首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prp2p, Prp16p, Prp22p, and Prp43p are members of the DEAH-box family of ATP-dependent putative RNA helicases required for pre-mRNA splicing in Saccharomyces cerevisiae. Recently, mammalian homologues of Prp43p and Prp22p have been described, supporting the idea that splicing in yeast and man is phylogenetically conserved. In this study, we show that a murine cell line resistant to the novel immunoregulatory drug Leflunomide (Arava) overexpresses a 135-kDa protein that is a putative DEAH-box RNA helicase. We have cloned the human counterpart of this protein and show that it shares pronounced sequence homology with Prp16p. Apart from its N-terminal domain, which is rich in RS, RD, and RE dipeptides, this human homologue of Prp16p (designated hPrp16p) is 41% identical to Prp16p. Significantly, homology is not only observed within the phylogenetically conserved helicase domain, but also in Prp16p-specific sequences. Immunofluorescence microscopy studies demonstrated that hPrp16p co-localizes with snRNPs in subnuclear structures referred to as speckles. Antibodies specific for hPrp16p inhibited pre-mRNA splicing in vitro prior to the second step. Thus, like its yeast counterpart, hPrp16p also appears to be required for the second catalytic step of splicing. Taken together, our data indicate that the human 135-kDa protein identified here is the structural and functional homologue of the yeast putative RNA helicase, Prp16p.  相似文献   

2.
Saccharomyces cerevisiae Prp22 and Prp16 are RNA-dependent ATPases required for pre-mRNA splicing. Both proteins are members of the DEXH-box family of nucleic acid-dependent NTPases. Prior mutational analysis of Prp22 and Prp16 identified residues within conserved motifs I (GXGKT), II (DEAH), and VI (QRXGRXGR) that are required for their biological activity. Nonfunctional Prp22 and Prp16 mutants exerted a dominant negative effect on cell growth. Here we show that overexpression of lethal Prp22 mutants leads to accumulation of unspliced pre-mRNAs and excised introns in vivo. The biochemical basis for the lethality and inhibition of splicing in vivo was determined by purifying and characterizing recombinant mutant proteins. The lethal Prp22 mutants D603A and E604A in motif II and Q804A and R808A in motif VI were defective for ATP hydrolysis and mRNA release from the spliceosome, but were active in promoting step 2 transesterification. Lethal Prp16 mutants G378A and K379A in motif I; D473A and E474A in motif II; and Q685A, G688A, R689A, and R692A in motif VI were defective for ATP hydrolysis and step 2 transesterification chemistry. The ATPase-defective mutants of Prp16 and Prp22 bound to spliceosomes in vitro and blocked the function of the respective wild-type proteins in trans. Comparing the mutational effects in Prp16 and Prp22 highlights common as well as distinct structural requirements for the ATP-dependent steps in pre-mRNA splicing.  相似文献   

3.
Removal of intron regions from pre-messenger RNA (pre-mRNA) requires spliceosome assembly with pre-mRNA, then subsequent spliceosome remodeling to allow activation for the two steps of intron removal. Spliceosome remodeling is carried out through the action of DExD/H-box ATPases that modulate RNA–RNA and protein–RNA interactions. The ATPase Prp16 remodels the spliceosome between the first and second steps of splicing by catalyzing release of first step factors Yju2 and Cwc25 as well as destabilizing U2-U6 snRNA helix I. How Prp16 destabilizes U2-U6 helix I is not clear. We show that the NineTeen Complex (NTC) protein Cwc2 displays genetic interactions with the U6 ACAGAGA, the U6 internal stem loop (ISL) and the U2-U6 helix I, all RNA elements that form the spliceosome active site. We find that one function of Cwc2 is to stabilize U2-U6 snRNA helix I during splicing. Cwc2 also functionally cooperates with the NTC protein Isy1/NTC30. Mutation in Cwc2 can suppress the cold sensitive phenotype of the prp16-302 mutation indicating a functional link between Cwc2 and Prp16. Specifically the prp16-302 mutation in Prp16 stabilizes Cwc2 interactions with U6 snRNA and destabilizes Cwc2 interactions with pre-mRNA, indicating antagonistic functions of Cwc2 and Prp16. We propose that Cwc2 is a target for Prp16-mediated spliceosome remodeling during pre-mRNA splicing.  相似文献   

4.
The DExD/H-box Prp5 protein (Prp5p) is an essential, RNA-dependent ATPase required for pre-spliceosome formation during nuclear pre-mRNA splicing. In order to understand how this protein functions, we used in vitro, biochemical assays to examine its association with the spliceosome from Saccharomyces cerevisiae. GST-Prp5p in splicing assays pulls down radiolabeled pre-mRNA as well as splicing intermediates and lariat product, but reduced amounts of spliced mRNA. It cosediments with active spliceosomes isolated by glycerol gradient centrifugation. In ATP-depleted extracts, GST-Prp5p associates with pre-mRNA even in the absence of spliceosomal snRNAs. Maximal selection in either the presence or absence of ATP requires a pre-mRNA with a functional intron. Prp5p is present in the commitment complex and functions in subsequent pre-spliceosome formation. Reduced Prp5p levels decrease levels of commitment, pre-spliceosomal and spliceosomal complexes. Thus Prp5p is most likely an integral component of the spliceosome, being among the first splicing factors associating with pre-mRNA and remaining until spliceosome disassembly. The results suggest a model in which Prp5p recruits the U2 snRNP to pre-mRNA in the commitment complex and then hydrolyzes ATP to promote stable association of U2 in the pre-spliceosome. They also suggest that Prp5p could have multiple ATP-independent and ATP-dependent functions at several stages of the splicing cycle.  相似文献   

5.
In animals and yeasts, the DEAH-box RNA-dependent ATPase Prp16 facilitates pre-mRNA splicing. However, in Chlamydomonas reinhardtii and Caenorhabditis elegans, Prp16 orthologs are not important for general pre-mRNA splicing, but are required for gene silencing and sex determination, respectively. The CLUMSY VEIN (CUV) gene, which encodes a unique Prp16 ortholog in Arabidopsis thaliana, influences auxin-mediated development. A loss-of-function cuv-1 mutation tells us that CUV does not facilitate splicing of pre-mRNA substrates indiscriminately, but differentially effects splicing and expression of genes. Here we show that CUV influences root-meristem maintenance and planar polarity of root-hair positioning, both of which are processes regulated by auxin. We propose that Arabidopsis PRP16/CUV differentially facilitates the expression of genes, including genes involved in auxin biosynthesis, transport, perception and signaling, and that in this way it influences auxin-mediated development.  相似文献   

6.
The yeast PRP44 gene, alternatively named as BRR2, SLT22, RSS1, or SNU246, encodes a 246-kDa protein with putative RNA helicase function during pre-mRNA splicing. The protein is a typical DEAD/H family member, but unlike most other members of this family, it contains two putative RNA helicase domains, each with a highly conserved ATPase motif. Prior to this study little was known about functional roles for these two domains. We present genetic and biochemical evidence that ATPase motifs of only the first helicase domain are required for cell viability and pre-mRNA splicing. Overexpression of mutations in the first domain results in a dominant negative phenotype, and extracts from these mutant strains inhibit in vitro pre-mRNA splicing. In vitro analyses of affinity purified proteins revealed that only the first helicase domain possesses poly (U)-dependent ATPase activity. Overexpression of a dominant negative protein in vivo reduces the relative abundance of free U4 and U6 snRNA with a concomitant accumulation of the U4/U6 duplex. Accumulation of the U4/U6 duplex was relieved by overexpression of wild-type Prp44p. Three DEAD/H box proteins, Prp16p, Prp22p and Prp44p, have previously been shown to affect U4/U6 unwinding activity in vitro. The possible role of these proteins in mediating this reaction in vivo was explored following induced expression of ATPase domain mutants in each of these. Although overexpression of the mutant form of either Prp16p, Prp22p, or Prp44p was lethal, only expression of the mutant Prp44p resulted in accumulation of the U4/U6 helix. Our results, when combined with previously published in vitro results, support a direct role for Prp44p in unwinding of the U4/U6 helix.  相似文献   

7.
B Schwer  C H Gross 《The EMBO journal》1998,17(7):2086-2094
In order to assess the role of Prp22 in yeast pre-mRNA splicing, we have purified the 130 kDa Prp22 protein and developed an in vitro depletion/reconstitution assay. We show that Prp22 is required for the second step of actin pre-mRNA splicing. Prp22 can act on pre-assembled spliceosomes that are arrested after step 1 in an ATP-independent fashion. The requirement for Prp22 during step 2 depends on the distance between the branchpoint and the 3' splice site, suggesting a previously unrecognized role for Prp22 in splice site selection. We characterize the biochemical activities of Prp22, a member of the DExH-box family of proteins, and we show that purified recombinant Prp22 protein is an RNA-dependent ATPase and an ATP-dependent RNA helicase. Prp22 uses the energy of ATP hydrolysis to effect the release of mRNA from the spliceosome. Thus, Prp22 has two distinct functions in yeast pre-mRNA splicing: an ATP-independent role during the second catalytic step and an ATP-requiring function in disassembly of the spliceosome.  相似文献   

8.
Step 2 catalysis of pre-mRNA splicing entails the excision of the intron and ligation of the 5′ and 3′ exons. The tasks of the splicing factors Prp16, Slu7, Prp18, and Prp22 in the formation of the step 2 active site of the spliceosome and in exon ligation, and the timing of their recruitment, remain poorly understood. Using a purified yeast in vitro splicing system, we show that only the DEAH-box ATPase Prp16 is required for formation of a functional step 2 active site and for exon ligation. Efficient docking of the 3′ splice site (3′SS) to the active site requires only Slu7/Prp18 but not Prp22. Spliceosome remodeling by Prp16 appears to be subtle as only the step 1 factor Cwc25 is dissociated prior to step 2 catalysis, with its release dependent on docking of the 3′SS to the active site and Prp16 action. We show by fluorescence cross-correlation spectroscopy that Slu7/Prp18 and Prp16 bind early to distinct, low-affinity binding sites on the step-1-activated B* spliceosome, which are subsequently converted into high-affinity sites. Our results shed new light on the factor requirements for step 2 catalysis and the dynamics of step 1 and 2 factors during the catalytic steps of splicing.  相似文献   

9.
During splicing of nuclear pre-mRNAs, the first step liberates the 5' exon (exon 1) and yields a lariat intron-3'exon (intron-exon 2) intermediate. The second step results in exon ligation. Previous results indicated that severe truncations of the 5' exon of the actin pre-mRNA result in a block to the second splicing step in vitro in yeast extracts, leading to an accumulation of intron-exon 2 lariat intermediates. We show that exogenous exon 1 RNA oligonucleotides can chase these stalled intermediates into lariat intron and spliced exons. This reaction requires some of the cis elements and trans-acting factors that are required for a normal second step. There is no strong sequence requirement for the exon 1 added in trans, but oligonucleotides with complementarity to the U5 snRNA conserved loop perform the chase more efficiently. Using a dominant negative mutant of the DEAH-box ATPase Prp16p and ATP depletion, we show that the stalled intermediate is blocked after the Prp16p-dependent step. These results show that exogenous RNAs with various sequences but containing no splicing signals can be incorporated into spliceosomes and undergo RNA recombination and exon shuffling during the second step of pre-mRNA splicing.  相似文献   

10.
For the second catalytic step of pre-mRNA splicing to occur, a 3' splice site must be selected and juxtaposed with the 5' exon. Four proteins, Prp16p, Slu7p, Prp17p, Prp18p, and an integral spliceosomal protein, Prp8p, are known to be required for the second catalytic step. prp8-101, an allele of PRP8 defective in 3' splice site recognition, exhibits specific genetic interactions with mutant alleles of the other second step splicing factors. The prp8-101 mutation also results in decreased crosslinking of Prp8p to the 3' splice site. To determine the role of the step-two-specific proteins in 3' splice site recognition and in binding of Prp8p to the 3' splice site, we performed crosslinking studies in mutant and immunodepleted extracts. Our results suggest an ordered pathway in which, after the first catalytic step, Prp16p crosslinks strongly to the 3' splice site and Prp8p and Slu7p crosslink weakly. ATP hydrolysis by Prp16p affects a conformational change that reduces the crosslinking of Prp16p with the 3' splice site and allows stronger crosslinking of Prp8p and Slu7p. Thus, the 3' splice site appears to be recognized in two stages during the second step of splicing. Strong 3' splice site crosslinking of Prp8p and Slu7p also requires the functions of Prp17p and Prp18p. Therefore, Prp8p and Slu7p interact with the 3' splice site at the latest stage of splicing prior to the second catalytic step that can currently be defined, and may be at the active site.  相似文献   

11.
Dynamic rearrangement of RNA structure is crucial for intron recognition and formation of the catalytic core during pre-mRNA splicing. Three of the splicing factors that contain sequence motifs characteristic of the DExD/DExH-box family of RNA-dependent ATPases (Prp16, Prp22, and the human homologue of Brr2) recently have been shown to unwind RNA duplexes in vitro, providing biochemical evidence that they may direct structural rearrangements on the spliceosome. Notably, however, the unwinding activity of these proteins is sequence nonspecific, raising the question of how their functional specificity is determined. Because the highly conserved DExD/DExH-box domain in these proteins is typically flanked by one or more nonconserved domains, we have tested the hypothesis that the nonconserved regions of Prp16 determine the functional specificity of the protein. We found that the nonconserved N-terminal domain of Prp16 is (1) essential for viability, (2) required for the nuclear localization of Prp16, and (3) capable of binding to the spliceosome specifically at the step of Prp16 function. Moreover, this domain can interact with the rest of the protein to allow trans-complementation. Based on these results, we propose that the spliceosomal target of the unwinding activity of Prp16, and possibly other DExD/DExH-box splicing factors as well, is defined by factors that specifically interact with the nonconserved domains of the protein.  相似文献   

12.
Both the Prp18 protein and the U5 snRNA function in the second step of pre-mRNA splicing. We identified suppressors of mutant prp18 alleles in the gene for the U5 snRNA (SNR7). The suppressors' U5 snRNAs have either a U4-to-A or an A8-to-C mutation in the evolutionarily invariant loop 1 of U5. Suppression is specific for prp18 alleles that encode proteins with mutations in a highly conserved region of Prp18 which forms an unstructured loop in crystals of Prp18. The snr7 suppressors partly restored the pre-mRNA splicing activity that was lost in the prp18 mutants. The close functional relationship of Prp18 and U5 is emphasized by the finding that two snr7 alleles, U5A and U6A, are dominant synthetic lethal with prp18 alleles. Our results support the idea that Prp18 and the U5 snRNA act in concert during the second step of pre-mRNA splicing and suggest a model in which the conserved loop of Prp18 acts to stabilize the interaction of loop 1 of the U5 snRNA with the splicing intermediates.  相似文献   

13.
The assembly of the spliceosome involves dynamic rearrangements of interactions between snRNAs, protein components, and the pre-mRNA substrate. DExD/H-box ATPases are required to mediate structural changes of the spliceosome, utilizing the energy of ATP hydrolysis. Two DExD/H-box ATPases are required for the catalytic steps of the splicing pathway, Prp2 for the first step and Prp16 for the second step, both belonging to the DEAH subgroup of the protein family. The detailed mechanism of their action was not well understood until recently, when Prp2 was shown to be required for the release of U2 components SF3a and SF3b, presumably to allow the binding of Cwc25 to promote the first transesterification reaction. We show here that Cwc25 and Yju2 are released after the reaction in Prp16- and ATP-dependent manners, possibly to allow for the binding of Prp22, Prp18, and Slu7 to promote the second catalytic reaction. The binding of Cwc25 to the spliceosome is destabilized by mutations at the branchpoint sequence, suggesting that Cwc25 may bind to the branch site. We also show that Prp16 has an ATP-independent role in the first catalytic step, in addition to its known role in the second step. In the absence of ATP, Prp16 stabilizes the binding of Cwc25 to the spliceosome formed with branchpoint mutated pre-mRNAs to facilitate their splicing. Our results uncovered novel functions of Prp16 in both catalytic steps, and provide mechanistic insights into splicing catalysis.  相似文献   

14.
Prp19 is the founding member of the NineTeen Complex, or NTC, which is a spliceosomal subcomplex essential for spliceosome activation. To define Prp19 connectivity and dynamic protein interactions within the spliceosome, we systematically queried the Saccharomyces cerevisiae proteome for Prp19 WD40 domain interaction partners by two-hybrid analysis. We report that in addition to S. cerevisiae Cwc2, the splicing factor Prp17 binds directly to the Prp19 WD40 domain in a 1:1 ratio. Prp17 binds simultaneously with Cwc2 indicating that it is part of the core NTC complex. We also find that the previously uncharacterized protein Urn1 (Dre4 in Schizosaccharomyces pombe) directly interacts with Prp19, and that Dre4 is conditionally required for pre-mRNA splicing in S. pombe. S. pombe Dre4 and S. cerevisiae Urn1 co-purify U2, U5, and U6 snRNAs and multiple splicing factors, and dre4Δ and urn1Δ strains display numerous negative genetic interactions with known splicing mutants. The S. pombe Prp19-containing Dre4 complex co-purifies three previously uncharacterized proteins that participate in pre-mRNA splicing, likely before spliceosome activation. Our multi-faceted approach has revealed new low abundance splicing factors connected to NTC function, provides evidence for distinct Prp19 containing complexes, and underscores the role of the Prp19 WD40 domain as a splicing scaffold.  相似文献   

15.
Slu7 and Prp18 act in concert during the second step of yeast pre-mRNA splicing. Here we show that the 382-amino-acid Slu7 protein contains two functionally important domains: a zinc knuckle (122CRNCGEAGHKEKDC135) and a Prp18-interaction domain (215EIELMKLELY224). Alanine cluster mutations of 215EIE217 and 221LELY224 abrogated Slu7 binding to Prp18 in a two-hybrid assay and in vitro, and elicited temperature-sensitive growth phenotypes in vivo. Yet, the mutations had no impact on Slu7 function in pre-mRNA splicing in vitro. Single alanine mutations of zinc knuckle residues Cys122, His130, and Cys135 had no effect on cell growth, but caused Slu7 function during pre-mRNA splicing in vitro to become dependent on Prp18. Specifically, zinc knuckle mutants required Prp18 in order to bind to the spliceosome. Compound mutations in both Slu7 domains (e.g., C122A-EIE, H130A-EIE, and C135A-EIE) were lethal in vivo and abolished splicing in vitro, suggesting that the physical interaction between Slu7 and Prp18 is important for cooperation in splicing. Depletion/reconstitution studies coupled with immunoprecipitations suggest that second step factors are recruited to the spliceosome in the following order: Slu7 --> Prp18 --> Prp22. All three proteins are released from the spliceosome after step 2 concomitant with release of mature mRNA.  相似文献   

16.
The binding of a U1 small nuclear ribonucleoprotein (snRNP) particle to the 5' splice site region of a pre-mRNA is a primary step of intron recognition. In this report, we identify a novel 75-kDa polypeptide of Saccharomyces cerevisiae, Prp39p, necessary for the stable interaction of mRNA precursors with the snRNP components of the pre-mRNA splicing machinery. In vivo, temperature inactivation or metabolic depletion of Prp39p blocks pre-mRNA splicing and causes growth arrest. Analyses of cell extracts reveal a specific and dramatic increase in the electrophoretic mobility of the U1 snRNP particle upon Prp39p depletion and demonstrate that extracts deficient in Prp39p activity are unable to form either the CC1 or CC2 commitment complex band characteristic of productive U1 snRNP/pre-mRNA association. Immunological studies establish that Prp39p is uniquely associated with the U1 snRNP and is recruited with the U1 snRNP into splicing complexes. On the basis of these and related observations, we propose that Prp39p functions, at least in part, prior to stable branch point recognition by the U1 snRNP particle to facilitate or stabilize the U1 snRNP/5' splice site interaction.  相似文献   

17.
18.
van Nues RW  Beggs JD 《Genetics》2001,157(4):1451-1467
Mapping of functional protein interactions will help in understanding conformational rearrangements that occur within large complexes like spliceosomes. Because the U5 snRNP plays a central role in pre-mRNA splicing, we undertook exhaustive two-hybrid screening with Brr2p, Prp8p, and other U5 snRNP-associated proteins. DExH-box protein Brr2p interacted specifically with five splicing factors: Prp8p, DEAH-box protein Prp16p, U1 snRNP protein Snp1p, second-step factor Slu7p, and U4/U6.U5 tri-snRNP protein Snu66p, which is required for splicing at low temperatures. Co-immunoprecipitation experiments confirmed direct or indirect interactions of Prp16p, Prp8p, Snu66p, and Snp1p with Brr2p and led us to propose that Brr2p mediates the recruitment of Prp16p to the spliceosome. We provide evidence that the prp8-1 allele disrupts an interaction with Brr2p, and we propose that Prp8p modulates U4/U6 snRNA duplex unwinding through another interaction with Brr2p. The interactions of Brr2p with a wide range of proteins suggest a particular function for the C-terminal half, bringing forward the hypothesis that, apart from U4/U6 duplex unwinding, Brr2p promotes other RNA rearrangements, acting synergistically with other spliceosomal proteins, including the structurally related Prp2p and Prp16p. Overall, these protein interaction studies shed light on how splicing factors regulate the order of events in the large spliceosome complex.  相似文献   

19.
Splicing of pre-mRNA is initiated by binding of U1 to the 5′ splice site and of Msl5-Mud2 heterodimer to the branch site (BS). Subsequent binding of U2 displaces Msl5-Mud2 from the BS to form the prespliceosome, a step governing branchpoint selection and hence 3′ splice site choice, and linking splicing to myelodysplasia and many cancers in human. Two DEAD-box proteins, Prp5 and Sub2, are required for this step, but neither is stably associated with the pre-mRNA during the reaction. Using BS-mutated ACT1 pre-mRNA, we previously identified a splicing intermediate complex, FIC, which contains U2 and Prp5, but cannot bind the tri-snRNP. We show here that Msl5 remains associated with the upstream cryptic branch site (CBS) in the FIC, with U2 binding a few bases downstream of the BS. U2 mutants that restore U2-BS base pairing enable dissociation of Prp5 and allows splicing to proceed. The CBS is required for splicing rescue by compensatory U2 mutants, and for formation of FIC, demonstrating a role for Msl5 in directing U2 to the BS, and of U2-BS base pairing for release of Prp5 and Msl5-Mud2 to form the prespliceosome. Our results provide insights into how the prespliceosome may form in normal splicing reaction.  相似文献   

20.
Binding of U2 small nuclear ribonucleoprotein (snRNP) to the pre-mRNA is an early and important step in spliceosome assembly. We searched for evidence of cooperative function between yeast U2 small nuclear RNA (snRNA) and several genetically identified splicing (Prp) proteins required for the first chemical step of splicing, using the phenotype of synthetic lethality. We constructed yeast strains with pairwise combinations of 28 different U2 alleles with 10 prp mutations and found lethal double-mutant combinations with prp5, -9, -11, and -21 but not with prp3, -4, -8, or -19. Many U2 mutations in highly conserved or invariant RNA structures show no phenotype in a wild-type PRP background but render mutant prp strains inviable, suggesting that the conserved but dispensable U2 elements are essential for efficient cooperative function with specific Prp proteins. Mutant U2 snRNA fails to accumulate in synthetic lethal strains, demonstrating that interaction between U2 RNA and these four Prp proteins contributes to U2 snRNP assembly or stability. Three of the proteins (Prp9p, Prp11p, and Prp21p) are associated with each other and pre-mRNA in U2-dependent splicing complexes in vitro and bind specifically to synthetic U2 snRNA added to crude splicing extracts depleted of endogenous U2 snRNPs. Taken together, the results suggest that Prp9p, -11p, and -21p are U2 snRNP proteins that interact with a structured region including U2 stem loop IIa and mediate the association of the U2 snRNP with pre-mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号