After conversion, a decrease in reactivity is noted for two other conserved residues, tyrosine 225 and tyrosine 226, whereas little to no effect was observed for other tyrosines. Thus, tyrosine nitration has identified two specific regions of the normal prion protein isoform that undergo a change in chemical environment upon conversion to a structure that is enriched in beta-sheet.  相似文献   

17.
The native conformation of host-encoded cellular prion protein (PrP(C)) is metastable. As a result of a post-translational event, PrP(C) can convert to the scrapie form (PrP(Sc)), which emerges as the essential constituent of infectious prions. Despite thorough research, the mechanism underlying this conformational transition remains unknown. However, several studies have highlighted the importance of the N-terminal region spanning residues 90-154 in PrP folding. In order to understand why PrP folds into two different conformational states exhibiting distinct secondary and tertiary structure, and to gain insight into the involvement of this particular region in PrP transconformation, we studied the pressure-induced unfolding/ refolding of recombinant Syrian hamster PrP expanding from residues 90-231, and compared it with heat unfolding. By using two intrinsic fluorescent variants of this protein (Y150W and F141W), conformational changes confined to the 132-160 segment were monitored. Multiple conformational states of the Trp variants, characterized by their spectroscopic properties (fluorescence and UV absorbance in the fourth derivative mode), were achieved by tuning the experimental conditions of pressure and temperature. Further insight into unexplored conformational states of the prion protein, likely to mimic the in vivo structural change, was obtained from pressure-assisted cold unfolding. Furthermore, salt-induced conformational changes suggested a structural stabilizing role of Tyr150 and Phe141 residues, slowing down the conversion to a beta-sheet form.  相似文献   

18.
Mammalian prions are infectious agents of proteinaceous nature that cause several incurable neurodegenerative diseases. Interspecies transmission of prions is usually impeded or impossible. Barriers in prion transmission are caused by small interspecies differences in the primary structure of prion proteins. The barriers can also depend on the strain (variant) of a transmitted prion. Interspecies barriers were also shown for yeast prions, which define some heritable phenotypes. Yeast prions reproduce all the main traits of prion transmission barriers observed for mammals. This allowed to show that the barrier in prion transmission can be observed even upon copolymerization of two prionogenic proteins. Available data allow elucidation of the mechanisms that impede prion transmission or make it impossible.  相似文献   

19.
《朊病毒》2013,7(1):44-47
Aggregation of amyloid proteins is involved in serious neurodegenerative disorders such as Alzheimer disease and transmissible encephalopathies. The concept of an infectious protein (prion) proposed as the scrapie agent was successfully validated for several proteins of yeast and fungi. Ure2, Sup35 and Rnq1 in Saccharomyces cerevisiae and HET-s in Podospora anserina have been genetically, then biochemically identified as prion proteins. Studies on these proteins have brought critical informations on the mechanisms of prions appearance and propagation. The prion phenotype correlates with the aggregation state of these particular proteins. In vitro, the recombinant prion proteins form amyloid fibers characterized by a rich β-sheet content. In a previous work on the HET-s prion protein of Podospora we have demonstrated the infectivity of HET-s recombinant amyloid aggregates. More recently, the structural analysis of the prion domain of HET-s associated with in vivo mutagenesis allowed us to propose a model for the infectious fold of the HET-s prion domain. Further investigations to complete this model are discussed in this review as well as relevant questions about the [Het-s] system of Podospora anserina.  相似文献   

20.
Prions are proteinaceous infectious agents responsible for the transmission of prion diseases. The lack of a procedure for cultivating prions in the laboratory has been a major limitation to the study of the unorthodox nature of this infectious agent and the molecular mechanism by which the normal prion protein (PrP(C)) is converted into the abnormal isoform (PrP(Sc)). Protein misfolding cyclic amplification (PMCA), described in detail in this protocol, is a simple, fast and efficient methodology to mimic prion replication in the test tube. PMCA involves incubating materials containing minute amounts of infectious prions with an excess of PrP(C) and boosting the conversion by cycles of sonication to fragment the converting units, thereby leading to accelerated prion replication. PMCA is able to detect the equivalent of a single molecule of infectious PrP(Sc) and propagate prions that maintain high infectivity, strain properties and species specificity. A single PMCA assay takes little more than 3 d to replicate a large amount of prions, which could take years in an in vivo situation. Since its invention 10 years ago, PMCA has helped to answer fundamental questions about this intriguing infectious agent and has been broadly applied in research areas that include the food industry, blood bank safety and human and veterinary disease diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号